
Vermessung & Geoinformation 2+3/2015, P. 188 – 197, 8 Figs.188

Abstract

Freeform curves with their possibility to approximate shapes from terrestrial laser scanner point clouds are inves-
tigated in this study. We focus on B-spline curves which are able to capture the local behavior of the measured 
profile. Typically, the only parameter set, treated as unknowns are the control points of the B-Spline. Their location 
is determined by least squares adjustment. The second parameter set are the knots, usually placed at stable loca-
tions and they are part of the basis functions. The approach with fixed number of knots placed at stable locations 
leads to a linear system. However, it intuitively restricts the B-Spline curve in its flexibility. Hence the residuals of the 
approximation may still contain systematic effects. Estimating the control points and the locations of the knots at the 
same time succeeds in full flexibility of B-Splines and optimizes the approximation. The system of equations accrued 
in this second case is highly non-linear. Adequate initial values are necessary to solve this system. Furthermore, 
introducing constraints can enhance the convergent behavior. This paper introduces a new method that allows the 
estimation of the number of knots as well as their location. The method uses a bottom up approach starting with 
the minimum number of knots, denoted as Bézier curves, and adding one knot in each iteration step at a particular 
curve sections (span) until the convergent criterion is reached. The decision to insert a knot and at a specific loca-
tion, is based on the analysis of the cumulated sums of squared residuals in each existing span. The location, where 
the additional knot was inserted, is optimized using a Gauß-Markov model with constraints. The improvements are 
shown by comparing the results obtained in the linear approach with fixed knots and the non-linear case where 
control points and the knots are treated as unknowns.
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Kurzfassung

Freiformkurven können zur Approximation von Punktwolken von terrestrischen Laserscannern genutzt werden.
Im Speziellen werden in dieser Untersuchung B-Spline Kurven eingesetzt, die je nach Parameterwahl lokale 
Gegebenheiten in einer globalen Approximation darstellen können. Typischerweise werden bei einer Approximation 
von B-Splines die Kontrollpunkte in einem linearen Modell geschätzt. Die Knoten sind ein weiterer Parametersatz 
mithilfe derer die Basisfunktionen erstellt werden. Die gemeinsame Schätzung der Knoten mit den Kontrollpunkten 
ergibt ein hochgradig nichtlineares Gleichungssystem. Die volle Flexibilität zur lokalen Anpassung wird erst durch 
die Schätzung beider Parametergruppen erreicht. Zur Stützung des nichtlinearen Gleichungssystems werden Be-
dingungsgleichungen und verbesserte Näherungswerte eingeführt. Diese Näherungswerte für die Knoten werden 
mit einer neuen Methode ermittelt. Diese basiert auf den Residuen der linearen Schätzung der Kontrollpunkte, die 
in Teilbereichen, sogenannter Spans, analysiert werden. Begonnen wird die Approximation mit der Minimalkonfigu-
ration, den Bézier-Kurven, innerhalb derer die Knoten festgelegt sind. Die im neuen Ansatz erzielte Verbesserung 
wird durch den Vergleich der Ergebnisse aus der Schätzung der Knoten und der Kontrollpunkte demonstriert.

Schlüsselwörter: B-Spline Kurve, Knotenschätzung, Oberflächenmodellierung, Freiformkurve, TLS Profilapproxi-
mation 
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1.  Introduction

Surface-based metrology, like terrestrial laser 
scanning (TLS), needs new surface-based 
evaluation methods. Taking the workshop sug-
gestions from [1] into account, these evaluation 
methods are one of the main challenges making 
the information of 3D point clouds suitable for 
further processing steps and taking benefits from 
the redundancy. Freeform curves and surfaces 

are promising approximation methods to create 
parameterized curves and surfaces, like shape 
information for structural-mechanic analysis of 
built objects [2]. Whereby, the freeform curves 
are the basis for the freeform surfaces. Past 
research has shown that the freeform shapes 
significantly improve the approximation qual-
ity, compared to approximations with geometric 
primitives, e. g. [2]. 
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In this paper, B-Spline curves are used to 
approximate TLS profiles. In the past, only the 
control points of the B-Spline were estimated. 
Another essential parameter set for B-splines are 
the knots. The optimization of the knot-locations 
leads to a nonlinear system of equations. The 
solution of the non-linear problem as well as the 
determination of proper initial values for the knot 
positions is a challenge for which an innovative 
solution is presented in this paper.

