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Increasing Localization Robustness in a LiDAR-focused
SLAM with a combined IMU and wheel odometry model
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Abstract

Precise positioning and mapping are key technologies for autonomous robots. Most autonomous and semi-
autonomous systems use a LiDAR-focused Simultaneous Localization and Mapping (SLAM) in combination with
MEMS" Inertial Measurement Units (IMU). When LiDAR fails and only IMU data are used to compute the state
vector of the robot, errors accumulate. After a few seconds without LiDAR data, LiDAR-inertial SLAM systems
can no longer register the scan after the outage to the already created map. This paper proposes a novel ap-
proach for fusing LiDAR, inertial, and wheel odometry in a factor graph for SLAM. A combined IMU and wheel
odometry model is used as an initial guess for LIDAR scan matching and to bridge LiDAR outages. The algorithm
is evaluated and tested for two different robot models. The results show that with the proposed IMU and wheel
odometry model localization accuracy improves during LiDAR outages. After 30 seconds without LiDAR data, the
LiDAR point clouds after the outage can still be matched to the previously created map.

Keywords: SLAM, factor graph optimization, LiDAR, IMU, wheel odometry

Kurzfassung

Prazise Positionierung und Kartenerstellung sind Schliisseltechnologien fiir autonome Roboter. Die meisten
autonomen und halbautonomen Systeme verwenden ein LiDAR-basiertes Simultaneous Localization and Map-
ping (SLAM)-System in Kombination mit MEMS? inertialen Messeinheiten (IMU). Wenn LiDAR ausfallt und nur
mehr IMU-Daten zur Berechnung des Zustandsvektors des Roboters herangezogen werden, werden Messfehler
akkumuliert und die Position des Roboters driftet weg. Nach einigen Sekunden ohne LiDAR-Daten sind LiDAR-
inertiale SLAM-Systeme nicht mehr in der Lage, den Scan nach dem Ausfall in der bereits erstellten Karte
zu registrieren. In diesem Beitrag wird ein neuartiger Ansatz zur Fusionierung von LiDAR, Inertial- und Rad-
Odometrie in einem Faktorgraphen fiir SLAM vorgestellt. Ein kombiniertes IMU- und Rad-Odometriemodell wird
als erste Schatzung fiir den LiDAR-Scanabgleich und zur Uberbriickung von LiDAR-Ausfillen verwendet. Der
Algorithmus wird flr zwei verschiedene Robotermodelle validiert und getestet. Die Ergebnisse zeigen, dass mit
dem neuen IMU- und Rad-Odometrie-Modell die Lokalisierungsgenauigkeit wahrend LiDAR-Ausfallen verbessert
wird. Nach 30 Sekunden ohne LiDAR-Daten kénnen die LiDAR-Punktwolken nach dem Ausfall immer noch zur
zuvor erstellten Karte registriert werden.

Schliisselwoérter: SLAM, Faktorgraph-Optimierung, LiDAR, IMU, Rad-Odometrie

1) Micro-Electro-Mechanical System
2) Mikro-Elektro-Mechanisches System
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1. Introduction

In the last two decades, a trend towards automa-
tion and autonomous platforms has been observ-
able across many sectors. In logistics, automated
mobile robots are used in warehouses [1-3]. In
the agricultural sector, mobile robots are used
for smart farming [4-6]. In the automotive sector,
advances have been made for Advanced Driver
Assistance Systems [7] and for autonomous ve-
hicles [8]. Moreover, mobile robots can support
first responders in their daily work and in extreme
emergency situations. Use cases range from fire
extinction to the search and rescue of injured
persons or the identification of chemical, biologi-
cal, radiological, nuclear, and explosive (CBRNE)
substances [9]. In order for the robot to complete
these tasks autonomously, precise positioning
and mapping are key technologies.

