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Abstract

The quantity of aquatic plants and subsequent biodiversity at Lake Wörthersee, Carinthia’s largest lake, is show-
ing a declining trend. Local aquatic ecologists suggest that the rising boat traffic on the lake might be one of the 
reasons behind this decline. Increased wave action at the shore leads to the stirring up of more sludge particles, 
disturbing plant growth and causing a corresponding reduction in biodiversity. To address this research question, 
capturing the energy emitted by passing boats and the energy reaching the shore is crucial; with key parameters 
being wave height and wave period.

This study conducted test measurements at Lake Wörthersee to demonstrate the capability of buoys equipped 
with low-cost inertial sensors in capturing wave heights. While showcasing their potential, the study also 
addresses the challenges involved. To validate the obtained results, comparisons were made with reference 
measurements obtained from a total station. Additionally, the study presents an approach aimed at distinguishing 
boat-induced waves from wind-induced waves using the wavelet transform.
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Kurzfassung

Der Bestand an Wasserpflanzen und die damit verbundene Artenvielfalt des Wörthersees in Kärnten nimmt 
stetig ab. Ein möglicher Grund dafür könnte, laut örtlichen Gewässerökologen, der steigende Bootsverkehr 
am See sein. Erhöhte Wellenaktivität am Ufer führt dazu, dass mehr Schlammteilchen aufgewirbelt werden, 
was das Pflanzenwachstum stört und zu einer entsprechenden Verringerung der Biodiversität führt. Um diese 
Forschungsfrage beantworten zu können, muss die von den vorbeifahrenden Booten ausgehende und die am 
Ufer eintreffende Energie gemessen werden; wichtige Parameter sind dabei die Wellenhöhe und -periode.

Basierend auf Testmessungen am Wörthersee wird das Potential von Messbojen, welche mit kostengünstiger 
Inertialsensorik ausgestattet sind, zur Erfassung von Wellenhöhen aufgezeigt. Die damit verbundenen Her-
ausforderungen werden ebenfalls angesprochen. Zur Validierung der Ergebnisse wurden Referenzmessungen 
mittels einer Totalstation durchgeführt. Darüber hinaus wird ein Ansatz vorgestellt, der darauf abzielt, mithilfe der 
Wavelet-Transformation, Boots- von Windwellen zu unterscheiden.
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1.  Introduction

The ecological condition and quality of Lake 
Wörthersee (Carinthia/Austria) worsens increas-
ingly over time [1]. Certain aquatic plants, and 
thus the biodiversity, are falling, which alarms 
local aquatic ecologists. One assumption is that 
boat traffic may be related to the extinction of 
plant species. 

Waves are hitting the shore and stir up fine 
sludge  particles and sediments. These, in turn, 
settle on the aquatic plants. If the sludge lay-
er becomes too thick, aquatic plants cannot 

carry  out  photosynthesis leading to dying [1]. A 
key research question is whether, and if so, how 
strongly – aquatic plants are affected by wave 
action and, thus, if boat traffic represents an 
environmental threat.

Hence, the determination of wave heights and 
periods gives valuable information  about wave 
action at the lake. Wave heights and periods are 
determinable by several effective methods. One 
way is to analyze the signal-to-noise ratio signal 
of Global Navigation Satellite System (GNSS) re-
flectometry to obtain wave heights [2]. Another 
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possibility represents GNSS buoys using pre-
cise point positioning (PPP) [3,4]. Although PPP 
provides centimeter accuracy, such systems are 
cost-intensive and do not take into account the 
changing attitude of a buoy at sea [5]. 

