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Abstract

Deformation analysis is one of the classical tasks in engineering geodesy. The development of the laser scanner 
has changed the respective data acquisition as well as the data analysis: Instead of point based approaches, areal 
ones move into focus. In this paper a project is presented which aims to develop a spatiotemporal continuous col-
location. In order to model the deterministic trend, B-spline surfaces are used. The parameterization required for the 
estimation of such freeform surfaces is realized by projecting the acquired point cloud onto a based surface called 
Coons patch. In order to handle irregular point densities, boundary constraints are introduced.

Keywords: Laser scanning, modelling, freeform surfaces, boundary constraints, datum definition

Kurzfassung

Die Deformationsanalyse ist eines der klassischen Aufgabenfelder der Ingenieurgeodäsie. Mit der Entwicklung des 
Laserscanners haben sich neben der Datenerfassung auch die entsprechenden Auswertestrategien verändert: 
Anstelle von punktbasierten Ansätzen rücken flächenhafte Methoden immer mehr in den Fokus. Das Ziel des in 
diesem Paper vorgestellten Projektes ist die Entwicklung einer raumzeitlichen Kollokation, deren deterministischer 
Trend mit Hilfe von B-Spline-Flächen modelliert wird. Die Schätzung solcher Freiformflächen erfordert eine Para-
metrisierung der Beobachtungen. Aus diesem Grund wird mit dem sogenannten Coons Patch eine Basisfläche 
definiert, auf die die erfasste Punktwolke projiziert wird. Für Punktwolken mit unregelmäßigen Punktdichten wird 
das Ausgleichungsergebnis durch das Einführen von Randbedingungen stabilisiert.

Schlüsselwörter: Laserscanning, Modellierung, B-Splines, Randbedingungen, Datumsdefinition

Continuous modelling of point clouds by 
means of freeform surfaces
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1. Introduction

The development of terrestrial laser scanners has 
substantially increased the importance of areal 
measurements in engineering geodesy [1]. In 
order to preserve the added value yielded by 
these techniques in comparison to the conven-
tional point based ones, an areal data analysis 
is unavoidable. This is in general achieved by 
extending existing point based approaches.

Least-squares collocation is a well-established 
method in geodesy. It distinguishes itself from 
other methods by modelling the observed phe-
nomena not only by means of a deterministic 
trend, but also by means of a statistical signal.

The aim of the present project is the extension 
of the classical least-squares collocation to an 
approach which is continuous in space and time, 
so that a description of deformations to arbitrary 
times and in arbitrary places of the object is 
possible.

The spatiotemporal collocation starts with the 
modelling of the geometric part of the areal de-
formation process by means of freeform surfaces 
such as B-splines. The estimation of this type of 
surfaces requires the allocation of appropriate 

surface parameters to the observations. Setting 
up the surface’s parameter form, is in the focus 
of this contribution.

B-spline curves and surfaces have been in-
vestigated for various geodetic applications: In 
[2] B-spline surfaces are used as an alterna-
tive for spherical harmonics in order to describe 
the vertical total electron content of the Earth’s 
atmosphere. The observations’ parameterization 
is realised by means of their two-dimensional 
Cartesian coordinates scaled to the unit square. 

In engineering geodesy freeform curves and 
surfaces are used to model point clouds ac-
quired by laser scanners: The authors of [3] use 
terrestrial laser scanning in order to determine a 
bridge’s deflection under traffic load. The result-
ing nonlinear point profiles are parameterized by 
means of the points’ Euclidean distances and 
afterwards approximated by B-spline curves. 
The freeform surface’s potential to describe de-
formations is demonstrated in [4]: A plastic sheet 
is being deformed under pressure while a laser 
scanner is measuring points on the deforming 
surface. Three-dimensional B-spline surfaces 
are used to describe the resulting point clouds 
analytically. The author assumes a grid-like ar-
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rangement of the measured points which allows 
a parameterization using the Euclidian distances 
between the observations. 

The present paper is structured as follows: 
Section 2 provides the mathematical basis con-
cerning the estimation of B-spline curves and 
surfaces. In section 3 a parameterization ap-
proach is introduced, which is based on an ob-
ject, instead of a superior coordinate system. This 
guarantees that the parameterization reflects the 
object’s actual form. Furthermore, the presented 
approach is able to handle unordered point 
clouds, which generally are a laser scanner’s 
output. As a consequence, no simplifying as-
sumptions about the observations’ arrangement 
have to be made. The achieved parameterization 
is improved iteratively, whereby irregular point 
densities are managed by introducing boundary 
constraints. In the last subsection of section 3 it 
is discussed whether the parameterization can 
serve as a basis for the datum definition. The 
overall results are summarized in section 4.

