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An Efficient Technique for Harmonic Analysis on a

Spheroid (Ellipsoid and Sphere)

Hussein A. Abd-Elmotaal, Minia/Ägypten

Abstract

The paper presents an efficient technique for harmonic analysis on a spheroid (both sphere and ellipsoid). Colombo
(1981) has introduced an effective and fast technique for the harmonic analysis on the sphere using Fast Fourier
Technique FFT. It is known that there is no direct mathematical relationship to transform the point or/and mean
gravitational observables from the surface of the mean earth’s ellipsoid to the surface of the sphere. Hence, the paper
introduces an efficient programHRCOFITR that uses essentially Colombo’s main subroutines HARMIN and SSYNTH,
after significant and critical modificationswritten by the author, in an iterative and scaling process for harmonic analysis
on both the sphere and the ellipsoid. In order to check the performance of the proposed technique, two computational
tests have been carried out. In the first test, two data fields on the ellipsoid have been created using OSU91A
geopotential model. In the second test a data field on the sphere has been created using OSU91A geopotential model.
In all cases, the harmonic coefficients have been analyzed using Colombo’s technique as well as using the developed
technique (HRCOFITR program). The results proved that the developed technique gives better accuracy for the
estimated harmonic coefficients as well as for the residual field in all cases.

Zusammenfassung

Die vorliegende Arbeit präsentiert eine leistungsfähigeMethode zur harmonischen Analyse auf einemSphäroid (Kugel
wie auch Ellipsoid). Colombo (1981) hat erstmals einen effektiven und schnellen Algorithmus für die harmonische
Analyse auf der Kugel unter der Verwendung der Fast Fourier Technik (FFT) vorgestellt. Bekannterweise existiert kein
direkter mathematischer Zusammenhang, um Punkt und/oder Mittelwerte der Schwere von der Oberfläche eines
mittleren Erdellipsoids auf die Oberfläche einer Kugel zu transformieren. Aus diesem Grund wird in dieser Arbeit ein
leistungsfähiges Programm HRCOFITR, das wesentlich auf den beiden zentralen Unterprogrammen HARMIN und
SSYNTH von Colombo aufbaut, vorgestellt. Die beiden Unterprogramme wurden kritisch untersucht und signifikant
vom Autor modifiziert und in einen iterativen Skalierungsprozess zur harmonischen Analyse auf der Kugel und dem
Ellipsoid verwendet. Um die Leistungsfähigkeit der verwendeten Methode zu zeigen, wurden zwei Tests durchgeführt.
In einem ersten Test wurden zwei Datenfelder auf dem Ellipsoid unter Verwendung des Kugelfunktionsmodells
OSU91A erstellt. In einem zweiten Test wurden ein Datensatz auf der Kugel mittels des Kugelfunktionsmodells
OSU91A erstellt. In allen Fällen wurden die harmonischen Koeffizienten sowohl mit Hilfe von Colombos Technik, wie
auch der neu entwickelten Technik (HRCOFITR Programm) analysiert. Die Ergebnisse zeigen das die neu entwickelte
Methode sowohl für den Fall der geschätzten harmonischenKoeffizienten, wie auch für den Fall desRestfeldes, in allen
Fällen eine bessere Genauigkeit liefert.

1. Introduction

A huge amount of global gravitational data
became recently available. This has enhanced
the resolution of the developed geopotential earth
models. Basically, each gravitational observable
gives a normal equation in terms of the unknown
geopotential coefficients. Thus, we face a very
huge system of normal equations, which needs a
special technique of solving such a terrible Least-
Squares problem using the relatively limited
computer facilities. Colombo (1981) has introdu-
ced a very powerful method for harmonic analysis
on the sphere using Fast Fourier Technique FFT.

Usually the gravitational data are collected on
the surface of the earth and then reduced to the
surface of themean earth’s ellipsoid (representing
the only accepted spheroid to regenerate the
potential of the earth), see, e.g., (Vanicek and

Krakiwsky, 1982). Unfortunately, no direct mathe-
matical relationship exists to transform the point
or/and mean gravitational observables from the
surface of themean earth’s ellipsoid to the surface
of the sphere. Hence, direct application of
Colombo’s FFT technique in practice seems to
be impossible.

It should be noted that there exists some work
done to transform the spherical to ellipsoidal
harmonics (and vice versa), but not transforming
the point or/and mean gravitational observable
from the surface of the mean earth’s ellipsoid to
the surface of the sphere; see, e.g., (Petrovskaya
andVerslikov, 2000; Petrovskaya et al., 2001; Blais
and Provins, 2002; Grafarend et al., 1999).