Other studies determine wave parameters 
based on micro-electro-mechanical system 
(MEMS) inertial measurement units (IMUs) at-
tached to buoys [6,7]. An IMU is characterized by 
its high output rate and its high short-time stability 
– but low long-time stability. Thus, the main is-
sue concerning IMU data processing refers to the 
mitigation of the accumulation of sensor errors [8], 
which results in a drift. Typically, when integrating 
an INS, other systems, such as GNSS, or math-
ematical methods are used for aid. By coupling 
GNSS with INS, missing attitude information is 
incorporated into the processing, and thus, the 
solution can be significantly improved [5]. Zhang 
et al. [6] propose a method for measuring wave 
heights and periods only using a MEMS IMU. They 
utilized frequency domain integration methods to 
transform the detrended and denoised accelera-
tion data to wave heights and periods. Simulating 
wave eigenvalues using a sinusoidal simulation 
mechanism showed that statistical wave proper-
ties are accurately extractable. A master’s thesis 
from Alfens [7] deals with the IMU-based sea state 
estimation using machine learning methodologies 
for vessels. He presents a robust algorithm but 
also addresses the difficulties connected to the 
real-life dynamics of a vessel. 

Numerous methods for determining wave 
characteristics are often costly, impractical, reli-
ant solely on simulations, or tailored exclusively 
for oceanic environments. Thus, to date, such 
measurement buoys have not been applied in 
contexts related to lake ecosystems. A primary 
objective is to evaluate the feasibility of extracting 
wave heights utilizing a conventional strap-down 
algorithm along with advanced data processing 
techniques to detrend and denoise the time series.

The trend determination process involves two 
phases: the initial phase focuses on trend elimina-
tion via moving averages, while the subsequent 
phase utilizes methods of local regression to 
eliminate residual trends. Wavelet methodologies 
are then employed to denoise distorted segments, 
integrating neighboring coefficients. This denois-
ing process aims to filter out wind-induced waves, 
leaving behind only boat-generated waves. One 
of the primary challenges involves coping with 
fluctuating temperatures throughout the day 

while accurately capturing wave heights that are 
mere centimeters in magnitude. To validate this 
approach, a field test was conducted at Lake 
Wörthersee, outfitting a total of eight buoys with 
MEMS IMUs. One buoy was tracked using a total 
station to verify the developed algorithm. 

This paper is divided into three sections: 
Section 2 delineates the methodologies em-
ployed, the selected sensor, and details regarding 
the measurement campaign. Section 3 focuses 
on presenting the results obtained. The final 
Section 4 concludes the paper by providing a 
summary as well as a discussion.

2.  Materials and Methods
The following sections introduce the selected 
MEMS IMU for measuring wave heights and give 
an overview of the analysis methods. Furthermore, 
the field measurement is described.

2.1  Selected Sensors
Inertial data samples of MEMS IMUs are collected 
via the XSens Dots [9] from the company XSens. 
The XSens DOT is composed of a triaxial ac-
celerometer, a triaxial gyroscope, and a triaxial 
magnetometer, which measures accelerations, 
angular rates, and magnetic field strength, res-
pectively. With its dimensions of 36.30 x 30.35 x 
10.80 mm, output rates up to 120 Hz, battery life 
of up to 9 hours, and internal storage of 64 MB, 
it features a wearable sensor suitable for many 
applications. The sensor’s bias instability, which 
denotes the extent of sensor output drift over time 
under consistent operating conditions and steady 
temperature, is relatively high at 10°/h, thus, im-
pacting its stability and reliability during operation. 
Nonetheless, given the focus solely on short-term 
changes, this level of stability proves sufficient.

2.2  Definition of wave height and period
The wave heights are defined for up-crossing 
waves. The wave period refers to the crest period, 
thus, the time span between an up-crossing and 
the next down-crossing is measured. The defini-
tions are illustrated in Figure 1. Those statistical 
values can be extracted via the WAFO (Wave 
Analysis for Fatigue and Oceanography) toolbox 
for Python [10].

