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Abstract

It has already been proved that there is a problem in combining the different wavelengths of the gravity field in the geoid
determination process. Different approaches for correctly combining the gravity field wavelengths exist. The window
technique has been suggested to get rid of the double consideration of the topographic-isostatic masses within the data
window in the framework of the remove-restore technique. The modified Stokes’ kernel has been suggested to possibly
combine the local data signals with the global geopotential models. Both techniques have been used in computing a
gravimetric geoid for Austria. The available data for the current research are described. The EGM96 geopotential
model has been used. A wide comparison among classical Stokes’ kernel, modified Stokes’ kernel and window
techniques has been carried out within this investigation in the framework of the geoid determination. The obtained
results have proved that the reduced gravity anomalies using the window technique are the smoothest, un-biased and
have the smallest range. Both the modified Stokes kernel and the window technique can correctly handle the
combination of the geoid wavelengths within the remove-restore scheme.
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Kurzfassung

Eine bekannte Aufgabe im Rahmen der Geoidbestimmung ist die notwendige Kombination der verschiedenen
Wellenlängen des Schwerefeldes der Erde. Zur korrekten Kombination existieren verschiedene Ansätze. Die „window
technique“ ist eine Methode, die die doppelte Berücksichtigung der topographisch-isostatischen Massen innerhalb des
Datenfensters umgeht und auf der Remove-Restore-Technik aufbaut. Eine andere mögliche Methode stellt die
Modifizierung des Stokes-Kerns dar, welche die spektralen Komponenten der lokalen Daten mit den Signalen eines
globalen Erdschweremodells kombiniert. Beide Methoden werden zur Berechnung eines gravimetrischen Geoids von
Österreich verwendet. Die zur Untersuchung verwendeten Daten werden eingehend beschrieben. Als globales
Erdschweremodell wird EGM96 verwendet. Ein ausführlicher Vergleich zwischen den verschiedenen Methoden, der
klassischen Geoidberechnung mittels Stokes, der „window technique“ und der Methode des modifizierten Stokes-
Kerns wird auf Basis der Geoidhöhe durchgeführt. Die homogensten Schwereanomalien (trendfrei, kleinste
Extremwerte) werden durch die Anwendung der „window technique“ zur Schwerereduktion erreicht. Die Ergebnisse
zeigen, dass mittels beider Methoden eine korrekte Kombination der unterschiedlichen Wellenlängen des Geoids
möglich ist.

Schlüsselwörter: Modifizierung des Stokes-Kerns, „window technique“, Remove-Restore-Technik, Geoidbe-
rechnung

1. Introduction

The optimum combination of the different
wavelengths of the gravity field is a critical
research point. There are different approaches for
such a combination of wavelengths. The current
investigation considers a comparison of two
approaches, namely the window technique (Abd-
Elmotaal and Kühtreiber, 2003) [1] and the
modified Stokes’ kernel technique.

The used data sets are described. The Stokes’
technique of geoid determination, within the
remove-restore scheme, with classical un-modi-
fied and modified Stokes’ kernel, after Meissl
(1971) [7], is described. The window technique
(Abd-Elmotaal and Kühtreiber, 2003) [1] within the
remove-restore scheme has been outlined. The
harmonic analysis of the topographic-isostatic

potential is then given. The reduced gravity using
both techniques under investigations are then
computed and compared. Both techniques, as
well as the traditional Stokes’ kernel, have been
used in computing a gravimetric geoid for Austria.
A wide comparison among classical Stokes’
kernel, modified Stokes’ kernel and window
techniques has been carried out within this
investigation in the framework of the geoid
determination. The comparison is made on two
different levels: the residual gravity anomalies
after the remove step and the computed geoid
signals.