2.  Estimation of freeform curves and 
surfaces

2.1  Estimation of B-spline curves

A B-spline curve of degree p is defined by its 
n + 1 control points Pi [5]:
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A curve point C(u) therefore results as the 
weighted average of the control points Pi. The 
corresponding weights are defined by the B-
spline basis functions Ni,p, which can be com-
puted recursively by means of the Cox-de Boor-
algorithm (see [6]; [7]). In addition to the control 
points, the degree p as well as a knot vector U 
= [u0  ,… ,um] are required to define a B-spline 
curve uniquely.

When estimating a B-spline curve, the number 
of control points as well as the curve’s degree 
p can be specified a priori. This results in a lin-
ear relationship between the N + 1 observations 
C (uk) and the unknown parameters Pi. Before 
estimating the curve, convenient parameters uk 
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Thus, the observation’s parameterization is in-
dependent of the curve’s spatial orientation.

In order to avoid singularities in the normal 
equation system, each knot span of the knot vec-
tor U has to contain at least one parameter uk. In 
[5] an algorithm is proposed which guarantees 
that this requirement is fulfilled. The knot vector U 
and its further influence on the curve and surface 
estimation are not considered here; for further de-
tails related to this topic please refer to [5].

2.2  Estimation of B-spline surfaces
In order to describe a B-spline surface, the so 
called tensor product representation is used, 
which represents a surface as an infinite number 
of parametric curves running into two different 
directions. In order to construct such a surface, 
two one-dimensional basis functions are multi-
plied [5]: 
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A surface point S(uk ,vk) is thus given by a 
grid of (m + 1) × (n + 1) control points Pij , the 
degree p and the knot vector U in the direction 
of the parameter u as well as the degree q and 
the knot vector V in v-direction.

Similar to the curve estimation, the number of 
control points (m + 1 and n + 1), the knot vec-
tors U and V as well as the surface’s degrees p 
and q can be specified a priori. If the measured 
points were ordered grid-like, the observations 
could be parameterized by means of the above 
mentioned methods [8]. In engineering geodesy 
the grid-like arrangement cannot be presumed; 
rather, the usually unordered point clouds require 
an alternative method, which is presented in the 
following.

3.  Surface parameterization
A common approach to parameterize unordered 
point clouds is the definition of a base surface 
with known parametric form and a subsequent 
projection of the observed points onto this sur-
face. Via this projection it is possible to allocate 
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parameters belonging to the base surface’s pa-
rameter space to the observations. The difficulty 
of this procedure lies in defining an appropriate 
base surface, which has to fulfil certain criteria 
according to [8]: On the one hand the base 
surface has to be as smooth as possible while 
being a good approximation of the point cloud. 
On the other hand an unambiguous projection of 
the observed points onto the surface has to be 
possible. As the base surface’s parameterization 
influences the parameterization of the surface 
to be estimated, the former should furthermore 
reflect the point cloud’s form. Regarding an au-
tomated analysis, the base surface’s formulation 
should additionally be generally valid and conse-
quently independent from the acquired data set. 

Because of the complexity of the relevant 
surfaces in engineering geodesy, a completely 
general valid approach is not possible. For this 
reason, those surfaces will be classified accord-
ing to the number of delimiting curves in the 
following section. The resulting classes form the 
basis for the parameterization.

3.1  Characterization of surfaces

Typically, either simple geometric primitives are 
used as base surfaces or the base surface is 
constructed from the point cloud’s boundary cur-
ves [8]. As the strategy depends on the number 
of curves delimiting the point cloud, it is obvious 
to use this number as a classification criterion 
to categorize surfaces, which are relevant in 
engineering geodesy, into three classes:

 � Closed surfaces are delimited by no boundary 
curve [9]. In engineering geodesy those sur-
faces occur rather seldom. In these rare cases 

– for example in case of reference spheres for 
the terrestrial laser scanning – the surfaces 
take on simple geometric shapes, so that an 
unambiguous projection on a sphere is pos-
sible. The projection on this base surface is 
realised by computing spherical coordinates. 
The final parameterization results from the lati-
tude j und the longitude q scaled to a range 
of [0, 1].