In Simultaneous Localization and Mapping
(SLAM), the robot constructs a map of its envi-
ronment using onboard navigation sensors while
simultaneously estimating its own position. Com-
mon navigation sensors that perceive the environ-
ment and are used in SLAM systems are LiDAR,
monocular RGB cameras, stereo cameras [10], or
RGB-Depth (RGB-D) cameras [11]. Observations
from these sensors are typically fused with angu-
lar rates and accelerations measured by an Inertial
Measurement Unit (IMU). Examples for LiDAR-
inertial SLAM systems can be found in [12-15],
monocular visual-inertial SLAM systems in [16,
17], stereo visual-inertial SLAM systems in [18,
19], and RGB-D-inertial SLAM systems in [20, 21].

Early SLAM systems rely on Bayesian filters
such as the Extended Kalman filter (EKF) [22] or
the Particle filter [23]. However, all Bayesian filters
are limited by the complete state assumption or
Markov assumption, which assumes that our ro-
bot’s current state is conditionally independent
from past observations [24]. A promising approach
for SLAM which has received a lot of attention in
the last years is Factor Graph Optimization (FGO)
[25]. FGO allows modelling the joint density more
generally, i.e., it is not limited by the Markov as-
sumption and can take past observations into ac-
count when estimating the current state and the
map. Why this is especially useful when working
with exteroceptive navigation sensors that per-
ceive the environment can be illustrated with the
following example: Imagine a situation where a
mobile robot performs SLAM as it drives into a
building. It simultaneously estimates its own posi-
tion along with the positions of specific features

of the map that it creates. When the robot is close
to an area it has already mapped, it may observe
the same features again. If it does so, it can use
the previous observations as well as the current
observations to these features to better estimate
its own position and to update the map.

Indoor and subterranean environments are
particularly challenging for navigation. A study
which reviewed state-of-the-art SLAM algorithms
for subterranean environments [26] found that all
teams which participated in the DARPA Subter-
ranean Challenge, an international robotics com-
petition, rely on a LiDAR-focused SLAM based
on FGO for positioning and mapping. LIO-SAM
[27] is a widely used and openly available algo-
rithm which fuses LiDAR point clouds and IMU
data using FGO. Like other algorithms that fuse
exteroceptive navigation sensors with IMUs, it
has the drawback that when LiDAR fails, only the
IMU data are used to compute the position of
the robot. However, MEMS IMUs are not suit-
able for stand-alone positioning as errors quickly
accumulate. Therefore, if the LIDAR data are not
usable due to a sensor failure or environmental
conditions such as smoke or fog, the positioning
solution starts to drift.

In a recent paper [28] we proposed LIWO-
SLAM, an extension of LIO-SAM, which fuses
LiDAR, IMU and wheel odometry in a factor graph.
We showed that with LIWO-SLAM, a better po-
sitioning accuracy can be achieved to when an
EKF [29] is used with the same sensors. Moreo-
ver, adding wheel odometry helps to increase the
redundancy of the positioning solution. However,
a limitation of using wheel odometry is that it can
only account for motion changes in a 2D plane.
This is where this paper comes in: it proposes a
combined IMU and wheel odometry factor which
accounts for 3D motion and attitude changes.

The key innovation of this paper is the develop-
ment of a 3D wheel-inertial-odometry model for
ground-based robots. The model is integrated into
a state-of-the-art LiDAR-focused SLAM based on
factor graph optimization.

The main aims of the paper are to:

1. Develop the mathematical framework for a
wheel-inertial-odometry model and integrate it
into a LiDAR-focused SLAM,;

2. Evaluate the model using two different data-
sets;

3. Analyse the advantages of the combined
wheel-inertial odometry model.
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The paper is structured as follows: First, the
mathematical framework is described. The gen-
eral formulation of the factor graph as well as
the combined IMU and wheel odometry model
are explained. Second, the software framework
is described. Third, the developed algorithm is
evaluated using two different datasets: a real-
world dataset collected with a small mobile ro-
bot and a simulated dataset created in Gazebo.
Both datasets contain a LiDAR outage where no
point clouds are available. The performance of
the proposed 3D wheel-inertial-odometry model
during the outage is analysed in detail. Finally, we
conclude the paper and give an outlook for further
research.