The paper is structured as follows: aspects 
of B-Spline-curve theory are outlined in the 2nd 

chapter; the state of the art of curve approxima-
tion is presented in chapter 3. Chapter 4 intro-
duces an example that motivates the necessity 
for knot estimation. The main concepts of the 
developed method for estimating the number of 
knots and their locations are described in chap-
ter 5. Performance analysis and the validation of 
the method is done in chapter 6.1 for simulated 
data and in chapter 6.2 for real data.

2.  B-Spline curves
For the spatial approximation of the TLS 2D profile, 
B-Spline curves are used. They were proposed 
by de Boor and de Casteljau [3], [4] and applied 
especially in CAD designs and construction of 
cars. The challenge in this paper is to use them 
in the opposite way, for approximating existing 
curves and surfaces, based on single points. 
The advantage of the B-Splines is their flexibility 
in matching most of the curves with respect to 
their local behavior. 

The local behavior is due to the piecewise 
linear independent basis function, Ni,p, with its 
recursive definition:
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 (2.2)

i = 0, … ,n ,

 with U = {u 0, ... , um} and (2.3)

 m = n + p + 1, (2.4)

where n is the number of basis functions and 
their corresponding control points. For further in-
formation on the recursive definition see [5]. The 
basis function, consists of divided differences 

of the knots u, with m  +  1 knots inside the knot 
vector U, and the parameterized observations, 
obsPar., explained in chapter 3. The variable p, 
with p > 0, defines on the one hand the degree of 
the single basis function and on the other hand 
the number of linear combined basis functions. 
The local behavior of the curve is controlled by 
the distance between the knots. The smaller the 
spans the more curvature changes / details can 
be modeled. 

Further parameters of the B-Splines are the 
control points, CPX/Y, which can be stated as 
weights for each basis function Ni,p 
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where CX/Y is the curve point at the 2D Euclid-
ian space (X,Y) with the homologues curve po-
sition obsPar. at the parameter space. For clarity 
reasons we restrict to the 2D case, the extension 
to the 3D case is a formal analogy. The geomet-
ric continuities depends on the span width and 
can be restricted if necessary.

3.  State of the art in B-Spline curve 
approximation 

B-Spline curve approximation from 2D TLS pro-
files is a new field in engineering geodesy that 
refers to the deformation analyses, as shown in 
[6], [7].The characteristic of a TLS point cloud is 
normally its high point density and its homogene-
ous distributed points without gaps. 

The standard method for the parameterization 
of the observations from the metrology, obsX/Y 
(measured 2D coordinates), is denoted as uni-
form, where the homologous parameters, obsPar., 
are equal allocated along the curve. However, 
this is mostly not the case for measured data. 
A second method based on the chord length 
between the obsX/Y. It roughly approximates the 
arc length of the curve. A third one is the centrip-
etal method, which contains the centripetal ac-
celeration and curvature. Lee describes in [8] all 
three methods in detail, compares them to each 
other and gives recommendations for deploying 
them, seen in [9].

The control points are estimated by solving 
the linear system of equations (2.5). The degree 
of the basis functions is set empirically to a fix 
value in accordance to the experience about the 
observations, the further applications and the 
requirements to the curve continuity. 
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The last parameters are the knots, which are 
necessary for the formulation of the basis func-
tions (2.2). There are two estimation issues refer-
ring to the knots: their number and their location 
inside the knot vector. The last is the most com-
plex one. For the number of knots, the Akaike 
information criterion, AIC, provides promising 
results, shown in [7], [10] and [11]. Regarding 
the location of the knots the uniform distribution 
performs poorly on heavy irregular curved data 
sets. For this fact other algorithms perform better. 
They depend on the distribution of the observa-
tions, like the basic method described in [5] and 
its extended version in [12] by considering the 
Schoenberg-Whitney condition [13]. A further 
algorithm is the section midpoint strategy, which 
locates a new knot in the middle of a span, or 
at the location with the highest residual to an 
estimated curve. Other techniques uses a initial 
length and curvature for the knot placement, e. g. 
[14], [15]. Calculating initial length and curva-
ture on noisy data is a challenge, but produces 
sufficient knot locations when reliable param-
eters (curvature and length) can be calculated. 
Estimating the location of the knots during the 
approximation leads to a highly nonlinear opti-
mization problem as mentioned before, which is 
denoted as the “lethargy”, extensively explained 
in [16]. The motivation of optimizing the knot lo-
cation despite the lethargy is described in the 
following chapter.

