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Abstract

Very Long Baseline Interferometry (VLBI) observations can be analyzed to derive precipitable water, which can be an
important contribution for meteorological research. Since some of the VLBI stations observe for more than twenty
years, it is possible to determine long-term trends. In this work we introduce two methods for the climate trend
determination: the robust estimation of a linear trend using the bounded influence by standardized residuals (BIBER) –
estimator, and a multi-resolution quadratic normalized B-spline wavelet model for the representation of linear and non-
linear trend characteristics. If the trend is modeled by the wavelets instead of a solely linear term, the rms of the
residuals becomes significantly smaller. Robust estimated linear trends of water vapor at twelve globally distributed
VLBI sites are presented.

Kurzfassung

Beobachtungen der Radiointerferometrie auf langen Basislinien (VLBI) können zur Bestimmung des ausfällbaren
Wassers in der Atmosphäre über den Messstationen herangezogen werden. Die Zeitreihen können einen wichtigen
Beitrag für die meteorologische Forschung leisten. Da von manchen VLBI Stationen Beobachtungsreihen über mehr
als zwanzig Jahre vorliegen, können langfristige Trends berechnet werden. In dieser Studie werden zwei Methoden zur
Trendbestimmung untersucht: Zum einen werden lineare Trendanteile mit dem BIBER-Schätzer (bounded influence by
standardized residuals) bestimmt, zum anderen werden lineare und nicht-lineare Eigenschaften der Trendkomponente
mit normierten, quadratischen B-spline Wavelets dargestellt. Wird der Trendanteil im Gegensatz zu einem linearen
Term durch die Wavelets beschrieben, so sind die Standardabweichungen der Residuen signifikant kleiner. Robust
geschätzte lineare Trends an zwölf global verteilten VLBI Stationen werden präsentiert.

1. Introduction

Water vapor in the atmosphere is an important
storage and energy transfer medium of the global
water household, influencing Earth’s climate in
many ways. Among the greenhouse gases water
vapor holds an important and difficult status: On
the one hand it enforces global warming acting as
a filter of Earth’s long wave radiation (albedo). On
the other hand it can reduce the absorption of
solar energy in form of clouds. The spatio-
temporal distribution of water vapor in the
troposphere (the neutral atmosphere) can be
subject to rapid variations, and therefore, it is
difficult to be measured and modeled. Vertical
profiles of the partial pressure of water vapor in the
troposphere can sparsely be measured by
radiosondes. Observational techniques such as
water vapor radiometer or solar spectrometer
detect the characteristic absorption of water
vapor, but are bound to good weather conditions,
and the orbit of the sun, respectively. Therefore,
we agree with Hagemann et al. [2003], that
present observing systems are inadequate to
monitor water vapor and its spatio-temporal
distribution properly. Since it is questionable

whether climate trends can be calculated from
reanalysis data [Bengtsson et al., 2004], such as
the 40-years re-analysis product (ERA-40) of the
European Centre of Medium-Range Weather
Forecasts (ECMWF), the space-geodetic techni-
ques, in particular Very Long Baseline Interfero-
metry (VLBI), can give an important contribution to
meteorological research.

In Section 2 we give a general introduction on
the determination of water vapor.

Then we discuss our approach for the
determination of trends and other signal compo-
nents in Section 3. Due to VLBI’s organizational
and observational characteristics its time-series
are usually irregularly sampled and clumped.
Possible causes of a trend in time-series of
precipitable water (PW ) are considered and
investigated in Section 4. Zenith wet delays
(ZWD) for this study are taken from long time-
series determined by several Analysis Centers
(AC) of the International VLBI Service for Geodesy
and Astrometry (IVS) [Schlüter et al., 2002]
combined on the level of parameter estimates
[Heinkelmann et al., 2007].
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2. Determination of water vapor by space-
geodetic techniques

The determination of water vapor by space-
geodetic techniques operating on radio wave-
lengths, e.g. VLBI and Global Navigation Satellite
Systems (GNSS), is based on the excess delay of
radio signals traveling through the wet tropo-
spheric medium and through the corresponding
hydrostatic medium

�LðE;AÞ ¼ mfhðEÞ � ZHDþmfwðEÞ � ZWDþ
þmfgcotðEÞ½GN cosðAÞ þGE sinðAÞ�

(1)

depending on elevationE (deg) and azimuthA
(deg) angles of an observation. The total tropo-
spheric delay in the line of sight�L(m) completely
describes the effects of the tropospheric medium
on VLBI observables. In Equation (1), the
hydrostatic and wet mapping functions
mfh; mfw are assumed to be known and the
gradient mapping functionmfg is either the wet or
the hydrostatic mapping function [MacMillan,
1995]. While ZWD(m) and the gradient compo-
nents in northGN (m) and east directionGE(m) are
estimated [Koch, 1997], zenith hydrostatic delays
ZHD (m) can be computed by Davis et al. [1985]