2. Mathematical framework

The multi-sensor SLAM algorithm proposed in
this paper is based on factor graph optimization.
Factor graphs allow modelling complex estima-
tion problems by expressing the joint density as a
product of factors [25]. The factorization is shown
in the form of a bipartite graph with two types
of nodes, factor nodes and variable nodes. The
variable nodes represent the states of the mobile
robot, and the factor nodes represent the meas-
urements. The edges of the factor graph connect
the factor nodes to the variable nodes and repre-
sent independence relationships: a factor is only a
function of the variables it is adjacent to.

The aim of factor graph optimization is to es-
timate the unknown robot states X = {x,} given
our measurements Z, i.e. to find the maximum a
posteriori (MAP) estimate [25]

XMAP argiax p(X|Z) =

p(Z|X)p(X) )
p(Z)
Factor graph optimization uses all available

sensor data to optimally estimate the state nodes.
Since the functional relationships between the ob-

= argmax

() () ()

Fig. 1: Proposed factor graph for SLAM. The prior fac-
tor is shown in blue. The LiDAR factor (orange) con-
nects consecutive state nodes. The loop closure factor is
shown in green. Between two consecutive state nodes,
the preintegration with the 3D wheel-inertial odometry
model is used to compute the robot’s state and provides
an initial guess for LIDAR scan matching.

servations or factor nodes and the state nodes
are non-linear, we use the Levenberg-Marquardt-
Algorithm to solve the least-squares problem.

In our factor graph (Figure 1), a state node con-
taining the robot’s state x; at epoch i is written as
Xj = [Ri7 pgn’ V;”}, (2)
with R, € SO(3) being the rotation matrix from
the body frame to the map frame, p}" is the 3D
position vector in the map frame, and v/" is the
3D velocity vector in the map frame. A new state
node is added to the factor graph whenever a new
LiDAR keyframe is introduced, i.e., when the posi-
tion and attitude of the robot change more than a
certain threshold.

The homogeneous transformation matrix, which
describes the transformation from the origin of the
map frame to the current pose of the robot, can
be written as

T,_[ R, p}| )

' 01><3 1

The LIDAR odometry factor (shown in orange
in Figure 1) links two consecutive state nodes,
i.e., it contains information on how the robot’s
state changed from one epoch to the next. Two
consecutive state nodes x; and x;_ | are linked via
the transformation

AT; ;0 =T ' Ty )

A loop closure factor (shown in green in Fig-
ure 1) is used when a feature is detected in a
LiDAR scan which has already previously been
mapped. In this case, the factor connects the two
state nodes from which the same feature was
observed.

The LiDAR odometry and loop closure factors
are based on LIO-SAM [27]. For each new LiDAR
scan, edge and planar features are extracted.
When a new state node is added to the graph,
the algorithm looks for other state nodes that are
close to this state node and tries to match the
keyframes using scan matching. If the matching is
successful, the obtained relative transformation is
added to the factor graph as a loop closure factor.

Computing the robot’s state in between the
keyframes or state nodes is referred to as preinte-
gration. The preintegrated navigation solution is
used as an initial guess for LiDAR scan matching.
When no LiDAR data are available, the navigation
solution is computed only from the preintegration.

Conventional algorithms use only IMU data in
the preintegration. We propose a novel and more
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Fig. 2: Overview of the combined wheel odometry and IMU preintegration

robust approach which combines both wheel
odometry and IMU data. In the following, this
novel method will be explained.

2.1 Preintegration with a combined wheel
odometry and IMU model

The task of the preintegration is to predict the
navigation state from one state node of the fac-
tor graph (x;, = [R;, p}', v{]) to the next state
node (x;.). To do so, observations from a sensor
with a high data rate are used. IMU preintegra-
tion as proposed by [30] has become a standard
and most systems use a low-cost MEMS IMU.
However, when the main visual sensor fails, the
preintegration with the MEMS IMU cannot be
used as a standalone solution as errors quickly
accumulate.

A method which is more robust and more suit-
able to bridge outages is wheel odometry [31].
Wheel odometry uses measured wheel speeds
and steering angles of the wheels to compute
how the robot’s pose changed. However, wheel
odometry only yields 2D information. Therefore,
we propose a method that combines both obser-
vations from the IMU and from wheel odometry.
An overview of this process is given in Figure 2.
Wheel odometry is used to compute the 2D veloc-
ity and heading. The angular rates measured by
the IMU are used to compute an attitude change.
Both are combined to obtain the preintegrated
navigation state.