4.  Motivation of the knot optimization

Shown in chapter 3, B-Splines consist of two 
parameter sets which can be estimated during 
an approximation. Previous research has shown 
that the estimation of only one parameter set, 
the control points, in the linear system may lead 
to systematic effects in the residuals. Increasing 
the number of knots increases the number of 
control points with their connectedness of (2.4) 
and creates significantly better results, e. g. 
Figure 1 and [7]. Not only the number of knots 
improve the approximation results but also their 
location. Its effect is shown exemplary in the 
following figure.

Figure 1a shows a section of an under de-
termined approximation result created from the 
sample Dataset of chapter 6.2. Improving the 
approximation can be done by increasing the 
number of knots at specific locations, shown in 
Figure 1b and 1c. Figure 1d, 1e and 1f show 
the knot locations inside the knot vector for the 
curves above. Knots with the same value are 
printed one below the other. The impact of only 
one additional knot, seen in Figure 1d at location 
–4.3, results in highly changes of the curvature 
shape. The reason for the changes is given by 
the functional relationship between the knots and 
their basis functions, seen in from (2.2). The ad-
ditional knot does not only extend the functional 
system with one basis function it changes the p 
ascending basis function, counted from the ad-

Fig. 1: a) Example of an underdetermined B-Spline approximation; b) Example of an underdetermined B-Spline 
approximation with one additional knot; c) Example of an underdetermined B-Spline approximation with one ad-
ditional knot at another location; d) Knot sequence of the curve in a; e) Knot sequence of the curve in b; f) Knot 
sequence of the curve in c
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ditional inserted one. Associated with the knots 
are the control points, which reinforce or weaken 
the influence of each basis function, like weights 
for the observations in a least squares.

The influence of the knot location itself can be 
seen on the different curves in Figure 1b and 
1c. This leads to the fact that the locations of the 
knots are as important as their number.

5.  Implementation

The developed approximation method describes 
an iterative two-step estimation of the control 
points and knot locations. For this method, equal 
observation variances are assumed. The noise 
assumption ensures that only systematic effects 
based on the geometry and not on the metrology 
are optimized and that the numbers of residuals 
are equally distributed at each span. This is why 
for now the identity matrix was applied to the 
stochastic model. 

The following flow chart shows the different 
steps of the method:

In the first step the homologous parameters, 
obspar., for the measured 2D points, obsX/Y, are 
estimated with one of the methods, uniform or 
centripetal, appropriated to the datasets as de-
scribed in chapter 3. In the 2nd step the con-
trol points for the minimal configuration of the 
B-splines, denoted as Bézier curve, with p + 1 
basis functions and a knot vector consisting of

 U = {00, ... .0p, 1p+1, ... ,1m}, (4.1)

are estimated using (2.5) in a linear least 
squares Gauß-Markov model. For the B-Splines 
used here, the first and last control point fit the 
first and last observation respectively. These 
restrictions and the composition of the minimal 
knot vector implies, that the slope of the line 
between the first and second control point and 
between the last and penultimate control point 
is equal to the slope of the curves at the start 
and end point. The restrictions are necessary to 
prevent oscillations of the curve at these points. 
They are valid for all approximations, which are 
performed here. If the residuals obtained from 
the control-point estimation do not fulfil a certain 
quality criterion, new knots and their locations 
are estimated iteratively within the loop I (step 3 
– 5). In each span cumulative sums (CumSum) of 
squared residuals are calculated in two versions, 
first starting from left to right and second starting 
from right to left. The idea of using the cumu-
lated sums of squared residuals based on equal 
variances inside each span. Different variance 
levels indicate systematic effects in the results 
of the least squares approximation. As shown in 
chapter 4 the number of knots and their location 
influences the obtained variance of residuals. 
Creating a criterion based on the variance, which 
reduces its value at a specific location inside the 
approximation, is needed to develop plausible 
initial values for the knots. Fig. 2: Algorithm flow chart

