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Kurzfassung

Aufgrund der Vielfalt an potentiellen klinischen Anwendungsgebieten ist die Segmentierung medizinischer, 
volumetrischer Datensätze ein wichtiges Forschungsgebiet. Um klinische Relevanz und praktische Akzeptanz unter 
Radiologen und Ärzten zu erreichen, müssen generische, interaktive 3D Segmentierungsalgorithmen einfach zu 
bedienen und akkurat sein. Weiters ist ständiges und in Echtzeit dargestelltes Feedback für den Benutzer essenziell. 
In dieser Arbeit präsentieren wir einen neuartigen 3D-Segmentierungsansatz der mithilfe moderner 3D Grafikkarten 
Benutzerinteraktion, Segmentierung und volumetrische Visualisierung in ein gemeinsames Rahmenwerk integriert. 
Dies ist ein Beispiel für das Zusammenwirken von Computer Grafik und Computer Vision in einem Gebiet, das 
auch als Visual Computing bezeichnet wird. Direkte 2D und 3D Interaktion mit großen, volumetrischen Datensätzen 
wird mit einem Segmentierungsalgorithmus kombiniert, der als konvexes Energieminimierungsproblem definiert 
ist. Dieses global optimale Segmentierungsresultat und dessen Ausbreitung und Entwicklung während des 
Minimierungsprozesses wird kontinuierlich über eine hardware-beschleunigte Volume-Rendering-Engine visualisiert. 
Durch die integrierte Implementierung dieser Komponenten auf der Grafikkarte erhält man ein interaktives Echtzeit 
3D Segmentierungssystem, welches Benutzerinteraktion auf das Nötigste reduziert. Die Einsatzfähigkeit des 
Systems zur Lösung praktischer Segmentierungsaufgaben wird anhand quantitativer und qualitativer Auswertungen 
gezeigt.

Schlüsselwörter:  Interaktive 3D Segmentierung, Echtzeit Volumsvisualisierung, Volumens-Raycasting, Intuitive 
3D Segmentierung 

Abstract

Segmentation of medical volume data sets (i.e., partitioning images into a set of disjoint regions representing 
different semantic objects) is an important research topic due to its large number of potential clinical applications. 
In order to get accepted by physicians and radiologists a generic, interactive 3D segmentation algorithm has 
to be simple-to-use, accurate, and show immediate feedback to the user. In this work we present a novel 3D 
segmentation paradigm that effectively combines interaction, segmentation and volumetric visualization in a single 
framework integrated on a modern graphics processing unit (GPU). This is an example of the fruitful combination 
of computer graphics and computer vision, a field nowadays called visual computing. Direct interaction with a large 
volumetric data set using 2D and 3D painting elements is combined with a segmentation algorithm formulated as 
a convex energy minimization. This globally optimal segmentation result and its evolution over time is continuously 
visualized by means of a hardware accelerated volume rendering along with the original data. By implementing all 
of these components on a GPU, a highly responsive interactive 3D segmentation system requiring minimal user 
interaction is achieved. We demonstrate quantitative and qualitative results of our novel approach on liver and liver 
tumor segmentation data where a manual ground truth is available.

Keywords:  interactive 3D segmentation, real-time volume rendering, volume raycasting, immediate feedback 3D 
segmentation

Interactive 3D Segmentation as an Example for  
Medical Visual Computing

1. Introduction
Visual computing is a discipline that views 

computer graphics and computer vision, his-
torically two separate disciplines, from a com-
mon perspective. The confluence of these two 
fields has led to many new insights and appli-
cations.Medical visual computing is a prototy-
pical example that profits significantly from this 
convergence. In this paper we report on the re-

cent work on an interactive segmentation sys-
tem. The application requires computer graphic 
methods for 3D volume rendering and compu-
ter vision for segmentation. Since the system is 
designed to be used in an interactive manner, 
all these tasks have to be achieved at interac-
tive framerates (10–15 fps). We accomplish this 
challenging problem by implementing all algo-
rithms on modern graphics hardware. The re-
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sulting system is the first one that solves this 
complex task for realistic volume sizes. See 
Figure 1 for an example segmentation result.