2.1.1 Preintegrated navigation state in the
tangent space

To predict the navigation state from one state
node (x; = [R;, pi’, v{]) to the next (x;,,), the
IMU and wheel odometry observations are accu-
mulated and integrated between the keyframes.
In the following, the indices : will refer to the state
nodes x; = [R;, p}*, v;"] and the indices k refer
to the preintegrated vector ¢;, = [0y, pz, vi] in the
tangent space.

Since the navigation state x; contains a rotation
matrix R; and rotation matrices are manifolds, we

lift the integration to the local tangent space and
then perform a retraction back to the manifold.

The tangent space of arotation matrix R € SO(3)
is its Lie algebra so(3), the space of 3x3 skew-
symmetric matrices. The logarithm map log(R)
allows to compute the skew-symmetric matrix S.
Every skew-symmetric matrix S can be associ-
ated to a vector 0 via the hat-operator * [30]

6, [o -6 9,
6"=\0, =|0, 0 —6,|=Ses0(3). (5
6. |6, 6 0

The vector 6 points in the direction of the 3D
rotation axis and its norm corresponds to the ro-
tation angle. This 3D vector is used to describe
attitude changes in the tangent space.

The 9D vector which describes the preinte-
grated navigation state in the tangent space is
as follows:

Ck = [Bkv Pk Vk]T = 4‘6)
= [G:L',ka ay,ka gz,/w P,k Py, ks Pz ks U,k Uy, ko Uz,k] )
with p;, being the position and v;, the velocity
at epoch k.

2.1.2 Wheel-inertial odometry model

To compute the preintegration, we use the gy-
roscope measurements of the IMU w;, 1., w,  at
epoch k, as well as the observations from wheel
odometry. Which wheel odometry model to choo-
se always depends on how the robot is steered. In
our previous work [28], we proposed a four wheel
independent steering and four wheel independent
driving (4WIS4WID) wheel odometry model, which
assumes that each wheel of the robot can be
steered individually. The 4WIS4WID model uses
measured wheel speeds vy, vg;., vy, v,y and stee-
ring angles 6, 6, 0y, 0y to compute how the
position and attitude of the robot change.

For skid-steered robots, which will later be
used to evaluate the algorithm in Chapter 4, all
steering angles are zero. Furthermore, all wheels
on one side of the robot are steered with the same
velocity, i.e., all left wheels share the same wheel
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speed v; and all right wheels share the same
wheel speed v,. The wheel odometry equations
therefore simplify to the following: The rotation
rate 6, about the robot’s z-axis at epoch k is
obtained from
Uk~ Urk
26 @
where vy, is the measured speed of the left
wheels, Ur,k is the measured speed of the right
wheels and 2b is trackwidth. The velocity in the
body frame of the robot can be computed from

Hz,k =

CA
Ualf-,k = TT (8

v = 0. ©)

In the first step of the combined wheel odo-
metry and IMU preintegration, the vector 6, is
computed. For the x- and y-components, the
method proposed by [30] is used: the gyroscope
measurements w,, 1., wy, 1, which are corrected for
their respective biases b,, by, are integrated nu-
merically from epoch k—1 to epoch &

Ok = Op k-1 + (Wgk — by) - Atg_y g, (10)
ey.k = Hy,kfl + (Wy.k - by) ) Atkfl,k- (11)

For the z-component, the rotation rate obtained
from wheel odometry (Equation 7) is integrated
numerically

O =041+ Opp- Aby_y k- (12)

In the next step, the retraction (exponential
map) of ;. is computed to obtain the rotation
matrix R;.

Next, Equation 8 from the wheel odometry mo-
del is used to compute the robots forward speed
v};k in the body frame. To obtain the 3D velocity

Wheel Encoder
Data

\_l_l

IMU Data LiDAR Data

vector v, the velocity obtained from wheel odo-
metry is rotated to the navigation frame with

b
Vg, ke

vi =Ry| 0
0

Finally, the velocity vector v, is integrated nu-
merically to obtain the position vector p)

(13)

Pk = Pr—1 + Vi - Al (14)

3. Software Development

The software was developed in C++ using the
Robot Operating System (ROS) framework. It
builds on the previous work LIWO-SLAM [28] and
on LIO-SAM [27] and uses the GTSAM library [32]
for smoothing and mapping.