Fig. 3: a) Residuals from approximation shown in Figure 1a; b) Residuals from approximation shown in Figure 1b
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These effects can be seen in the residuals, 
shown in Figure 3, where the additional knot is 
inserted in the area of –3.7 to –4.7, see Figure 
1a and 1b, which corresponds to the section 
with the highest variance, in this part of the 
curve. The residuals are reduced by more than 
the half from ≈ 5 mm to ≈ 2 mm at the section 
mentioned before. 

Regarding this concept the squared sum can 
be understood as the potential energy pe of the 
residuals inside a span. The position, pos, inside 
a span where the value of the pe’s for both ver-
sions of the cumulated squared sum (from left 
and from right) are equal is defined as the new 
knot location. Thus, a possible location for a new 
knot is set equal to the pos in order to reduce the 
overall pe. At each possible location the value of 
the cumulative sum at this point is denoted as 
pepos, e. g. Figure 4. The new knot will be inserted 
in the span with the highest pepos value to reduce 
the highest pe in the curve.

In each iteration step, only one new knot is 
inserted. In step 4 the location of the new control 
points which occurs due to the new knot insertion 
are estimated with the model (2.5). Afterwards 
only the location of the new knot is improved 
by a nonlinear iterative estimation (loop II) us-
ing a restricted linearized Gauß-Markov model 
(step 5). Therefore the location of the new knot 
is unrestricted while all other knots are fixed by 
constraints. The Jacobian matrix for this system 
has the following structure:
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          i = 0,…, j, j = number of obspar..

The derivative for each knot is defined with the 
recursive algorithms for the basis functions given 
in (2.2). The parameterization of the observa-
tions implies that the obsX/Y provides the full 
coordinates, here X and Y for the rows, likewise 
the control points. Due to the orthogonality of 
the coordinate axes the derivatives of the basis 
function are the same for each axis.

After the iteration of loop I and II has reached 
the convergent criterion, based on the results 
with the simulated data, described later on, the 
control points are estimated using the optimized 
new knot location. Then the quality parameters of 
the results are obtained in step 7. A simultaneous 
global optimization of the curve parameters, the 
control points and the knot locations cannot be 
realized yet due to reasons shown in the next 
chapter.

Fig. 4: Cumulated sum of squared residuals (measured data) and their criteria for the new knot locations 
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Type Values

Knot vector {0, 0, 0, 0.10, 0.15, 0.30, 0.55, 0.60, 0.75, 0.90, 1, 1, 1}

Number of knots 13

Number of basis functions / CPX/Y 10

Degree 2

Dimension 2 (X,Y)

Noise – Variance 0.005²

Number of sample points 5000

Tab. 1: B-Spline parameters for simulated data

6.  Data Approximation

6.1  Simulated Data

The simulation studies performed in this chapter 
aim to validate the developed method and to 
infer its behavior with respect to the knots and 
control points. Therefore, the test dataset was 
generated referring to the TLS profile analyzed 
in chapter 5.2. The noise is processed from the 
normal distribution with N(0,s2 = 0.0052) and 
used in all simulated data sets. The minimum 
of 5000 sample points are necessary, because 
with this number the value sapost, obtained from 
the linear approximation in step 2 where the 
control points are the only unknown, is equal 
to the value sapriori, e. g. Table 1. The sample 
points are distributed uniformly with a point to 
point distance of 0.015. The threshold e to the 
break criterion of the loop II is set to e = 1e–4. This 
value results from the maximum update value for 
the unknowns of the nonlinear knot estimation in 
loop II, with the initial values of the control points 
and knots. The idea is to have the knots and 
control points as the only unknowns and take the 
other parameters from the simulated dataset, so 
that the only influence of changes in the curve 
geometry relies on them.