ZHD ¼ 0;0022768 p

1 � 0;00266 cosð2�Þ � 0;00028h
(2)

and are typically considered as corrections to
the vector of observations. In Equation (2) the
atmospheric surface pressure p (hPa), the latitude
� and height h(km) refer to the antenna reference
point (ARP), i.e. the intersection of antenna axes of
the VLBI telescope, or the antenna’s phase center
in the case of GNSS.

Following Bevis et al. [1993] the vertically
integrated water vapor above the ARP can be
expressed in terms of precipitable water PW (m)
depending on the ZWD

PW ¼ � � ZWD (3)

where the factor � is given by

� ¼ 106

�l � Rv½ðk3=TmÞ þ k02�
(4)

In Equation (4) �l ¼ 998:2 ðkg m�3Þ denotes
the temperature-dependent density of liquid
water at 20 (�C) and Rv ¼ 461:525 (J kg-1 K-1)

denotes the specific gas constant of water vapor.
The variables k02 and k3 are refractivity constants
and Tm is a weighted mean temperature of the
atmosphere above the ARP. The correlation
between Tm and the measured surface tempera-
ture T (K) was studied by Bevis et al. [1993], who
analyzed two years of radiosonde observations
over the United States territory. They found a linear
relation: Tm ¼ 70:2þ 0:72T .

3. Assessment of climate signals

In general, a climate signal yt can be considered
as linear combination of a constant mean, a trend
component, one or more cycles, extreme events
or outliers, and a noise component

yt ¼ meanþ trend þ cycleþ extremaþ noise (5)

While the cyclic component consists of those
parts of the signal, which are reproduced during
certain periods, the trend component describes
the temporal change of the signal in a non-cyclic
sense. In general the trend component is not
linear. Outliers can be identified either manually or
automatically by applying robust estimation. The
noise component is characterized by a zero
expectation and a constant standard deviation. In
our analysis we compare approximations of
climate signals by two approaches: First we
calculate and remove themean value of the signal.
Then we identify the periods of cycles by spectral
analysis and determine the corresponding ampli-
tudes and phases of sinusoids. In the sequel, we
approximate the trend component by a simple
linear term determined by robust regression.
Alternatively we describe linear and non-linear
characteristics of the trend by wavelet modeling.

3.1. Fourier expansion of cyclic components in
ZWD time-series

Fig. 1 shows the spectra ofZWD atGilmoreCreek
determinedby threemethods: the discrete Fourier
transform, the Lomb-Scargle periodogram [Lomb,
1976], and the ‘CLEANed-spectrum’ obtained by
the CLEAN-algorithm [Roberts et al., 1987]. The
discrete Fourier spectrum shows peaks at periods
>1 year, which are not significant in the spectra
derived with the two other methods. Since the
Lomb-Scargle periodogram and in particular the
CLEAN-algorithm are designed to operate on
unequally spaced data, we consider those
periods to be artifacts due to the irregular
sampling of the time-series. The discrete Fourier
spectrum in addition shows some power along the
shorter Fourier-periods (1/3 year, 1/4 year, etc.).
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Figure 1: Three spectra of zenith wet delays (ZWD) at
GILCREEK (Fairbanks, Alaska, USA) obtained by
discrete Fourier transformation (top), Lomb-Scargle
periodogram (mid), andCLEAN-algorithm (bottom). The
abscissae give the amplitude (mm), or the power (mm2)
in case of the Lomb-Scargle periodogram, and the
ordinates the periods (years).

These shorter periods have no physical meaning,
but are no artifacts as well. They emerge from the
non-sinusoidal shape of the cyclic component. As
a consequence annual, semi-annual and the next
six periods are considered for the cyclic
component.

yt �mean ¼ cycleþ wt

cycle ¼
P8

i¼1

½Ai sinð2pfitÞ þBi cosð2pfitÞ� (6)

In Equation (6) Ai and Bi are the i ¼ 8 pairs of
coefficients characterizing amplitudes and
phases of sinusoids with frequencies fi corre-
sponding to annual, semi-annual and 6 succes-
sive periods. The variable wt denotes a residual
signal, composed of trend; extrema, and noise
components. After the fi are identified from the
spectra, the coefficients Ai and Bi of Equation (6)
are determined by least-squares method; see e.g.
Koch [1997].