It should be noted that many scholars have
suggested different modifications of the Stokes’
kernel and have studied the topic of the optimum
combination of gravity field wavelengths. The
reader may refer, e.g., to Sjöberg and Hunegnaw
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(2000) [14]; Novák et al. (2001) [8]; Sjöberg
(2003a) [11]; (2003b) [12]; (2004) [13]; Vanı́ček
and Featherstone (1998) [16]; Featherstone
(1999) [2]; (2003) [3]; Huang et al. (2000) [6];
Silva et al. (2002) [10].

2. The Used Data

2.1 Gravity Data

The gravitational data set for this investigation is a
set of free-air gravity anomalies at 5796 stations in
Austria and neighbouring countries (Fig. 1). Fig. 1
shows, more or less, a homogeneous data
distribution within Austria. The gravity data
outside Austria have been included to correct
the edge effect in the computed gravimetric geoid
for Austria. The gravity data covers the window
(45:7�N � � � 49:7�N and 8:5�E � � � 18:2�E).

Fig. 1: Distribution of the used gravity data set

2.2 GPS Benchmarks

Fig. 2 shows the distribution of the available GPS
(referred to ITRF96) benchmarks with known
orthometric heights (referred to UELN98) in
Austria. It shows that most of the stations are
located in the eastern part of Austria. Only few
stations are located at the mountainous western
part of Austria.

Fig. 2: Used GPS benchmarks with known orthometric
heights

2.3 Digital Height Models

Two different digital height models are available. A
coarse model of 9000 � 15000 resolution in the
latitude and the longitude directions, respectively,
and a fine model of 11:2500 � 18:7500 resolution.
The fine DHM covers the window 44.75�N � � �
50.25�N; 7.75�E � � � 19.25�E. The coarse DHM
covers the window 40�N � � � 52�N; 5�E � � �
22�E.

The coarse DHM has been created by
integrating the Austrian fine DHM with GTOPO30
(3000 � 3000) (Gesch and Larson, 1996) [4] and
global bathymetry model provided by the Naval
Oceanographic Office (10 � 10). Fig. 3 shows the
coarse digital height model used for this
investigation. It shows the high mountainous
structure of the Alps.

3. Traditional Remove-Restore Technique

Within the well-known remove-restore technique,
the effect of the topographic-isostatic masses is
removed from the source gravitational data and
then restored to the resulting geoidal heights. For
example, in the case of gravity data, the reduced
gravity anomalies in the framework of the remove-
restore technique is computed by

�gred ¼ �gF ��gGM ��gh, (1)

where �gF stands for the free-air anomalies,
�gh is the effect of topography and its compensa-
tion on the gravity anomalies, and �gGM is the
effect of the reference field on the gravity
anomalies. Thus the final computed geoid N
within the remove-restore technique can be
expressed by:

N ¼ NGM þN�g þNh, (2)

Fig. 3: The coarse (90 00 � 150 00) digital height model
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where NGM gives the contribution of the
reference field, N�g gives the contribution of the
reduced gravity anomalies, and Nh gives the
contribution of the topography and its compensa-
tion (the indirect effect).

4. Stokes’ Integral with Classical Stokes’
Kernel

The contribution of the reduced gravity anomalies
N�g can be given by Stokes’ integral (Heiskanen
and Moritz, 1967, p. 94) [5]

N�g ¼ R
4��

R

�

R
�gredSð Þd�, (3)

where � is the normal gravity, R is the mean
earth’s radius and Sð Þ stands for the classical
Stokes’ kernel given by (ibid., p. 94) [5]

Sð Þ ¼ 1
s � 4� 6sþ 10s2 � ð3� 6s2Þ lnðsþ s2Þ,

(4)

with

s ¼ sin  
2, (5)

and  is the spherical distance between the
computational point P and the running point Q.

It is believed that using classical un-modified
Stokes kernel in the remove-restore technique
implies a wrong combination of gravity field
wavelengths. This will be proved in the sequel.