2.3  Strapdown Integration
The parameter of interest in this study is the rela-
tive height component, which is computed via the 
conventional strap-down integration. Thus, inertial 
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data (accelerations f b and angular rates Wb
ib  ) are 

converted into relative position/velocity/attitude 
(PVA) changes. The used mechanization equation 
reads as follows [11,12]:
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where x l contains the position in the local-level 
frame (l -frame). The definition of the axes of the 
l -frame corresponds to an east-north-up system. 
The vector v l is the velocity vector, where the 
normal gravity vector g l  [13] and the Coriolis 
part ( )2Wie

l
el
l lv+W are taken into account. Rb

l  is 
the rotation matrix that transforms a vector from 
the body frame (b -frame) to the l -frame. The 
rotation matrix is parameterized by quaternions 
to increase the numerical stability. Basically, W is 
associated with a skew-symmetric cross-product 
matrix, where, e. g., Wib

b  corresponds to the skew-
symmetric matrix containing the angular rate 
vector. A more detailed description can be found 
in Mascher et al. [14]. Integrating the mechaniza-
tion equation based on the rectangular rule yield 
the desired states. Note that the raw acceleration 
measurements are corrected by pre-determined 
acceleration biases and scale factors. The 
gyroscope bias is calculated in the initialization 
process, and in parallel with the initial alignment, 
where the initial roll and pitch values are compu-
ted based on the accelerometer data. The initial 
heading is derived from magnetometer data. The 
initial position, as well as the initial velocity vector, 
are the null vector. 

Despite the pre-calibration process of the IMU, 
other deterministic and cumulative stochastic 
sensor errors are present, which results in a rapid 
drift of the INS position solution [15]. The major 
environmental factor is varying temperature con-

ditions. Its modeling presents a time-consuming 
process. However, in post-processing, the drift of 
the IMU can be eliminated by time series analysis 
to a large extent. Alignment errors are another 
challenge for a standalone INS. Primarily, tilt errors 
and heading errors cause a miscalculation of the 
gravitational component. As a result, the Schuler 
oscillations (84.4 minute cyclic responses) are 
evoked [16].

2.4  Filtering
The filtering procedure consists of two main 
steps: The first one deals with the trend (drift) 
elimination of the INS height solution. The second 
one focuses on denoising the signal to extract 
wave heights that are associated with boat traffic.

2.4.1  Trend determination
An iterative process determines the trend, where 
different trend determination methods are consi-
dered:

As a first step, an initial trend (main drift) is 
determined using a centered moving average of 
the time series based on a 1-D convolution fil-
ter. As window length, 45 samples are chosen, 
which corresponds to 1.5 s of inertial data. After 
removing this initial trend, a more sophisticated 
method, namely Seasonal-Trend decomposition 
using locally weighted regression (LOESS), or in 
abbreviated form “STL” [17], is used for determin-
ing the remaining trend. According to Cleveland 
et al. [17], STL is an advanced filtering method 
that divides the signal into a trend, seasonal, and 
remainder (noise) component. Mainly, it is based 
on iteratively adjusting local regression models. 
The seasonal component is neglected and only 
the trend is again subtracted from the time series. 

2.4.2  Wavelet Transform
One popular frequency analysis/filtering tool 
represents the Fast Fourier Transform (FFT). This 

Fig. 1: Definition of wave height and period
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approach is well suited for stationary time series. 
However, for non-stationary signals, which vary 
strongly over time, the FFT causes difficulties. 
Another issue that plays a central role in this study 
is that waves caused by wind show similar fre-
quency characteristics to waves caused by boats. 
Thus, if the noise is within the desired spectral 
content, Fourier filters fail to work. The Wavelet 
Transform (WT) resolves these limitations. For the 
WT, the signal is correlated with so-called wave-
lets, which represent shifted and scaled versions 
of the mother wavelet y. The WT of a continuous 
signal s (t) reads as follows [18,19]:

	 T a b s s t dta b a b( , ) , ( ), ,
*= =

−∞

∞
∫y y ,	 (2)

where a and b are the dilation and translation 
parameters, respectively. The complex conjugate 
of the scaled and shifted wavelet is denoted as 
ya b,* . By discretizing the dilatation and translation 
parameters, the discrete wavelet transform (DWT) 
is obtained:

	 T m n s m n( , ) , ,= y ,	  (3)

where m and n are the corresponding control 
parameters for the dilation and translation.