An overview of the program flow is given in
Figure 3. Four ROS nodes are used that perform
different tasks. The 3D Wheel Odometry Pre-
integration-Node fuses data from the IMU and the
wheel encoders to calculate the preintegration
(preintegration_incremental), a three-dimensional
wheel odometry increment between two LiDAR
odometry poses. This increment is used in the
Cloud Deskewing-node to deskew the point cloud
of the LiDAR. Both the preintegration and the de-
skewed point cloud are passed on to the Map
Optimization-node, where the actual factor graph
is optimized. The Mapping Odometry Fusion-node
combines the output of the Map Optimization with
the preintegration to output a navigation solution
with the same data rate as the preintegration.

4. Evaluation

To evaluate the developed algorithm, two different
datasets were collected: a real dataset with a
small mobile robot (scenario 1) and a simulated

{ Origin /

3D Wheel Odometry

Preintegration Cloud Deskewing

Mapping Odometry

Map Optimization Fusion

l

/cloud_info

Jodometry/preintegration_incremental ’—

|

/odometry/mapping_high_frequency

/odometry/mapping j
lodometry/lidar_incremental

Fig. 3: Flow-graph of the proposed SLAM algorithm
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dataset obtained in Gazebo (scenario 2). In the
following, the collection of the datasets is explai-
ned, and the results obtained by processing these
datasets with the newly developed algorithm are
presented.

4.1 Scenario 1: Mapping the campus of
TU Graz

In the first scenario, a small mobile robot was
used to map an outdoor environment. During this
scenario, connection issues between the LiDAR
and the main PC of the robot occurred and no
LiDAR data were available for approximately 30
seconds. In the following, first the collection of the
dataset will be described. Then, the dataset will be
evaluated with both a conventional LiDAR-inertial
factor graph and the newly proposed method with
the wheel-inertial preintegration. A special focus is
put on the performance of both algorithms during
the LiDAR outage.

4.1.1 Collecting the dataset

Data was collected around the campus “Neue
Technik” of Graz University of Technology on
the 20™ of October 2023. The robot used in this
scenario is a Jackal by Clearpath Robotics™ (see
Figure 4).

The robot was equipped with an IMU, a LiDAR,
and wheel encoders. An overview of the specific
navigation sensors used is given in Table 1. Data
from the navigation sensors was recorded with
ROS and stored in .bag files. ROS bag files have
the advantage that they can be replayed at a
later stage to simulate a real-time scenario. By
replaying the same bag file several times, different
algorithms can be tested with the same navigation
data.

The collected trajectory in the first scenario
has a duration of 12 minutes and the distance
travelled was 820 meters. The robot started and
stopped at the same location (see Figure 5).

During data recording, the connection between
the LiDAR and the main PC of the robot was inter-
rupted for approximately 30 seconds. This outage
of the LiDAR data will be analysed in more detail
in the evaluation.

Type Description
IMU XSens MTi-G-710
LiDAR Velodyne ULTRA Puck VLP-32C

Wheel Encoders | 78,000 pulses/m QUADRATURE

Tab. 1: Navigation sensors used in the first scenario

Fig. 4: Jackal robot used in the first scenario. The picture
was taken at the location of the LiDAR outage.

Fig. 5: The drain cover (indicated in red) was the start
and stop point of the trajectory of scenario 1

4.1.2 Evaluation of the first scenario

To evaluate the developed algorithm with the
dataset collected in the first scenario, the ROS
bag file was replayed and processed with two
different algorithms: a conventional LiDAR-inertial
factor graph (IMU preintegration), and the newly
proposed factor graph which fuses LiDAR, wheel
odometry and inertial data (WO/IMU-preintegra-
tion).
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Fig. 6: 2D plot of the trajectory of the first scenario. Left:
overview of the whole trajectory. Right: zoomed-in sec-
tion where the LIDAR outage occurred.