5. Stokes’ IntegralwithModifiedStokes’ Kernel

The contribution of the reduced gravity anomalies
N�g can be given by

N�g ¼ R
4��

R

�

R
�gredS

MEð Þd�, (6)

where SMEð Þ is the modified Stokes’ kernel
after Meissl (1971) [7] given by

SMEð Þ ¼ Sð Þ � Sð �Þ for ð0 <  <  �Þ, (7)

where the optimal cap size  � is empirically
determined through the comparison to the GPS/
levelling derived geoid.

6. The Window Technique

The conventional way of removing the effect of the
topographic-isostatic masses faces a theoretical
problem. A part of the influence of the topo-
graphic-isostatic masses is removed twice as it is
already included in the global reference field. This
leads to some double consideration of that part of
the topographic-isostatic masses. Fig. 4 shows
schematically the conventional gravity reduction
for the effect of the topographic-isostatic masses.
The short-wavelength part depending on the

topographic-isostatic masses is computed for a
point P for themasses inside the circle (say till 167
km around the computational point P ). Removing
the effect of the long-wavelength part by a global
earth’s gravitational potential reference field
normally implies removing the influence of the
global topographic-isostatic masses, shown as a
rectangle in Fig. 4. The double consideration of
the topographic-isostatic masses inside the circle
(double hatched) is thus seen.

Fig. 4: The traditional remove-restore technique

A possible way to overcome this difficulty is to
adapt the used reference field due to the effect of
the topographic-isostatic masses for a fixed data
window. Fig. 5 shows the advantage of thewindow
remove-restore technique schematically. Con-
sider a measurement at point P , the short-
wavelength part depending on the topographic-
isostatic masses is now computed by using the
masses of the whole data area (small rectangle).
The adapted reference field is created by
subtracting the effect of the topographic-isostatic
masses of the data window, in terms of potential
coefficients, from the reference field coefficients.
Thus, removing the long-wavelength part by using
this adapted reference field does not lead to a
double consideration of a part of the topographic-
isostatic masses (no double hatched area in
Fig. 5).

Fig. 5: The window remove-restore technique

The remove step of the window remove-restore
technique can then mathematically be written as
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�gred ¼ �gF ��gGMAdapt ��gh, (8)

where �gGMAdapt is the contribution of the
adapted reference field. The restore step of the
window remove-restore technique can be written
as

N ¼ NGMAdapt þN�g þNh, (9)

where NGMAdapt gives the contribution of the
adapted reference field.

It should be noted that the contribution of the
reducedgravity anomaliesN�g is computed using
the Stokes’ integral (3) with the classical un-
modified Stokes’ kernel given by (4).

7. Harmonic Analysis of the Topographic-
Isostatic Potential

The harmonic coefficients of the topography and
its isostatic compensation as well as the harmonic
series expansion of the topographic-isostatic
potential can be expressed by (Abd-Elmotaal and
Kühtreiber, 2003, pp. 78–79) [1]:

TTIðP Þ ¼ GM
rp

P1

n¼0

R
rp

� �n Pn

m¼�n
TnmRnmðP Þ, (10)

where

Tnm¼ R3

Mð2nþ1Þðnþ3Þ
R

�

R
�

��Q 1þHQ

R

� �nþ3
�1

� �

þ

þ��Q 1�T�R
� �nþ3

1� tQ
R�T�

� �nþ3
�1

� ��

RnmðQÞd�Q
(11)

where T� is the normal crustal thickness, H is
the topographic height, t is the compensating
root/antiroot andM denotes the mass of the earth,
given by

M ffi 4�R3

3 �M , (12)

where �M denotes the mean earth’s density
(Sünkel, 1985) [15]

�M ffi 5:517 g=cm3.