Image segmentation is one of the key problems 
in computer vision with applications in a large 
number of domains. Medical image analysis is 
one such domain, where the delineation of dif-
ferent anatomical structures is a topic of signifi-
cant research and clinical interest. Applications 
involving medical volume data sets exhibit a 
high degree of difficulty due to anatomical and 
pathological variations. Thus, fully automatic 
segmentation algorithms are seldom feasible in 
practice. Additionally, the routine way of diagno-
sis is centered around human operators. Thus, 
segmentation algorithms are required to assist 
physicians. As a consequence a lot of research 
in medical image segmentation is focusing on 
semi-automatic and interactive systems, where 
feedback is given to the physician during diag-
nostic investigations.

In interactive segmentation methods, users 
are required to highlight some regions as a prior, 
mostly drawing some kind of seeds or bounda-
ries into an image. The LiveWire segmentation 
approach [1] is an early work for two-dimension-
al boundary delineation based on edge informa-
tion. Later algorithms like GrabCut [2] combined 
color and edge information to separate image 
fore- and background using a Graph-Cut ap-
proach [3]. Very recently Sinop and Grady have 
proposed a related approach unifying graph cuts 

and the random walker algorithm for seeded im-
age segmentation [4]. These works as well as 
our previous work in [5] were developed for 2D 
image segmentation applications. Some authors 
like Falcao and Bergo [6] or Poon et al.[7] have 
investigated an extension of the LiveWire meth-
odology to 3D. Both approaches are restricted 
to boundary information and 3D user interaction 
is very hard. An example of recent work closely 
related to our method can be found in [8], who 
showed an interactive graph-cut based 3D seg-
mentation approach called Live Surface. Their 
method uses innovative 3D interaction and pro-
vides immediate segmentation feedback. How-
ever, their approach loses flexibility due to their 
watershed-like pre-processing step. Errors at 
this stage cannot be corrected in the interactive 
setup. Moreover, their approach does not benefit 
from a parallel implementation, a possibility cur-
rent consumer GPUs offer.

In this paper we show a novel, flexible 3D 
segmentation paradigm that integrates user in-
teraction, segmentation and volumetric visuali-
zation into a single framework. This framework 
profits from the recent technological advances 
in processing power of modern GPUs and from 
their flexible programmability, e.g., using the 
CUDA framework [9]. This flexibility allows us 
to combine a segmentation algorithm based on 
a convex energy minimization formulation and a 
direct volume rendering (DVR) algorithm based 
on ray-casting into a single implementation on 
the GPU. User interaction is required to define 
constraints in the segmentation functional. These 
constraints lead to a globally optimal solution of 
the convex energy with respect to the user inputs 
which is calculated at interactive frame-rates. Im-
mediate feedback of the current segmentation 
result is provided by combining the original vol-
ume and the segmentation in the volume render-
ing implemented on the same GPU. Thus, to 
our knowledge, we present the first interactive, 
state-of-the-art three-dimensional segmentation 
algorithm providing immediate feedback on the 
segmentation result that allows segmentation re-
finement and works on volume data sets of prac-
tical size. 

2. System Description
In this section we develop our interactive, vol-
ume rendering based segmentation system. The 
framework implements 3D and 2D visualization 
views on 3D medical datasets and segmented 
structures, together with a segmentation algo-
rithm including user interaction on the GPU. The 
software consists of three major components, 

Fig. 1: Volume rendering of segmentation results from a 
liver CT data set. The segmented liver (yellow) is shown 
alongside the original volume data set, the extracted 
liver vessel tree (red) and a tumor (green).
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the segmentation part, the visualization part and 
the GUI. An overview of the system is shown in 
Figure 2. Due to the GPU implementation, slow 
(2 GB/s) system bus data transfers occur only 
in the startup phase, when the 3D data is trans-
ferred to GPU memory. All further memory ac-
cess happens on the GPU, where transactions 
are around 30 times faster than on the CPU. Even 
user interaction, like specifi cation of foreground 
and background seed regions or segmentation 
refi nement is performed on the GPU by trigger-
ing CUDA kernel functions, e.g., drawing a line 
from point A to B by painting into a 3D constraint 
data structure.