Different estimation scenarios were applied on 
the simulated curve:

 �The new method – nonlinear (including loop II, 
with optimization of knot location in restricted 
Gauß-Markov model), 

 �The new method – linear (without loop II, knot 
location defined according to Figure 4),

 �The basic/state of the art method. 

also described in Table 2. The degree of the 
basis function and the number of knots were set 
equal to the ones of the designed B-Spline. All 
three above-mentioned methods of parameteri-
zation were applied to the obsX/Y. A comparison 
of the obtained results is given in Table 3. For 
further processing the obsPar. were not improved 
or recalculated. Instead, they were taken directly 
from the designed B-Spline. 

Results
The Schoenberg-Whitney conditions are fulfilled 
otherwise the functional matrix of the Gauß-
Markov model is singular, which is difficult to 
solve without further information such as cons-
traints. The linearized normal equation system is 
badly scaled and needs to be preconditioned to 
avoid numerical instabilities and to minimize the 
number of iterations.

Method sapost. TF TF F9984, 9984, 0.05

New method – nonlinear 0.11
1.09

1.03New method – linear 0.12
1.53

Basic 0.18

Tab. 2: Results compared to each other – on simulated data (TF = Test value for the F-
test, Ff1, f2, 1-alpha = quantil of the F-distribution)
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Both new methods show “significantly” better 
results than the basic one, in case of uncorrelated 
variances. The connected lines at the columns 
TF in Table 2, Table 3 and Table 5 reveal both 
methods which are compared in the hypothesis 
test. For example the test value TF between the 
basic and the new method linear and between 
the new method linear and nonlinear respectively 
is higher than its quantil. The obtained curves are 
shown in Figure 5. 

The highest residuals are at the beginning 
where the new method produces sharp peaks in 
the linear case. The reason for that are the short 
spans at some locations in the knot vector. The 
new nonlinear method is closer to the obsX/Y, 
but with a high curvature turn and smoother than 

the linear method. The basic method leads to a 
shift at the beginning of the curve up to X » 11 
compared to the simulated dataset, which can 
be interpreted with a shift of the knots at that part. 
No systematic effects can be observed from the 
distribution of the control points.

Figure 6 shows the location of the knots for 
all used B-Splines. The locations of all knots dif-
fer from the simulated ones. Instead to the new 
method – nonlinear, which tend to have a similar 
knot location pattern as the simulated data. Al-
though there is a significant improvement of the 
results, most knot locations of the simulated data 
cannot be reached.

Hypothesis tests cannot be performed cor-
rectly on the results, because in our case the 

Fig. 6: Knot locations – simulated data

Fig. 5: Result of the B-Spline curve approximations – simulated data
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functional model of each method changes. The 
reason is the different knot vector, which affects 
the calculated basis functions and the affiliation 
of the obsPar. to the basis functions. This aspect 
justifies the sequential knot optimization: the up-
dates of the knot location in loop II are related to 
the actual functional model and not to the new 
one that accounts for changes of the basis-func-
tion-allocation and the relation of the obsPar. to 
the basis-functions. Different experiments on the 
dataset have shown that by estimating all knots 
at the same time the function changes increase 
so much, that the nonlinear model fails after the 
third iteration.

The reason for using the parameters of the 
simulated B-Spline itself is given by the differenc-

es between the three mentioned methods. The 
parameters differ significantly in the part of the 
curve with high curvature. As a result of this all 
known parameterization methods allocate insuf-
ficient obsPar. between the spans for the further 
approximation algorithms. This can be noticed 
in Table 3, where all linear approximations of the 
control points differ significantly from the ones 
obtained for the uniform case. 