In 1998, Mallat [20] introduces the theory for 
fast wavelet decomposition and reconstruction 
algorithms using a wavelet orthonormal basis 
yielding to the fast wavelet transform (FWT). His 
idea of the multiresolution signal decomposition 
is based on the pyramid algorithm that utilizes 
quadrature mirror filters. The implementation can 
be interpreted as a cascade of high-pass and low-
pass filters based on the discrete wavelet trans-
form (DWT): A finite signal s can be decomposed 
into so-called approximation coefficients cA1 and 
detail coefficients cD1 ,by applying low-pass and 
high-pass filtering, respectively, followed by dya-
dic decimation. These coefficients refer to the first 
level of decomposition at the scale index m = 1. 
The filtering process (Figure 2) is repeated for the 
approximation coefficients until the desired level 

m or the maximum level M of decomposition is 
reached ( 0 < m < M ). 

The bandwidths at each scale m are equal to
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for cAm [21]. fs denotes the sampling frequency.

As also seen in Figure 2, the resulting dyadic 
grid wavelet transform coefficients yield a 2D 
discrete transform plot, which gives an impressi-
on of the frequency distribution. High frequencies 
refer to small scales and provide a high time reso-
lution and low frequency resolution. Conversely, 
high scales are associated with low frequencies, 
which have a low time resolution, but a high fre-
quency resolution. 

Similarly, the discrete signal is reconstructed 
with the pyramid transform, also known as the in-
verse Fast Wavelet Transform (IFWT). Taking cAm 
and cDm, the original signal is reconstructed by 
inverting the pyramid algorithm [20].

2.4.3  Wavelet Denoising
Wind and heavy boat traffic are potential sources 
of interference. They result in a superposition of 
the individual waves, thus, outgoing energy from 
single boats is hardly identifiable. By denoising 
the signal, the distorted parts are minimized, and 
the determination of wave heights and periods is 
facilitated. 

Wavelet denoising consists of the following 
parts:

�� �Decomposition: Decompose signal into mul-
tiple frequency bands using the FWT.

�� �Thresholding: Reduce the relative impor-
tance of transform coefficients with low ab-
solute values. 

�� �Reconstruction: Reconstruct the signal from 
the denoised coefficients using the FIWT.

Fig. 2: Multiresolution signal decomposition and transform plot with scale indexing
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Standard approaches use hard or soft threshol-
ding functions, which are applied to each wavelet 
coefficient, to denoise a signal. However, Cai and 
Silverman [22] proposed an advanced denoising 
method called the  “NeighBlock”. This approach 
includes information on neighboring coefficients 
in overlapping blocks (block thresholding) in the 
decision-making. The basic assumption of block 
thresholding is that if some coefficients contain 
a signal, it is likely that coefficients in the near 
vicinity also have some information.

The chosen wavelet for denoising the signal is 
the Daubechies’ wavelet with ten vanishing mo-
ments (Figure 3).

2.5  Field Tests
Field tests were conducted at the Lake Wörther-
see on 31. July 2022 between 06:30 and 18:00. 
Therefore, eight buoys and three anchor buoys 
were well-placed south of the “Schlangeninsel”. 
The test setup is sketched in Figure 4. 

The anchor buoys are positioned 100 meters 
apart from one another forming a L-shape. Se-
cured with velcro fasteners, one IMU was attached 
centrally to each yellow buoy. However, a central 
attachment of the IMU for the number one buoy, 
the orange one, was not possible, since this buoy 
was additionally equipped with a Leica GRZ101 
360-degree Mini Prism. From the shore, the prism 
was tracked using a Leica Nova MS60 MultiSta-
tion to obtain a reliable ground truth for selected 
periods. The IMU data was recorded and stored 
within the sensor’s internal storage at 30 Hz. Due 
to the limited battery life of each sensor (up to 9 
hours @ 30 Hz), the IMUs were exchanged shortly 
before 14:00. Since it cannot be assumed that the 
buoys in the lake are stationary, the initialization 
process of the IMU was done on land. After a suc-
cessful initial alignment, the buoys were reached 
by boat to attach the sensors.