During the segmentation process the segmen-
tation component runs continuously, reads data 
from the raw and the constraint dataset, as well 
as temporary and segmentation data. The lat-
ter two volumes are also modifi ed during seg-
mentation. The visualization component requires 
raw data, constraints and the segmentation as 
input and computes a 2D output image which 
is passed to the GUI component and visualized 
using OpenGL. Both components run independ-
ently but sequentially, since CUDA does not sup-
port concurrent kernel calls. Scheduling priori-
tizes rendering for the sake of interactivity.

All of the data used by visualization and algo-
rithmic component is stored twice, which maxi-
mizes the effi ciency of each algorithm since one 
can use optimal memory representation schemes 

for each task. However, memory redundancy re-
quires copying, which is triggered by the control-
ling GUI component, predominantly after chang-
es in the segmentation. Due to the very high 
GPU memory bandwidth copying is not a limiting 
factor in practice.

2.1 3D Volume Segmentation
For our 3D segmentation component we use 
an energy minimization model formulated in a 
variational framework. Given an input image in 
the domain W Ì 3 we seek u, a binary labe-
ling of the image into foreground (u  = 1) and 
background (u  = 0). Our minimization model is 
defi ned as

min ( ) ( ) ( )
u

g u d u f d
W Wò òÑ +{ }x x x x xl  (1)

The fi rst term is a weighted total variation (TV) 
term penalizing discontinuities in the segmenta-
tion via the gradient of the labeling. The weight-
ing g is related to edges in the input image I(x) 
by g(ÑI(x)) = exp (-h½ÑI½k) according to [10]. 
Here h and k are chosen such that edges of inter-
est from the gradient image ÑI(x) are selected. 
Prior to edge calculation we use a ROF denois-
ing scheme [11] implemented according to [12] 
to remove noise. With u  Î  {0, 1} the TV term is 
equivalent to the geodesic active contour (GAC) 
problem [13] minimizing the geodesic length of 
the segmentation interface with respect to the 
isotropic Riemannian metric g, a fact which was 
proven by Bresson et al. in [14]. A similar func-

Fig 2: System Overview: The two main components segmentation and visualization run entirely on the GPU. Data 
transfers between the CPU based GUI are limited to system startup (fi le I/O), as indicated by the green arrow. 
Data access by the algorithmic components (rounded boxes) is shown using broad blue arrows, indicating the 
higher memory bandwidth. Inter-component data transfer triggered from the GUI (thin arrow) is indicated by yellow 
arrows.
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tional for segmentation has already been pro-
posed in [15]. Note that minimizing the geodesic 
length can also be established by investigating 
the discrete binary labeling problem leading to 
Graph-Cut approaches [3]. The weight g restricts 
regularization of u to regions where the image 
gradient is low. The second term of (1) is a poin-
twise data-term inspired by Mumford-Shah-like 
energies [16], where a positive f(x) forces u(x) 
to be background, and a negative f(x) forces 
u(x) to be foreground.