3.2. Determination of linear trend by robust
regression

After the cyclic component (Section 3.1) has been
identified and removed, a linear trend can be
estimated from the residual signal wt, e.g. by
robust estimation using the BIBER-estimator
[Wicki, 2001]. However, in general, a climate
trend is not fully described by a linear term and
thus, it should not be modeled by a linear term
only.

3.3. Trend approximation using normalized
quadratic B-splines

Linear and non-linear characteristics of a climate
trend can be assessed and represented by
wavelet modeling. Therefore, we apply the
normalized quadratic B-spline function as one
dimensional scaling function. The normalized B-
spline Nd

j; kðxÞ of order d is defined recursively at
equally spaced knots tj0; t

j
1; . . . ; tjmjþd and repre-

sented in levels j ¼ 0; . . . ; J of different resolutions
[Schmidt, 2007] with k ¼ 0; . . . ; mj � 1 and
m ¼ 1; . . . ; d as

Nm
j; kðxÞ ¼

x � tj
k

tj
kþm � t

j
k

Nm�1
j; k ðxÞ þ

tj
kþmþ1

� x
tj
kþmþ1

� tj
kþ1

Nm�1
j; kþ1 (7)

and with initial values

N0
j; kðxÞ ¼

�
1 if tjk � x < tj

kþ1

0 else

�

; (8)

see e.g. Stollnitz et al. [1995]. In general, the B-
spline of order d is compactly supported, i.e. its
values are different from zero only in a finite range
on the real axis. Since we want to use this
approach for regional modeling we introduce the
so-called endpoint-interpolated B-splines of order
d defined on the unit interval ½0; 1½.

For our investigations we choose with d ¼ 2 the
normalized quadratic B-spline functions N2

j kðxÞ.
In this case the knot sequence is given as

0 ¼ tj0 ¼ t
j
1 ¼ t

j
2 < tj3 < tj4 < . . . < tjmj

¼ tjmjþ1
¼ tjmjþ2

¼ 1

(9)

with mj ¼ 2j þ 2. Fig. 2 shows the normalized
quadratic B-spline, for resolution level j ¼ 2.

Figure 2: Normalized quadratic B-splines of resolution
level .

Coefficients at the highest resolution level J are
estimated by least-squares method, e.g. Koch
[1997]. Then the coefficients related to the lower
resolution levels 0 � j < J can successively be
expressed by linear combinations starting from
the highest level J . This so-called pyramid
algorithm is the basic tool of the decomposition
of the input signal into frequency-dependent
detail signals, which is known as the multi-
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resolution representation; see Schmidt [2007].
The level-j approximation means the sum of the
detail signals until resolution level j. The highest
resolution level J is implicitly given such that the
relation mj ¼ 2J þ 2 < n holds, where n denotes
the number of observations.

When neglecting non-significant coefficients,
the number of coefficients used for the represen-
tation of signals is reduced significantly. This can
be interpreted as statistical data compression.
The significance of the wavelet-coefficients can
be assessed e.g. by hypothesis testing.

3.4. Comparison of the two approaches for the
trend approximation

Figure 3: Zenith wet delays (ZWD) from International
VLBI Service for Geodesy and Astrometry (IVS)
combined series at GILCREEK (Fairbanks, Alaska,
USA) between 1986.0 and 2005.0 (cyan). In blue
approximation (1) by sinusoids, a linear and a constant
term on the left (� ¼ 20 :7 mm), as well as approximation
(2) by sinusoids, B-spline wavelet modeling and a
constant term on the right (� ¼ 17 :0 mm). The
corresponding residual signals are displayed in black
(bottom). The abscissae give the ZWD (mm) and the
ordinates the time (years).

Figure (3) exemplarily illustrates the ZWD for
station Gilmore Creek in cyan (top). The blue
curves display the two different approximations:
On the left the trend component is modeled by a
linear term only, while at the right side the trend
component is represented by normalized quad-
ratic B-splines until level J ¼ 7. Cycles are
considered by a Fourier expansion for both
approaches. The rms of the noise component by
modeling a linear trend only is 20.7 mm, whereas
wavelet modeling yields a significantly smaller
rms of 17.0 mm. Choosing a higher value for J the
approximation can be improved.