Figure 6 shows the 2D horizontal plot of the
trajectory which was recorded in the first scenario.
The start and end points of the trajectory are
marked as green crosses. The trajectory obtained
from the factor graph with IMU preintegration is
shown in red, the factor graph with the combined
wheel odometry and IMU preintegration is shown
in blue. During the LiDAR outage that occurred,

both trajectories are depicted as dotted lines. The
zoomed-in plot also shows the keyframes of the
SLAM solution. These keyframes are computed
every time the factor graph is optimized.

During the outage of the LIDAR data, which
lasted around 30 seconds and during which the
robot drove approximately 20 meters, no key-
frames were computed as these are derived from
the laser scans. During the LIiDAR outage, the
IMU errors accumulate quickly, and the trajectory
obtained from IMU preintegration starts to drift.
After 30 seconds without LiDAR data, the position
computed only from IMU data is so far off that the
LiDAR scan after the outage cannot be registered
to the map anymore.

With the combined wheel odometry and IMU
preintegration model, however, the outage can be
bridged. The position error after 30 seconds with-
out LiDAR data is small enough that the scan after
the outage can be registered to the map.

Figure 7 shows how the LiDAR outage is
bridged in more detail. These four screenshots
of the scan matching algorithm show the global

Fig. 7: Comparison of scan matching output at the LIDAR outage. Top left: IMU Pre-Integration failing to bridge the
LiDAR outage. Top right: WO-IMU Pre-Integration bridges the LiDAR outage. Lower left: The scan matching is suc-
cessful after bridging the outage with WO-IMU Pre-Integration. Lower right: Robot moving on after recovery of scan
matching.
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matched point cloud in purple and the current
scan in yellow. The global path after factor graph
optimization is shown in turquoise and the key
poses are shown as white squares. The top left im-
age shows the result of the preintegration (green)
with the IMU, which drifts during the outage. The
top right image depicts how the combined wheel
odometry and IMU preintegration model bridges
the outage. The lower left image shows how the
first scan after the LiDAR outage is registered to
the map and the lower right image shows how the
SLAM algorithm continues after the outage.

The difference between the start and end point
of the whole trajectory was 89 cm (when no loop
closure is used at the end of the trajectory). With a
trajectory length of 820 metres, this corresponds
to an error of 0.1% of the distance travelled.

4.2 Scenario 2: Mapping a parking garage in a
simulation environment

The purpose of the second scenario was to em-
phasize the importance of the combined wheel
odometry and IMU model. Therefore, a scenario
was simulated where a robot drives up a ramp in
a parking garage and a LiDAR outage occurs. In
the following, the simulation and the evaluation of
this scenario will be described.

4.2.1 Simulating the dataset in Gazebo

The second scenario, shown in Figure 8, is based
on a simulation of a parking garage with multiple
levels in Gazebo. Gazebo is the simulation envi-
ronment for the Robot Operation System (ROS).
The sensors used in this study are simulated
in Gazebo and are of the same type as in the
previous scenario shown in Table 1. The noise
characteristics of each sensor type were consi-

Fig. 8: RTE robot by Rosenbauer in the simulation envi-
ronment created with Gazebo

dered in the simulation to be as close to the real
world as possible.

A trajectory was recorded where the robot tra-
versed between two levels of a parking garage to
also show the change in the Z component of the
location of the robot. Before the robot reached the
ramp, an artificial outage of the LiDAR data was
simulated.

4.2.2 Evaluation of the second scenario

The recorded data was processed with three dif-
ferent preintegration models: IMU preintegration,
a 2D wheel odometry preintegration (WO), and the
combined wheel odometry and IMU preintegration
(WO-IMU).