Equation (1) is a convex energy formulation, 
however, our optimization domain, the binary 
labeling u  Î  {0, 1}, is not a convex set. Thus, 
the optimization problem is not convex. A stand-
ard approach to achieve convexity is to relax u 
to the continuous domain u  Î  [0, 1]. Since the 
TV energy satisfies the generalized co-area for-
mula[17], thresholding the relaxed problem for 
any threshold m  Î  (0, 1) solves the original binary 
problem. The benefit of this convex formulation 
is that it allows to compute the binary labeling 
result u as the single global minimum of (1) after 
thresholding with any m  Î  (0, 1). We use m  =  0,5 
in our implementation. This way we arrive at a 
globally optimal segmentation algorithm w.r.t. the 
user constraints. We use the constraint term f of 
our convex functional to model different types of 
constraints on the labeling. Besides the case of 
f  =  0 (which corresponds to a trivial global solu-
tion of the pure GAC energy) four different cases, 
which we use to drive our interactive segmen-
tation, can be distinguished. With f  =  -¥ we 
model a hard foreground constraint, where the 
algorithm forces u  = 1. For a hard background 
constraint, we use f  =  -¥, such that the algo-
rithm forces u  = 0. Using f  < 0 models a weak 
foreground constraint, where the data term tries 
to make u  = 1, however, depending on l, the 
regularization can still force u  = 0. A weak back-
ground constraint f  > 0 works equivalently.

In our framework prototype, interactively speci-
fied weak constraints determine the gray value 
distribution of fore- and background objects, re-
spectively. The details of calculating f make use 
of a simple histogram matching procedure, where 
we compare each voxel to the fore- and back-
ground distributions modeled as histograms. 
Here, of course different constraint terms are 
possible, e.g., texture features, similarity to pre-
learned gray value distributions or prior shape 
and appearance models. Hard constraints may 
be specified to remove or add certain parts of a 
segmentation result for interactive refinement.

Our GUI component provides the user with a 
3D view and optional 2D views (axial, coronal or 
sagittal) on the data. Interaction, e.g., specifica-
tion of the weak and hard constraints, selection 
of regions of interest, and segmentation refine-
ment is possible using painting tools. Figure 3 
shows 3D and 2D views with examples of con-
straint painting.

2.1.1 Numerical Implementation
To solve our energy minimization problem (1), 
we make use of a primal-dual algorithm inspired 
by [18] where a gradient descent on the primal 
and a gradient ascent on the dual variable are 
combined to find the global minimizer as a sad-
dle point in the primal-dual formulation. The re-
sulting numerical scheme can very efficiently be 
implemented in parallel on a GPU. We introduce 
a dual variable p defined as

 g u ux p
p

( ) Ñ = Ñ{ }
£

max · .
|| || g

 (2)

By reformulating Equation 1 using p we arrive 
at the primal-dual formulation of energy 1:

 min max · · .
|| ||u g

ud u fd
p

p x x
£ ò òÑ +{ } 

W W
l  (3)

This is an optimization problem in two variables 
which has to be solved by alternately minimizing 
with respect to u and p until convergence. This 
leads to a projected gradient descent scheme, 
additional details about this optimization proce-
dure and its parallelized GPU implementation 
can be found in [18].

1. Primal update: For the primal update we 
have to derive Equation 3 according to u:

 
¶
¶

- Ñ + =

-Ñ +
ò òu

u d u fd

f

{ }· ·

· ,

p x x

p
W W

l

l

 (4)

where we used the integral theorem, stating 

p p· ·Ñ = - Ñò òu u . Performing a gradient 
descent update scheme this leads to

 
u u fn 1 n

P
+

éë ùû
= - -Ñ +( )( )P 0 1, ·t lp  (5)

where the projection P towards the binary 
set [0,1] can be done with a simple threshol-
ding step, and tP denotes the timestep.