For the practical determination of the harmonic
coefficients of the topographic-isostatic potential,
(11) may be written as

Tnm ¼ 3����
4��M ð2nþ1Þðnþ3Þ

P�

i

P�

j

�

�ij 1þ Hij

R

� �nþ3
�1

� �

þ

þ��ij 1� T�
R

� �nþ3
1� tij

R�T�

� �nþ3
�1

� ��

�

�
cosm�j

sinm�j

( )

Pnmðcos �iÞ cos �i ;
(13)

where
P

denotes the summation along � and
�, �� and �� are the grid sizes of the used digital

height model in the latitude and the longitude
directions, respectively, � is given by

� ¼ �� for H � 0 ;

� ¼ �� � �w for H < 0 ; (14)

where �� denotes the density of the topography
and �w is the density of ocean’s water. The density
anomaly �� is given by

�� ¼ �1 � ��, (15)

where �1 is the density of the upper mantle.

In case of the Airy-Heiskanen isostatic model,
the thickness of the root/antiroot t is determined
by applying the principle of mass balance, which
can be written in the spherical approximation as
(Rummel et al., 1988, p. 3) [9]

��R
3 1þ H

R

� �3�1
h i

¼

¼ ð�1 � ��ÞðR� T�Þ3 1� 1� t
R�T�

� �3
� �

:
(16)

This condition can be written for the thickness
of the root/antiroot t as follows:

t
R�T� ¼ 1� 1� �

�1��� 1� T�
R

� ��3
1þ H

R

� �3�1
h in o1

3

,

(17)

where � is given by (14).

8. Gravity Reduction

The following parameter set has been used during
the gravity reduction and the geoid determination
process:

T� ¼ 30 km, (18)

�� ¼ 2:67g=cm3, (19)

�� ¼ 0:2g=cm3. (20)

The EGM96 geopotential model has been used
for the traditional remove-restore technique. An
adapted reference field has been created by
subtracting the potential coefficients of the
topographic-isostatic masses of the data window
(40�N � � � 52�N; 5�E � � � 22�E) computed by
(13) from the EGM96 coefficients. This adapted
reference field has been used for the window
remove-restore technique.

Table 1 shows the statistics of the gravity
reduction after each reduction step for the
traditional and window remove-restore techni-
ques. It should be noted that the reduced
anomalies for Stokes’ integral with modified
Stokes’ integral are the same as those for the
Stokes’ integral with the classical un-modified
Stokes’ integral (the upper part of the table).
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Reduced gravity
Statistical parameters (mgal)

Min. Max. Average St. dev.

�gF �154.16 187.15 9.70 42.16

�gF ��gGM �210.72 132.27 �12.91 37.60

�gF ��gGM ��gTI �123.66 81.97 �20.09 25.88

�gF ��gGM Adapt �194.55 204.99 �1.46 44.43

�gF ��gGM Adapt ��gTI Win �62.39 71.60 0.23 20.32

Table 1: Statistics of the reduced gravity after each reduction step

Table 1 shows that using the window technique
gives the best reduced gravity anomalies. The
range has dropped to its one-third and the
standard deviation drops by about 20%. Also the
reduced anomalies are perfectly centered (un-
biased). This property makes the window-
technique reduced anomalies suit best for
interpolation and other geodetic purposes.

9. Geoid Determination for Austria

Three methods are used in the current investiga-
tion to compute a gravimetric geoid for Austria.
They are:

& Stokes’ integral using classical un-modified
Stokes’ kernel (classical Stokes geoid),

& Stokes’ integral using Meissl’s modified Stokes’
kernel (Stokes/Meissl geoid),

& Stokes’ integral using window technique
(Window geoid).

All computed geoids are compared to the GPS/
levelling derived geoid.

Fig. 6 shows the absolute geoid differences
between the classical Stokes geoid and the GPS/
levelling derived geoid. Fig. 6 shows a high-order
polynomial structure of the differences. The range
of the differences is quite large (about 2 m).

Fig. 6: Absolute geoid differences between classical Stokes geoid and GPS/levelling derived geoid. Contour interval:
5 cm
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Cap size
Differences to GPS/levelling derived geoid (m)

Min. Max. Average St. dev.