The paper presents a technique that uses
Colombo’s main subroutines HARMIN and
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SSYNTH, after significant and critical modifica-
tions implemented by the author, in an iterative
and scaling process for the harmonic analysis of
data on the surface of both the sphere and the
ellipsoid. For the sake of checking the developed
technique, two computational tests have been
carried out. In the first test, two data fields on the
ellipsoid have been created using the OSU91A
geopotential model. In the second test a data field
on the sphere has been created using the
OSU91A geopotential model. In all cases, the
harmonic coefficients have been analyzed using
Colombo’s technique as well as using the
developed technique. A comparison between
the computed coefficients and the OSU91A
coefficients along with the residual field in each
case has been made and widely discussed.

It should be noted that there exist some work
done in the field of efficient computational
techniques of spherical harmonics; see, e.g.,
(Driscoll and Healy, 1994; Mohlenkamp, 1999;
Petrovskaya et al., 2001).

2. Spherical Harmonic Analysis

Let us consider an analytical function fð�; �Þ
defined on the unit sphere (0 � � � � and
0 � � � 2�). Expand fð�; �Þ in series of surface
spherical harmonics (Moritz, 1980, p. 21)

fð�; �Þ ¼
X1

n¼0

Xn

m¼0

ðCnm cosm�þ

þSnm sinm�ÞPnmðcos �Þ;
ð1Þ

where Cnmand Snm are the fully normalized
spherical harmonic coefficients and refers to the
fully normalized associated Legendre functions.
Let us introduce the abbreviations

Rnmð�; �Þ ¼ Pnmðcos �Þ cosm�;

Qnmð�; �Þ ¼ Pnmðcos �Þ sinm�:
ð2Þ

It is well known that the fully Pnmðcos �Þ
normalized harmonic coefficients are orthogonal,
i.e., they satisfy the orthogonality relations
(Heiskanen and Moritz, 1967, p. 29–31)

Z

�

Z
Rnmð�; �ÞRn0m0 ð�; �Þ d� ¼

Z

�

Z
Qnmð�; �ÞQn0m0 ð�; �Þ d� ¼ 0;

ð3Þ

Z

�

Z
Rnmð�; �ÞQnmð�; �Þ d� ¼ 0; ð4Þ

1

4�

Z

�

Z
R

2

nmð�; �Þ ¼
1

4�

Z

�

Z
Q

2

nmð�; �Þ ¼ 1; ð5Þ

As a consequence of the orthogonality, the fully
normalized harmonic coefficients Cnm and Snm
can be given by (ibid, p. 31)

Cnm ¼
1

4�

Z

�

Z
fð�; �ÞRnmð�; �Þ d�;

Snm ¼
1

4�

Z

�

Z
fð�; �ÞQnmð�; �Þ d�:

ð6Þ

In fact, (6) cannot be used in practice to
compute the harmonic coefficients Cnmand Snm
simply because the analytical function fð�; �Þ is
generally unavailable. Only a finite set of noisy
measurements fð�i; �jÞ, covering the whole
sphere, might be available. Discretizing (6) on
an equal angular grid covering the whole sphere
gives the following quadrature formulas

Ĉnm ¼
1

4�

XN�1

i¼0

XN�1

j¼0

fð�i; �jÞRnmð�i; �jÞ�ij;

Ŝnm ¼
1

4�

XN�1

i¼0

XN�1

j¼0

fð�i; �jÞQnmð�i; �jÞ�ij;

ð7Þ

where Ĉnmand Ŝnm are the estimate of Cnmand
Snm, respectively, �ij indicates the segment area
and N is the number of grids in the latitude
direction. Expression (7) is used to compute the
harmonic coefficients if the available data field is
represented by a set of point values fð�i; �jÞ. It
should be noted that (7) is usually only an
approximation due to the discretization effect of
fð�; �Þ.