The morning session focused on individual 
boat trips. From 07:15 until 08:30 single boats up 

Fig. 3: Daubechies’ wavelets with ten vanishing moments

Fig. 4: Test setup. The distance between the buoys 
measures roughly 20 m. Buoy 1 was additionally equip-
ped with a Leica 360° mini prism.

to 7.3 m in length were passing by the buoys to 
obtain an isolated data set. This session featured 
still air atmospheric conditions. After 10 o'clock 
more boat traffic and the rising wind were pre-
sent. In the afternoon, gusts of winds were sensed 
occasionally. Under sunny weather conditions, the 
temperature range was approximately between 
17°C and 27°C on land. Due to the strong solar 
radiation on the water, the sensor experienced 
higher temperatures.

3.  Results
This section presents the final and intermediate 
results of the wave height determination. By 
comparing the INS solution with the reference, 
meaningful results and evaluations can be obtai-
ned. 

3.1  Trend Elimination
As seen in Figure 5, the pure strapdown inte
gration results in a rapid drift in the PVA. Due to 
tilting as well as sensor errors of the MEMS IMU, 
the Schuler oscillation (~84 min) becomes visible. 
Since the INS shows great short-time stability, 
height information can be obtained by detrending 
the time series in post-processing. After subtrac-
ting the initial trend (moving average) from the 
original time series, several small trends remain. 
Those trends are likely a result of temperature 
changes and tilting errors. However, after applying 
the STL analysis, wave heights are noticeable.

3.2  Comparison with reference
Figure 6 indicates an example of waves that ori-
ginates from a passing boat (Super Air Nautique 
Gs 22) for all buoys. The arrangement of the buoys 
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Fig. 5: Trend elimination. Trend (1) refers to the moving average, trend (2) to STL.

Fig. 6: Computed wave heights. The detail shows the transmitted energy based on the Super Air Nautique 
Gs 22, a boat with a length of 6.7 m. The cyan patch indicates the transit time of the boat near the buoys.
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reference conditions ARMSE [cm] time span

1
nearly no wind
nearly no boat traffic

1.5
07:10
08:30

2
rising wind
rising boat traffic

2.1
09:15
11:15

3
heavy wind
heavy boat traffic

4.3
12:07
13:45

4
heavy wind
heavy boat traffic

3.0
14:15
16:10

Tab. 1: Average root-mean-square error (ARMSE) of the height 
component

Fig. 7: Discrete transform plot with scale indexing of one selected buoy. Note that the IMU was exchanged shortly 
before 14:00 o’clock.

is illustrated in Figure 4. The signal refers to 
the detrended time series obtained by the 
inertial data. The wave reaches the buoys, 
which are perpendicular to the shore, with 
decreasing energy and delay. Since the pa-
rallel aligned buoys are close to the shore, 
the waves regain height. The wave height of 
buoy one matches the measured reference 
within 7 mm. However, this example shows 
the result under perfect conditions (no wind, 
no other boat traffic).

In Table 1, the average root-mean-square 
errors (ARMSEs) of buoy number one are 
listed. Conditions, like no wind and nearly 
no boat traffic, result in low ARMSE values. 
Rising wind and boat traffic cause more 
movement on the water’s surface, thus, 
independent waves are superimposed. The 
buoy is tilted heavily, which results in higher 
ARMSE values around 4 cm. However, the 
ARMSE values should be interpreted with 
care since the prism and IMU are not affec-
ted identically by incoming waves due to 
their different mountings. 