2. Dual update: Deriving Equation 3 according 
to p we get:

 
¶
¶

Ñ + = Ñò òp
ud u fd u{ }· ·p x x

W W
l  (6)
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with the additional constraint ½½ p  ½½   £   g. This 
results into a gradient ascent method with a 
trailed reprojection to restrict the length of p 
to the weight g:

 p pn
B

n
D

0
g u+ = + Ñ1 P ( )t  (7)

Here Bg
0  denotes a d-dimensional ball cen-

tered at the origin with the radius g. The re-
projection onto Bg

0  can be formulated with

 P
Bg q

q
q
g

0

1
( )

{ }max ,
|| ||

=  (8)

The result of this stage is a segmentation 
achieved after thresholding u. The numerical pri-
mal-dual scheme of the segmentation procedure 
can be easily parallelized and entirely imple-
mented on the GPU using the CUDA program-
ming language, which is our first component of 
the interactive segmentation algorithm.

2.2 Volume Rendering

To visualize medical 3D data direct volume 
rendering is a commonly used technique offer-
ing high image quality. We use volume ray-cast-
ing [19], an image-based technique, which can 
nowadays be implemented on the GPU. Unlike 
most existing GPU ray-casters we use a CUDA 
implementation, allowing greater flexibility on 
combination of data from different sources (i.e., 
raw data and segmentation) than previous shad-
er based approaches like [20]. Our proposed 
ray-caster first renders bounding boxes of all re-
gions obtained by splitting the raw dataset, seg-
mentation and constraints into e.g., 323 voxel re-
gions, where the application of transfer functions 
indicates impact on the visual output. Bounding 
box calculation also uses CUDA while OpenGL 
is only used in a rasterization stage to obtain 

two depth buffers from which ray entry and exit 
points can be calculated. In future implementa-
tions this rasterization of the bounding boxes will 
be done in CUDA, too, avoiding some copying 
overhead.

Since volume rendering is the process of visu-
alizing data sampled from a scalar function, a ray 
traversal is started for each pixel and values are 
obtained by evaluating the transfer function of 
the raw datasets. The segmentation and the con-
straint datasets are visualized using iso-surface 
ray-casting, therefore, the results evaluating the 
raw dataset transfer function are intermixed with 
the iso-surface value. In addition, all different 
representations of the dataset can be clipped in-
dividually, using a cutting plane showing the un-
derlying volume data. Clipping can also be done 
with a user-defined offset, which makes it easier 
to visually verify the segmentation progress and 
the final result. We use a stochastic sampling to 
avoid fringe artifacts.

3. Experimental Results
We implemented a first prototype of our pro-
posed framework on the GPU using the CUDA 
programming language [9]. All results were cal-
culated on a desktop PC (Intel 3.16 GHz Dual 
Core2-Duo with 3GB RAM) under 64-bit Linux. 
The PC contains two separate graphics units, a 
GeForce GTX 280 with 1 GB of graphics RAM 
used for visualization and a Tesla C1060 Com-
puting Processor with 4GB of graphics RAM. The 
large amount of graphics RAM allows to work 
with data sets of practical size from 2563 up to 
sizes of around 512 × 512 × 200 voxels. For these 
volume sizes we achieve an interactive frame-
rate of around 15-20 frames per second with-
out concurrent segmentation and 5-10 frames 
per second with activated segmentation. This 

Fig. 3: User Interface Screenshots: (a) 3D DVR of the original dataset, isosurface rendered segmented liver tumor 
(brown) and segmentation constraints (blue) interactively painted on the DVR surface and the cutting plane. (b) 
2D axial view of the same dataset with additional segmentation constraints and tumor.

 a)  b)
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depends, of course, on the window size of the 
rendering, the values are given for a resolution 
of 800 × 800 pixels

We performed experiments on two segmenta-
tion problems with annotated ground truth ta-
ken from the two recent MICCAI Segmentation 
Challenge workshops [21, 22]. In both experi-
ments, segmenta tions were performed by a non-
radiologist user experienced with medical image 
analysis. Our setup consisted of the segmenta-
tion framework and a 2 minute time-limit for seg-
mentation per dataset. The user was allowed to 
draw weak and hard constraints and to perform 
segmentation refinement on the data.