4. Analysis of the trend component

Reconsidering Equations (1–7) a trend in time-
series of PW will mainly be due to a trend of
inherent ZWD. In addition, variations of wet and
hydrostatic mapping functions and of ZHD,
which mainly depend on the atmospheric
pressure p, can affect the trend of PW . The
temporal change of the proportionality factor �
due to the mean atmosphere temperature Tm and
the density of liquid water �1 is of negligible size,
i.e., the proportionality factor � shows no
significant variations itself. Trends in north and
east gradients are typically of negligible size and
do not have to be considered for the trend analysis
of ZWD, or PW, respectively.

4.1. Atmospheric pressure

The atmospheric pressure is the mayor quantity
for the determination of ZHD. Since ZHD are
subtracted from the observations before the
estimation ofZWD, inherent trends will propagate
to theZWD via themapping functions. Formost of
the VLBI sites atmospheric pressure is automa-
tically recorded in-situ, with a specific temporal
resolution, and provided at the epoch of each
observation. In-situ measurements are the source
with the highest resolution. If outliers and missing
values are appropriately replaced and significant
shifts of the running mean are eliminated, in-situ
atmospheric pressures are the most reliable
pressure data. If in-situ atmospheric pressure
data are not available, values should be taken
from a numerical weather model (NWM). E.g. ERA-
40, or operational data-sets of the ECMWF. If NWM
are unavailable, we suggest the empirical global
temperature and pressure (GPT) model [Böhm et
al., 2007]. For the homogenization of in-situ
atmospheric pressures as well as for the
replacement of outliers and data gaps, the use
of pressure time-series derived from NWM, such
as the ERA-40, is very valuable and suggested by
the authors. Significant shifts of the running mean
of atmospheric pressure time-series recorded at
VLBI stations [Heinkelmann et al., 2005] can be
found by the application of a standard normal
homogeneity test (SNHT) [e.g. Tuomenvirta and
Alexandersson, 1996]. Shifts of the running mean
of pressure time-series can be e.g. due to
calibration, replacement, or relocation, in parti-
cular in height, of a pressure sensor. Figure (4)
shows homogenized pressure time-series for
station GILCREEK (Fairbanks, Alaska, USA) on
the bottom, as well as ZHD on the top in cyan. An
approximation by wavelet modeling is displayed
in blue.
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Figure 4: ZHD (top) from International VLBI Service for
Geodesy and Astrometry (IVS) combined series at
Gilmore Creek (Fairbanks, Alaska, USA) between
1986.0 and 2005.0 in mm and atmosphere pressure
(bottom) in hPa are plotted in cyan. Approximations are
displayed in blue.

4.2. Mapping functions

Trends in mapping functions directly and indir-
ectly affect the trend of ZWD. The wet mapping
function is the partial derivative of the observation
with regards to ZWD. In addition the interdepen-
dency between ZWD, ZHD and the two gradient
components are governed by the wet and
hydrostatic mapping functions.

Various authors provide mapping functions by
time-series of coefficients for particular stations or
in form of global grids. Currently, the most
accuratemapping functions globally available are
the Vienna Mapping Functions 1 (VMF1) [Böhm et
al., 2006]

mfðEÞ ¼
1þ a

1þ b
1þc

sinðEÞ þ
a

sinðEÞ þ b

sinðEÞþc

(10)

Here, wet and hydrostatic mapping functions
mf are given by three coefficients a; b; c. The
coefficients a are determined from raytracing
through ECMWF data and are provided with a
temporal resolution of t ¼ 6 (hours). The coeffi-
cients b and c are calculated from empirical
equations. The mapping functions depend on the
elevation angle E of on observation and the
latitude of a station. Figure (5) exemplarily
displays the VMF1 at Gilmore Creek for an
elevation angle of E ¼ 5 (deg).

Figure 5: Hydrostatic (top) and wet (bottom) Vienna
Mapping Functions 1 (VMF1) at Gilmore Creek (Fair-
banks, Alaska, USA) for elevation angle E (deg) in cyan
as well as approximations in blue. The abscissae give
the unitless values of the mapping functions and the
ordinates the time (years).

5. Results and discussion

VLBI is able to provide time-series of ZWD, which
can be transformed to PW , i.e., high-quality
information about the amount of water vapor
above the VLBI stations.

If time-series of ZWD, or PW, are interpreted
in terms of climate signals, the atmospheric
pressure and mapping function time-series used
for the determination of ZWD have to be
considered. In particular the time-series of
atmospheric pressure need to be homogenized,
i.e. shifts of the running mean value due to sensor
relocation, replacement, etc. need to be identified
and removed. Trends in atmospheric pressure
and mapping function time-series can cause
apparent trends in ZWD (Equations 1 and 2).