Figure 9 shows the 2D plot of the second sce-
nario. Since a simulation environment was used,
the ground truth is known and shown in blue.
Up to the simulated LiDAR outage, marked with
the black triangle, all solutions yield comparable
results. This is due to the fact that LIWO-SLAM

—— Ground Truth
67 —— IMU Pre-Integration
10 1 —— WO Pre-Integration
51 —— WO-IMU Pre-Integration
0 4
E E,
> N
_1 0 <
—— Ground Truth 29
~——— IMU Pre-Integration
201 — wo Pre-Integration 14
—— WO-IMU Pre-Integration .
A Simulated Outage 0 -
=301 T T T 1 1 1 | | | |
0 10 20 30 40 50 60 0 10 20 30 40
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Fig. 9: 2D plot of scenario 2. The black triangle indicates
the start of the LiDAR outage.

Fig. 10: Height time series of scenario 2. The start of the
LiDAR outage is indicated by a black line.
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strongly relies on the precision and accuracy of
the LiDAR when it is available.

As in the previous scenario, the IMU-only pre-
integration (orange trajectory) starts to drift away
shortly after the outage. The WO-only solution
(green trajectory) shows comparable results to
the combined WO-IMU solution (red trajectory)
in the 2D case, as the distance travelled can be
determined quite accurately with wheel odometry.
Since the WO-only solution has no information
about changes in the height component, the tra-
jectory shows a longer horizontal distance trav-
elled than the WO-IMU model, which takes height
changes into account.

Figure 10 shows the height coordinate time
series of the trajectories computed with the three
different preintegration models compared to
the ground truth (blue). The start of the LiDAR
outage is indicated by a black vertical line. The
wheel odometry preintegration (green) has no
information about the changing height, as it al-
ways assumes planar movement. The IMU-only
preintegration (orange) can bridge the outage for
around 2 seconds, then the accumulation of the
errors starts to increase, and the solution begins
to drift away from the ground truth. Our proposed
solution, the combined WO-IMU preintegration,
can bridge the outage over the whole distance
travelled up the ramp to the second floor.

5. Conclusion and outlook

This paper proposed a novel approach for fusing
LiDAR, IMU and wheel odometry data in a factor
graph for SLAM. In contrast to conventional
algorithms which use only IMU data in the prein-
tegration, a combined wheel odometry and IMU
model was proposed. In the following, the main
findings of this work are summarized.

The first aim was to develop the mathematical
framework for a wheel-inertial-odometry model
and integrate it into a LiDAR-focused factor graph
for SLAM. The combined wheel odometry and
IMU model uses measured wheel speeds from
wheel odometry and angular rates measured by
the IMU to compute how the robot’s pose chang-
es. In a LiDAR-focused factor graph, state nodes
are added to the graph whenever a new LiDAR
keyframe is introduced. Between the keyframes,
the navigation solution is computed using a pre-
integration method, in our case with the combined
wheel odometry and IMU model.

The second aim was to evaluate the model us-
ing two different datasets. Therefore, two different
datasets were generated. The first scenario was a
820 m long trajectory collected with a small robot
and the second scenario was obtained from a
simulation in Gazebo, where a tracked robot was
simulated. Both datasets contain a LiDAR outage.
In both scenarios, the conventional IMU-based
preintegration fails during the LiDAR outage as er-
rors accumulate fast. With the proposed preinte-
gration method that combines both wheel odom-
etry and IMU, the LiDAR outage can be bridged.
In the first scenario, the proposed preintegration
method bridges a 30 second LiDAR outage with
sufficient accuracy that the first scan after the
outage can be registered to the map successfully.

The third aim of the paper was to analyse the
advantages of the combined wheel-inertial odom-
etry model compared to using only inertial or only
wheel odometry data. To demonstrate the advan-
tages of the combined model, a LiDAR outage was
simulated in the second scenario where the robot
moved up a ramp in the parking garage. As in the
first scenario, the IMU-only preintegration method
shows a large position error after a few seconds.
The preintegration method that uses only wheel
odometry shows a lower horizontal positioning
error, however, it cannot account for the height
change. The combined model combines the ad-
vantages of both sensors: it provides an accurate
3D position estimate during the LiDAR outage.

The developed algorithm will be used in the
research project SURUx2, where a semi-au-
tonomous robot supports military specialists in
decontamination. In the future, the algorithm will
be extended by adding more sensors that can
perceive the environment to the factor graph. This
allows to not only increase localization robustness
but to also allow for continuous mapping when
one sensor fails.
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