6.2  Measured Data

The measured data comes from a TLS profile 
scan, with a total length of 14m. The Z coordinate 
needs to be sensitive. Therefore it is trend redu-
ced and scaled to [mm]. The X-coordinate is in 
[m] and represents the step size of points. The 
point density was reduced from 12293 to 5000 

Type Values

Number of knots 22

Number of basis functions / CPX/Y 19

Degree 2

Dimension 2 (Z, X)

Sample points 5000 / 12293

Tab. 4: Parameters for the B-Spline approximation of the measured data

Tab. 5: Results compared to each other – on measured data (TF = Test value for the F-test, Ff1, f2, 1-alpha = quantil 
of the F-distribution)

Num. Points Method
sapost. 
[mm]

TF TF
F9940, 9940, 0.05 /
F24526, 24526, 0.05

5000

New method nonlinear 0.68
1.07

1.03New method linear 0.73
1.33

Basic 0.97

12293

New method nonlinear 0.70
1.07

1.02New method linear 0.75
1.25

Basic 0.94

Tab. 3: Results of linear least squares with different obs values (TF = Test value for the F-test, 
Ff1, f2, 1-alpha = quantil of the F-distribution)

Noise Parameterization method sapost. TF TF F9984, 9984, 0.05

Yes Chordal 0.2932
56

1.034Yes Uniform (simulated) 0.0052
40

Yes Centripetal 0.2120
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points in order to emphasize the impact of the 
step size. The parameters for the B-Splines are 
given in Table 4.

The curve parameters allocated to the obsX/Y 
are calculated with the centripetal method. It has 
generated the best result compared to the other 
parameterization methods.

Results

The estimation results are summarized in Table 
5. As can be seen the new methods are better 
than the basic one. However, the decrease of the 
standard deviation of the control-point estimation 
is not as strong as in the case of the simulated 

data set. The variation of the number of knots, 
degree of the basis function and the number 
of obsX/Y results in the gradation from the best 
result by the new method nonlinear to the basic 
method, as in Table 5. The “significant” changes 
need to be carefully interpreted with the difficul-
ties of the hypotheses test in mind, mention in 
chapter 6.1. More explanation of how to read the 
table can be achieved under Table 2.

Figure 7 shows the different B-Spline curves 
after the knot estimation with the three methods 
in the case of 5000 sample points. 

Especially at the beginning of the curve, the 
new methods lead to improved approximations 

Fig. 7: Result of the B-Spline curve approximation – measured data

Fig. 8: Knot locations – measured data
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of obsX/Y. In the section between 0 m and 4 m 
the approximation with the basic method is more 
detailed. These oscillations appear also in the 
case of estimation with the developed methods 
when a higher number of knots are used. The 
difference between the linear and the nonlinear 
case of the developed method is the smoothness 
of the curve. While in the linear case the curve 
is approximated with sharp peaks the nonlinear 
model leads to rounded peaks and a smoother 
curve. 

Figure 8 shows the knot distribution in the knot 
vector. Noticeable are the large differences of 
the knot locations between the methods, which 
can also be seen in Figure 6. The reason for that 
are the large functional changes in the formulas 
between different parameter sets, which produ-
ce large differences in the residuals on which the 
new parameters rely on. 

7.  Conclusion

The new methods for the knot estimation improve 
the approximation of TLS profiles with B-Splines. 
The algorithms were validated with simulated 
data and applied on real data. They lead to better 
results than the basic method. 

Despite the functional problems during the 
nonlinear iteration the algorithm converges when 
estimating only one knot at a time and allowing 
only small updates. This leads to good results 
also in case of higher knot numbers. The method 
doesn’t use any problem specific smoothing or 
penalty terms. When estimating all knot locations 
at once the algorithm becomes unstable. Oscil-
lations like in the case of polynomials with higher 
degree didn’t occur when the estimation was 
performed by a maximum of 23 knots in order 
to reach the standard deviation of the simulated 
dataset. 

Different parameterizations of the observa-
tions were implemented in order to analyze their 
influence on the approximation results. This influ-
ence tends to be higher than the influence of the 
right number of the knots. Similar approximation 
results were obtained for different numbers of 
obsX/Y.

Extending the sequential nonlinear model to a 
global estimation of knots and control points is 
aimed in future research. 
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