3.3  Frequency Analysis
Since wind and heavy boat traffic are po-
tential sources of interference, the signal is 
denoised based on wavelet methodologies. 
The goal is to isolate waves that originate 
from boats and are not affected by wind. 
That data shall serve as the basis for the 
determination of wave periods and wave 
heights. In one initial approach, a discrete 

transform plot of the detrended time series (Figure  7) 
over the entire measurement day is analyzed.

Wave energy is transmitted between 0.2 and 1.9 Hz 
(Formula (4)). The context between the scales and sub-
frequency bands is stated in Table 2.

However, the signal is still distorted by wind waves 
that are in a similar frequency band to waves caused 
by boats. By denoising the signal with the “NeighBlock” 

Scale Index Frequency range [ Hz ]

m = 4 0.94 1.88

m = 5 0.47 0.94

m = 6 0.22 0.47

Tab. 2: Frequency ranges corresponding to decomposition 
levels of interest. The sampling rate is 30 Hz.
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surpass five centimeters, a requirement that the 
proposed approach successfully met.

Although the MEMS IMU sensed inertial data 
over several hours, tilting errors due to inaccurate 
initialization seem to have no substantial impact 
on the height determination. In part, this could be 
in recognition of the fact that waves are based on 
harmonic movements.

However, these results are based on an initi-
al feasibility study, and further information and 
measurement campaigns are required to estab-
lish a scientifically supported statement regarding 
whether boat traffic correlates with the decreased 
biodiversity in Lake Wörthersee. Despite encoun-
tering various challenges, including tilting errors, 
temperature gradients, and wind, it has been 
demonstrated that MEMS IMUs hold significant 
potential in accurately capturing wave energy. 
Moreover, these low-cost measurement buoys 
exhibit high scalability, enabling a broad spectrum 
of applications.

Consequently, the research project WAMOS 
(WAve MOnitoring System) was initiated in Octo-
ber 2023. The primary objective of this project is 
to develop an interdisciplinary monitoring system 
that analyzes and links together wave heights, 
boat traffic, meteorology, sediment content, and 
macrophyte vegetation. This investigation seeks 
to understand the impact of boat traffic on vege-
tation and to identify necessary countermeasures, 
such as wave protection measures. Therefore, 
an integral aspect involves enhancing the mea-
surement buoys, including the integration of the 
free-of-charge Galileo High Accuracy Service and 
capturing wave heights in near-real-time.

Fig. 8: Wave caused by ferry. The yellow patch indicates the approximate transit time of the ferry near the buoys. 
Noisy signal (left). Denoised signal (right).

method based on the Wavelet Daubechies 10, 
the wave can be highlighted. The assumption 
is that waves caused by wind yield less energy 
than waves, which are a result of passing boats. 
Hence, the relative importance of coefficients with 
low energy is decreased. Figure 8 compares the 
noisy signal with the denoised one caused by a 
ferry, which passed the buoys during windy con-
ditions. The distorted parts could be minimized. 
Nevertheless, there is also a slight decrease in 
amplitude, notably concerning the troughs by a 
few millimeters. To improve/calibrate the filtering 
methods, further information, such as wind speed 
and direction would be needed.

4.  Conclusion and Discussion
Since IMUs have great short-time stability, a 
stand-alone INS can determine wave heights 
through advanced data processing. Different trend 
determination methods are applied to eliminate 
the drift. A comparison of the INS with reference 
measurements of a total station showed that wave 
heights, under good conditions, are determinable 
within 1 cm. However, when the waves get rough 
out on the lake due to wind or heavy boat traffic, 
the accuracy degrades. Distorted parts, which are 
a result of wind and noise, are filtered by wavelets. 
The methodology for wavelet denoising is based 
on the assumption that waves caused by wind 
contain less significant energy than waves caused 
by passing boats. Wave heights and periods of 
specific events can be further extracted using, 
e. g., the WAFO toolbox [10]. The propagation of 
wave heights and periods yields valuable informa-
tion that can be extended to other areas of Lake 
Wörthersee through models and simulations. The 
required accuracy for these models should not 
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