 �Tubes of industrial plants or cooling towers 
represent surfaces which are delimited by two 
boundary curves. In engineering geodesy this 
type of surface also appears in general as a 
simple geometric shape like a cylinder or a 
hyperboloid of one sheet. Consequently, these 
surfaces are parameterized by computing the 
cylindrical coordinates radius r, azimuth j as 
wells as the height h and scaling j and h to 
the range of [0, 1].

 � All other surfaces being relevant in engineer-
ing geodesy are delimited either by one or 
by four boundary curves. As a single curve 
can be subdivided into four segments and a 
surface delimited by one curve therefore can 
be transformed into a surface with four bound-
ary curves, these two cases can be handled 
consistently. These cases are the main focus 
of this contribution and will be addressed in 
detail as well as demonstrated on two example 
data sets, which are presented in the following.

The first data set is a part of a church vault 
delimited by four boundary curves (see Figure 1). 
Like most anthropogenic objects, the vault has 
simple geometric structures and therefore can 
also be approximated by means of regular geo-
metric shapes.

Fig. 1: Point cloud of a church’s vault Fig. 2: Point cloud of a leaf



Vermessung & Geoinformation 2+3/2015124

An example for an object delimited by one 
boundary curve is the leaf of a cucumber plant, 
which can be seen in Figure 2. Natural objects 
like this leaf cannot be approximated sufficiently 
well by means of simple geometric shapes. Fur-
thermore, the point density varies because of the 
leaf’s complex structure, so that the point cloud’s 
approximation by means of freeform surfaces is 
impeded.

3.2  Parameterization of surfaces with four 
boundary curves

In order to parameterize surfaces which are 
delimited by four boundary curves, Coons patch 
(see [8]) is used as a base surface. The first step 
for the construction of this patch is the determi-
nation of four boundary curves in B-spline form. 
Regardless of whether the surface is delimited 
by one or by four curves, boundary points have 
to be detected automatically at first (see [10]). 
These boundary points form the basis for the 
estimation of one and four B-spline curves res-
pectively (cf. section 2), which delimit the patch 
(see Figure 3 and 4). In case only one boundary 
curve has been estimated, this curve is subdi-
vided into four segments with the same number 
of control points by means of the Cox-de Boor 
algorithm afterwards (see [6]; [7]). The results 
of the curve estimation are four B-spline curves 
delimiting the point cloud: 
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Facing curves are denoted by the letters k 
and l in superscript and have the same degree 

as well as the same number of control points. 
Furthermore, it should be noted that these curves 
have to be defined on the same knot vector [5]. 
These conditions have to be fulfilled, as these 
four curves define the degrees, the number of 
control points as well as the parameterization of 
the base surface to be constructed.

In order to distinguish the parameters deter-
mining the boundary curves from the parameters 
of the estimated surface, the former are denoted 
by the index C.

Coons patch is constructed by two types of 
surfaces: On the one hand the two pairs of facing 
curves are used to construct two ruled surfaces 
Ru(uC,vC) and Rv(uC,vC) by interpolating lin-
early between points having the same parameter 
value [11]:
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On the other hand the bilinear interpolant of 
the four corner points is computed:

B u v
j

m

j

m

P P

P PC C
C

C

C

C

n

m m n

C

C C C

, , ,

, ,
( )= −





























1
1

0 0 0

0

−−
























i

n
i

n

C

C

C

C

. (8)

The vault’s ruled surface in u-direction as well 
as its bilinear interpolant are exemplarily shown 
in the Figures 5 and 6.

Fig. 3: The vault’s four boundary curves Fig. 4: The leaf’s boundary curve
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Fig. 5: The vault’s ruled surface in u-direction Fig. 6: The bilinear interpolant of the vault’s four corner points

Fig. 7: The vault’s Coons patch Fig. 8: The leaf’s Coons patch

Fig. 9: Estimated vault Fig. 10: Estimated leaf
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The requested patch P(uC,vC) results as the 
combination of these three surfaces [12]:

P u v R u v R u v B u vC C u C C v C C C C,   ,   , ,( )= ( )+ ( )− ( ). (9)

The vault’s and the leaf’s patch can be seen 
in the Figures 7 and 8. Both Figures show that a 
Coons patch meets the base surface’s require-
ments mentioned above, so that now a base 
surface exists onto which the observations can 
be projected to perform the parameterization. 