In our first experiment we segmented the 20 liver 
datasets from the training data of the 2007 Grand 
Challenge. Since the ground truth segmentation 
for this data is readily available we compared 
our segmentation with it using the provided eva-
luation tool. Five measures are calculated by 
this tool, the volumetric overlap error (VOE), the 
relative absolute volume difference (RVD), the 
average symmetric surface distance (ASD), the 
root- mean-square surface distance (RMSSD), 
and the maximum symmetric surface distance 
(MSD)[21]. All of these values are zero for per-
fect agree ment of segmentation and ground 
truth. Further more, a score for each measure is 
calculated by comparing it to a reference value 
of a human operator. The mean of these five 
scores is the total score of a data set, where 75 is 
a reference value for a human segmentation (see 
[21] for further details). In Table 1 we present our 
results compared to the reference values. These 
results indicate a reasonable performance, alt-
hough we are not as good as the best approa-
ches from the competition [21]. This is due to our 
tight time-limit and especially since we have not 
yet optimized our parameters of the segmenta-
tion framework to the task, but simply used our 
preliminary prototype with default settings.

Our second experiment consisted of 4 data sets 
containing a total of 10 liver tumors. This data 
from the 2008 Grand Challenge [22] was more 

difficult to segment since some of the tumors 
were very hard to distinguish from the liver tissue 
visually. The evaluation measures were the same 
as in the first experiment. The human observer 
reference score is 90 in this experiment, which 
is hard to achieve in practice as can be seen by 
the results of the workshop attendees ranging 
between 38 and 73 points. With our system we 
get a mean score of 50 points. Currently the main 
bottleneck in our approach is the histogram mat-
ching in the segmentation, which is not very well 
suited for this type of problem. Figure 4 shows a 
qualitative result from the liver segmentation.

To underline the generic applicability of our 
approach we now show some more qualitative 
segmentation results from different application 
areas. In Figure [1] a liver, vessel tree and liver 
tumor segmentation of an abdominal CT data set 
(2563) is visualized as a DVR together with the 
original data. Figure 5 depicts a brain surface 
segmentation result from a CT data set together 
with the volume rendering focusing on the skull. 
Finally, we also produced a segmentation result 
on a very challenging segmentation task in the 
context of clinical forensic imaging. We used a 
T2-weighted MRI data set (512 × 512 × 30) of a 
human thigh showing a subcutaneous hemato-
ma, with the segmentation result shown in red 
in Figure 6.

4. Conclusion and Future Work
In this paper we presented a first prototype of 
a segmentation framework, which combines 
a state-of-the-art segmentation algorithm and   
3D visualization into a highly interactive frame-
work. Even though neither the user inter-
face, nor the algorithmic and the visualization 
parts have been optimized yet, the system 
already delivers reasonable results in terms 
of segmentation quality and interaction time. 
Nevertheless, future work will be directed to-
wards optimization of the components. In the 
algorithmic part we intend to develop a new 
adaptive numerical solver, which should speed 
up the segmentation process by avoiding unne-

Experiment
VOE RVD ASD RMSSD MSD Total

[%] Score [%] Score [mm] Score [mm] Score [mm] Score Score

liver reference 6.4 75 4.7 75 1 75 1.8 75 19 75 75

liver 6.6 74 4.7 75 1 74 2.1 71 23 70 73

tumor reference 12.9 90 9.6 90 0.4 90 0.7 90 4.0 90 90

tumor 37 29 24.1 37 0.8 49 1.2 59 3.9 75 50

Tab. 1: Quantitative segmentation results of our first prototype on the liver and liver tumor grand challenge data 
sets. For details on the evaluation metrics refer to [21, 22].
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cessary calculations in certain without losing the 
convexity property. Having more time for volume 
visualization the core framework could be inte-
grated into a VR setup with true 3D user inter-
action, which would be helpful for segmentation 
refi nement in particular. Furthermore, it would be 
interesting to incorporate prior shape knowledge 
into the whole system.
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