Table 1 gives the linear trends determined by
robust estimation (Section 3.2) for the twelve most
frequently observing VLBI sites [Behrend and
Baver, 2005]. At some of those VLBI sites ZWD
are available for more than 20 years. Thus, due to
the large number of inherent ZWD estimates the
formal errors of the linear trends are usually very
small (see Table 1). However, the noise compo-
nent dominates the climate signal. E.g. for the
observed trend of 0.29 (mm/year) and the
standard deviation of the noise component of
20.7 (mm) at station GILCREEK, the trend to noise
ratio of� 0.014 indicates a very low significance of
the trend. Instead of the formal errors of the linear
trends, we suggest to consider the 1�-level of the
noise, to assess the significance of the trend.
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station time span
lin. trend

(mm/year)
formal error
(mm/year)

1-� of the noise
(mm)

ALGOPARK 1995–2005 �0.24 0.09 39.5

FORTLEZA 1995–2005 0.99 0.06 35.7

GILCREEK 1986–2006 0.29 0.01 20.7

HARTRAO 1993–2005 0.63 0.06 34.4

HOBART26 1993–2005 �0.31 0.06 31.1

KOKEE 1993–2005 0.78 0.04 33.7

MATERA 1993–2005 0.48 0.04 26.2

NYALES20 1995–2005 1.61 0.02 17.4

SESHAN25 1990–2005 �1.95 0.31 57.7

TSUKUB32 1997–2005 �2.33 0.22 51.2

WESTFORD 1986–2006 �0.15 0.07 47.4

WETTZELL 1986–2006 �0.07 0.02 20.2

Table 1: Linear trend estimates (mm/year) from International VLBI Service for Geodesy and Astrometry (IVS)
combined series [Heinkelmann et al., 2007]

Comparison of linear trend estimates [Heinkel-
mann et al., 2007] shows better agreement of
linear trends in case of synchronized data. This
effect is probably also due to the large noise
component.

In comparison to the linear trend model, the
normalized quadratic B-splinewavelets appeared
to bemore capable of representing linear and non-
linear characteristics of the trend component. E.g.
at Gilmore Creek the sigma of the residuals drops
from 20.7 (mm) to 17.0 (mm), if the trend
component is modeled by a quadratic normalized
B-spline of level J ¼ 7, instead of a linear term
only. In particular inter-annual variations of the
amplitude of the seasonal signal are much better
described by the wavelet model. In our example
the variations of the annual amplitude of the
seasonal signal at Gilmore Creek exceed the size
of the linear trend by 1 to 2 orders of magnitude.
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[14] Schlüter W., Himwich E., Nothnagel A., Vandenberg N.,
Whitney A. [2002]: IVS and its important role in the
maintenance of the global reference systems. Ad-
vances in Space Research. Vol. 30(2), 145-150

[15] Schmidt, M. [2007]: Wavelet modelling in support of IRI.
Advances in Space Research. doi:10.1016/
j.asr.2006.09.030

[16] Stollnitz E. J., DeRose T. D., Salesin D. H. [1995]:
Wavelets for Computer Graphics: A Primer. Institute of
Electrical and Electronics Engineering - Computer
Graphics and Applications. Vol. 15(3), 76-84 (part 1),
and Vol. 15(4), 75-85 (part 2)

[17] Tuomenvirta H., Alexandersson H. [1996]: Review on
the methodology of the standard normal homogeneity
test (SNHT). In: Proceedings of the 1st seminar for
homogenization of surface climatological data, Hungar-
ian Meteorological Service (editors), 35-45

[18] Wicki F. [2001]: Robust estimator for the adjustment of
geodetic networks. In: Proceedings of the 1st
international symposium on robust statistics and fuzzy
techniques in geodesy and GIS. Carosio A. and
Kutterer H. (editors), International Association of
Geodesy – Special Study Group 4.190. Non-probabil-
istic assessment in geodetic data analysis, Swiss
Federal Institute of Technology Zurich (ETH). Institute of
Geodesy and Photogrammetry. IGP – Bericht Nr. 295,
53-60

Contact

Dipl.-Ing. Robert Heinkelmann, Institute of Geodesy and
Geophysics, Vienna University of Technology, Gusshausstr.
27-29, A – 1040 Vienna, Austria.
E-mail: rob@mars.hg.tuwien.ac.at
PD Dr.-Ing. habil. Michael Schmidt, Deutsches Geodä-
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