In order to project the points onto the Coons 
patch, the base surface is subdivided into quad-
rilaterals which are supposed to be approxi-
mately planar (cf. [12]). By means of a principal 
axis transformation the measured points are 
transformed into the coordinate system of the 
nearest quadrilateral, denoted by xq, yq, zq in 
the following. The respective zq-axis is parallel 
to the patch’s normal vector. As a consequence, 
the points can be projected to the quadrilateral 
by discarding that coordinate which contains 
least information (zq-coordinate), leaving the co-
ordinates xq and yq to each observation. These 
coordinates form the basis for the determination 
of the related surface parameters u and v: As 
for each of the quadrilateral’s four corner points 
the respective Cartesian coordinates xq

j and yq
j 

(j  =  0,…,3) as well as associated the parameters 
uj and vj are known, the observation’s requested 
parameters u and v can be computed by the 
inverse bilinear interpolation of the quadrilateral’s 
corner points.

3.3  Iterative improvement of the 
parameterization

The parameters determined in this way can now 
be used to estimate a best-fitting B-spline sur-
face S(u,v) (cf. section 2). For the setup of the 
stochastic model the observations are assumed 
to be equally accurate and uncorrelated. The 
Figures 9 and 10 show the results of the surface 
estimation for the vault as well as for the leaf.

The estimated surfaces approximate the point 
clouds in a better way than the initial base sur-
faces do. This statement is supported by the 
numerical values of the point clouds’ mean de-
viations from Coons patch –dC as well as from the 
estimated surface –dS: The vault’s mean deviation 
reduces from –dV

C =  0,05 m to –dV
S =  7,5 * 10–4 m. 

Similarly, the leaf’s mean deviation decreases 
from –dL

C =  0,004 m to –dL
S =  –2,4 * 10–16 m. The 

smaller the values, the better the respective 
surface approximates the point cloud. As a con-
sequence, the estimated surfaces fulfil the base 

surfaces’ requirements in a better way than the 
Coons patch does. Thus, a reparameterization 
based on the estimated surface gives reasons to 
expect a better result of the adjustment. 

3.3.1  Reparameterization
Taking the requirement into account that the 
base surface’s parameterization should reflect 
the shape of the surface to be estimated as well 
as possible, at first a new parameter space is 
defined. The basis of this new parameter space 
is formed by isolines on the estimated surface 
each one being reparameterized by means of 
the cumulative chord length method (cf. equation 
(2)). Based on this new parameter space, it is 
possible to allocate improved parameters to the 
observations. In this way the parameterization is 
improved iteratively until the process converges. 
The whole parameterization procedure is sum-
marized in Figure 11 schematically.

Fig. 11: Parameterization procedure

3.3.2 Introduction of constraints
The iterative adaption of the parameter values 
leads to artefacts in edge regions with low point 
densities after just a few iterations (see Figure 
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12). Consequently, the parameterization does not 
converge. In order to counteract the surface’s 
degeneration, the knowledge about the surface’s 
limitation is introduced into the adjustment by 
forcing the surface’s edges onto the point cloud’s 
known boundary curves:

 S(0, v) = C0(v) (10)

 S(1, v) = C1(v) (11)

 S(u, 0) = C0(u) (12)

 S(u, 1) = C1(u). (13)

As the curve’s characteristics are determined 
by the control polygons and as these polygons 
can be handled much easier than the continuous 
curves, the constraints are based on the control 
polygons: The estimated curve control polygons 
P̂k

iC and P̂l
jC with k, l = 0, 1 are treated as known 

values in the surface estimation. The aim of the 
adjustment is the determination of the surface 
control points Pij. Regarding the constraints, only 
the outermost control points Pi0, PJ, P0j and Pmj 
are of interest.

To provide a better overview, only the case 
is considered, where the curves’ degrees as 
well as the number of control points are identi-
cal with those of the surface to be estimated 
(nC = n, mC = m, pC = p, and qC = q). In this 
case the outermost surface control polygons can 
be aligned with the curve control polygons by 
means of the following constraints:

 P̂ 0
iC
 = Pi0 (14)

 P̂ 0
jC
 = P0j (15)

 P̂ 1
iC
 = PJ (16)

 P̂ 1
jC
 = Pnj . (17)

These constraints are introduced in terms 
of pseudo observations (see [13]), so that the 
constraints’ influence on the adjustment’s result 
can be controlled by the corresponding weights. 
The constraints’ introduction provides the desired 
result (see Figure 13): The edge areas are stabi-
lised and the adjustment converges already after 
few iterations.