 � ¼ 0:5� �4.58 �1.31 �2.57 0.81

 � ¼ 1:0� �2.73 �1.28 �1.90 0.40

 � ¼ 1:5� �1.69 �1.09 �1.30 0.14

 � ¼ 1:7� �1.37 �0.91 �1.08 0.10

 � ¼ 2:0� �1.10 �0.44 �0.78 0.14

Table 2: Statistics of the empirical tests for the cap size  � for the Stokes/Meissl geoid

As mentioned earlier, the optimum cap size  �
can be empirically determined. This is achieved
by comparing the computed Stokes/Meissl geoid
to the GPS/levelling derived geoid. Table 2 shows
the statistics of the empirical tests for the cap size
 � for the Stokes/Meissl geoid. It shows that
 � ¼ 1:7� gives the optimum cap size in view of
the standard deviation of the absolute differences
to the GPS/levelling derived geoid.

Fig. 7 shows the absolute geoid differences
between the Stokes/Meissl geoid (cap size

 � ¼ 1:7�) and the GPS/levelling derived geoid.
Fig. 7 shows a better polynomial structure of the
differences than that in the case of Stokes geoid.
The range of the differences drops to about 45 cm.

Fig. 8 shows the absolute geoid differences
between the window geoid and the GPS/levelling
derived geoid. Fig. 8 shows a better polynomial
structure of the differences than that in the case of
Stokes geoid. The range of the differences drops
to about 1 m.

Fig. 7: Absolute geoid differences between Stokes/Meissl geoid (cap size  � ¼ 1:7 �) and GPS/levelling derived
geoid. Contour interval: 5 cm
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Fig. 8: Absolute geoid differences between window geoid and GPS/levelling derived geoid. Contour interval: 5 cm

Geoid technique
Statistical parameters (m)

Min. Max. Average St. dev.

Stokes 2.10 4.16 3.27 0.52

Stokes/Meissl �1.37 �0.91 �1.08 0.10

Window �0.89 0.24 �0.44 0.27

Table 3: Statistics of the absolute geoid differences between the computed geoids and the GPS/levelling derived
geoid

Table 3 illustrates the statistics of the absolute
geoid differences between the computed geoids
within the current investigation and the GPS/
levelling derived geoid. Table 3 shows that the
Stokes geoid has theworst differences to theGPS/
levelling derived geoid. This confirms what has
been stated earlier that using the classical un-
modified Stokes kernel in the remove-restore
technique implies a wrong combination of gravity
field wavelengths. Table 3 shows also that either
using the window technique or the modified

Stokes’ kernel gives better differences to the GPS/
levelling derived geoid (in terms of either themean
difference or the range/standard deviation).

Table 4 illustrates the statistics of the geoid
differences between the computed geoids within
the current investigation and the GPS/levelling
derived geoid after removing a third order surface
polynomial trend function. Table 4 shows that the
window technique gives the minimum range and
standard deviation of the remaining differences.

Geoid technique
Statistical parameters (cm)

Min. Max. Average St. dev.

Stokes �22.1 16.7 38.8 7.3

Stokes/Meissl �25.3 12.5 37.8 6.9

Window �21.3 14.8 36.1 6.6

Table 4: Statistics of the geoid differences between the computed geoids and the GPS/levelling derived geoid after
removing a trend function
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10. Conclusions

Stokes technique, within the remove-restore
scheme, with the classical un-modified Stokes’
kernel cannot correctly handle the combination of
the geoid wavelengths. A modification of the
kernel or a new technique should be introduced.
Both the modified Stokes’ kernel and the window
technique can correctly handle the combination of
the geoid wavelengths within the remove-restore
scheme. The reduced gravity anomalies using the
window technique are the smoothest (20% less in
the standard deviation), un-biased and have the
smallest range (one-third less). This property
makes the window-technique reduced anomalies
suit best for interpolation and other geodetic
purposes.
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