Comparing the isolines in the Figures 13 and 
10, the reparameterization’s influence on the es-
timated surface becomes visible: While in the 
first iteration step especially the inner isolines 
are clinched, the isolines’ distances are quite 
uniform after the reparameterization. 

3.4  Parameterization as a basis for datum 
definition

The classical deformation analysis relies on 
geodetic networks, whose points are linked by 
geodetic measurements [14]. The network’s se-
ven datum parameters (translations, orientations 
and scale factor) are introduced by means of 
datum points [15]. 

The areal deformation analysis also requires a 
common reference framework in order to reveal 
deformations between several measurement 
epochs. Therefore, the datum definition is also 
essential when realising areal approaches. 

As the base surface’s parameter lines define 
a coordinate system, it seems natural to build 
up the datum definition from the parameteriza-
tion. In this case the coordinate system’s origin 
is specified by the base surface’s point S(u = 0, 
v = 0). Two of the required coordinate axis are 

Fig. 12:  Artefact in the leaf’s edge area (please note the 
changed range of the z-axis)

Fig. 13: Constrained estimation of the leaf
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defined by the isolines u = 0 and v = 0, so that 
a curvilinear coordinate system results. The re-
maining third axis is specified by the surface 
normal in the system’s origin. A significant dif-
ference to classical coordinate systems is the 
definition of the scale factor: Usually a constant 
scale factor is defined for each coordinate direc-
tion, whereas, as the parameter-lines do not run 
equidistantly, the scale factor varies all over the 
surface when the datum definition is based on 
the parameterization. The scale factor along the 
third coordinate axis, however, can be chosen 
equidistant. 

Naturally, as the parameterization changes 
during the iterative reparameterization process, 
the datum definition changes too. However, as 
the intermediate results are only used to achieve 
a final parameterization and consequently have 
no influence on further computations, the as-
sociated datum definitions are irrelevant; only 
that datum definition which belongs to the final 
parameterization is of importance.

Regarding deformation analysis, not only the 
datum definition matters, but also the datum’s 
consistency during several measurement ep-
ochs [14]. In order to guarantee this consistency, 
the final base surface of the first measurement 
epoch has to act as a base surface for the sub-
sequent measurement epochs. When strong de-
formations occur, this base surface is no longer 
a good approximation of the point cloud, so that 
a deterioration of the parameterization has to be 
expected. For this reason, the following consid-
erations are made under the justified assumption 
that in engineering geodesy the deformation is 
small compared to the object size. 

Further problems occur, when the object 
edges change compared to those of the first 
measurement epoch during the investigation 
period. If this change is caused by a mere rigid 
body motion, a new temporary base surface can 
be defined for the subsequent measurement 
epoch. Regarding the control points of the two 
surfaces as homologue, the rigid body motions’ 
translational and rotational parameters can be 
determined by a similarity transformation and the 
point cloud of the subsequent epoch can be 
transformed. Afterwards, a parameterization on 
the basis of the base surface defining the datum 
is possible. 

If, however, the object deforms, a datum defi-
nition based on the parameterization will not be 
possible: If the point cloud expands beyond the 
base surface’s boundaries, parameters > 1 and/

or < 0 will occur. If the point cloud contracts, the 
edge regions will be poorly or even not at all 
filled, so that a singular normal equation system 
results.  

A datum definition based on the parameteriza-
tion is thus suitable only for special cases (small 
deformations compared to the object size and 
unchanged object boundaries as long as no 
mere rigid body motion occurs). For the general 
case, however, the datum definition has to be 
based on a superior and object-independent 
coordinate system. 

4. Summary

The presented method allows a parameterization 
of unordered point clouds, which serves as a 
basis for estimating freeform surfaces. The 
parameterization’s fundamental principle is the 
definition of an appropriate base surface, onto 
which the point cloud is projected. Depending 
on the number of boundary curves, either a 
sphere, a cylinder or Coons patch is used as 
a base surface. The parameterization obtained 
by the projection is improved iteratively, while 
constraints are used to stabilise the edge regions 
and to counteract the surface’s degeneration.
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