The data field could be represented by area
mean values fð�i; �jÞ. Expanding the area means
fð�i; �jÞ is done by integrating (1), term-by-term,
which gives

fð�i; �jÞ ¼
1

�ij

X1

n¼0

Xn

m¼0

Z

�ij

Z
ðCnm cosm�þ

þSnm sinm�ÞPnmðcos �Þ d�

¼ 1

�ij

X1

n¼0

Xn

m¼0

Z�iþ��

�i

P nmðcos �Þ sin � d� �

� Cnm

Z�jþ��

�j

cosm�d�þ Snm
Z�jþ��

�j

sinm�d�

0

B@

1

CA

ð8Þ
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where fð�i; �jÞ is the areamean of fð�; �Þ on the
block �ij whose area is �ij given by

�ij ¼ ��½cos �i � cosð�i þ� �Þ�: ð9Þ

If the data field is represented by area means
fð�i; �jÞ, expression analogous to (7) is proposed
(Colombo, 1981, p. 4)

Ĉnm ¼ �n
XN�1

i¼0

X2N�1

j¼0

fð�i; �jÞ
Z�iþ��

�i

P nmðcos �Þ

sin � d �

Z�jþ��

�j

cosm � d�;

Ŝnm ¼ �n
XN�1

i¼0

X2N�1

j¼0

fð�i; �jÞ
Z�iþ��

�i

P nmðcos �Þ

sin � d �

Z�jþ��

�j

sinm � d�;

ð10Þ

where �n denotes the de-smoothing factor.
Colombo (1981) has used the following definition
of the de-smoothing factor

�n ¼
1

4� �n
ð11Þ

with

�n ¼
�2
n if 0 � n � 1

3N

�n if 1
3N � n � N

1 if n > N

8
><

>:
ð12Þ

where �n is known as the Pellinen smoothing
factor of degree n given by (Meissl, 1971, p. 24)

�n ¼
1

1� cos �

1

2nþ 1
½Pn�1ðcos �Þ � Pnþ1ðcos �Þ�

ð13Þ

with (Colombo, 1981, p. 85)

cos � ¼
��

2�
ðcos �iþ1 � cos �iÞ þ 1; ð14Þ

and Pnðcos �Þ is the Legendre polynomial. N
appearing in (12) is the so-called Nyquist
frequency (see below).

If all Cnm and Snm are known till degree and

orderNmax, one can compute ~fð�i; �jÞ and ~fð�i; �jÞ
as follows:

~fð�i; �jÞ ¼
XNmax

n¼0

Xn

m¼0

ðCnm cosm�jþ

þSnm sinm�jÞPnmðcos �iÞ
ð15Þ

~fð�i; �jÞ ¼
1

�ij

XNmax

n¼0

Xn

m¼0

Z�1þ��

�i

P nmðcos �Þ sin � d�

Cnm

Z�jþ��

�j

cosm�d�þ Snm
Z�jþ��

�j

sinm�d�

0

B@

1

CA

ð16Þ

which can be regarded as an approximation to
fð�; �Þ and fð�; �Þ, respectively, at point ð�i; �jÞ.
Expressions (15) and (16) define the object of
spherical harmonic synthesis: given the coeffi-
cients, it is required to estimate the function.

The double summation appearing in (7) and
(10) for harmonic analysis as well as in (15) and
(16) for spherical harmonic synthesis are compu-
ted using FFT technique. Colombo (1981) has
written two subroutines for this purpose, called
HARMIN and SSYNTH.

It should be noted that there are two conditions,
which should be satisfied to use FFT in harmonic
analysis and synthesis. They are:

& The number of grid blocks of the data field
should “stride“ the equator, i.e., the grid should
be symmetric with respect to the equator. In
other words, N should always be even.

& The maximum recoverable degreeNmax should
be smaller than the Nyquist frequency N
defined by

N ¼ �

��
: ð17Þ

This follows Nyquist theorem stating: the Fourier
coefficients of a function of period 2N �� can be
recovered only ifNmax < N (Elliott and Rao, 1982,
p. 38).

3. Spherical Harmonics Expansions of
Gravitational Quantities

Let us review the computation of gravitational
quantities from geopotential spherical harmonic
models. The disturbing potential T can be
expressed as (Rapp, 1982, p. 2)
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T ðr; �; �Þ ¼ GM
r

X1

n¼2

a

r

� �nXn

m¼2

ðC�nm cos m�þ

þSnm sin m�ÞPnmðcos �Þ;
ð18Þ

where GM is the geocentric gravitational
constant, r is the geocentric radius, a stands
for the equatorial radius of the mean earth’s
ellipsoid and C

�
nm is the difference between the

actual coefficients Cnm and those implied by the
reference equipotential ellipsoid C

u

nm. Because of
the rotational symmetry of the mean earth’s
ellipsoid, there will be only zonal terms. And
because of the symmetry with respect to the
equatorial plane, there will be only even zonal
harmonics C

u

2n;m (Heiskanen and Moritz, 1967, p.
72). Then one may write the following relation C

�
nm:

C
�
n¼ Cn � C

u

n if m ¼ 0;

C
�
nm¼ Cnm if m 6¼ 0:

ð19Þ

The gravity anomaly �g can be expressed by
(Torge, 1980, p. 155)

�g ðr; �; �Þ ¼ � �T
�r
þ 1

	

�	

�r
T ðr; �; �Þ; ð20Þ

where 	 is the normal gravity. Using the
spherical approximation, we may write (Heis-
kanen and Moritz, 1967, p. 87)

1

	

�	

�r
¼ � 2

r
: ð21Þ

Then (20) becomes

�g ðr; �; �Þ ¼ � �T

�r
� 2

r
T ðr; �; �Þ: ð22Þ

Inserting (18) into (22]), one may write the
following expression for computing the gravity
anomalies from the geopotential coefficients

�g ðr; �; �Þ ¼ GM
r2

X1

n¼2

ðn� 1Þ a
r

� �n

Xn

m¼0

ðC�nm cosm�þ Snm sinm�ÞPnmðcos �Þ:
ð23Þ

The height anomaly 
 can be given by the
generalized Bruns formula as (Moritz, 1980, p.
353)


ðr; �; �Þ ¼ T ðr; �; �Þ
	

ð24Þ

Inserting (18) into (24) gives


ðr; �; �Þ ¼ GM
	r

X1

n¼2

a

r

� �n

Xn

m¼0

ðC�nm cosm�þ Snm sinm�ÞPnmðcos �Þ:
ð25Þ

It should be noted that (24) can also be used for
the calculation of the geoid undulation N but with
the evaluation of T on the surface of the geoid by
an appropriate choice of r.

4. The Proposed Technique: Field on Ellipsoid

Colombo’s (1981) technique (described above)
can be used for computing the harmonic
coefficients of a non-scaled field defined on the
sphere using HARMIN subroutine. In practical
geodetic applications the situation is quite
different. Let us consider a field of gravitational
observables (e.g., gravity anomalies) defined on
the mean earth’s ellipsoid and it is required to
compute the nondimensional potential coeffici-
ents. As mentioned before there is no direct
mathematical relationship to transform the point
or/and mean gravitational observables from the
surface of themean earth’s ellipsoid to the surface
of the sphere. Accordingly Colombo’s technique
cannot be used directly to compute the required
nondimensional potential coefficients.

The developed HRCOFITR program can be
used if the point/mean data field is defined either
on sphere or on ellipsoid. The data field may be a
non-scaled field, a gravity anomaly field or a geoid
undulation field. In this section, we will consider
data filed on the ellipsoid. In the next section, data
field on the sphere will be considered. The case of
non-scaled field will not be given here in detail. It is
left for the reader as a small exercise.

Let us consider that we have a field defined on
the ellipsoid. The main idea of the proposed
technique is as follows. Assume, wrongly, that the
field is defined on the sphere, then compute the
harmonic coefficients. These harmonic coeffici-
ents are considered as an approximation to the
correct ones. Hence, compute the field on the
ellipsoid, and compute the residual field (which is
also on the ellipsoid). Assume, again wrongly, that
the residual field is defined on the sphere to
compute the residual harmonic coefficients. Add
the residual harmonic coefficients to the pre-
viously obtained values of the harmonic coeffi-
cients, and use these new coefficients to compute
the field, and hence the residual field, on the
ellipsoid. Repeat this process iteratively till two
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successive steps give practically the same
harmonic coefficients.

Let us express the details of the proposed
technique in the following steps:

1. Let us consider a field of gravitational
observables (e.g., gravity anomalies) defined
on themean earth’s ellipsoid. Assume, wrongly,
that the data field is defined on the sphere.
Using the modified HARMIN subroutine ((7)
and (10)) compute the initial values of the non-
scaled harmonic coefficients A

�
nm, B

�
nm. Note

that within the modified HARMIN subroutine
the computation of the Legendre functions (or
their integrals in case of mean blocks data
field) is done within the subroutine (instead of
reading it from a file as the original version
written by Colombo). This allows both very fast
computation and saving of the disk space. The
Legendre functions (or their integrals) are
computed on the surface of the sphere, where
the needed polar distance � is computed by

� ¼ 90� � �: ð26Þ

2. Scale the computed non-scaled harmonic
coefficients A

�
nm, B

�
nm depending on the data

field characteristic to compute the nondimen-
sional potential harmonic coefficients C

�
nm,

S
�
nm. If the data field l were gravity anomalies,

the scaling is done using the following
expression (see (23))

C
�
nm

S
�
nm

� �
¼ R2

GM

1

n� 1

R

a

� 	n
A
�
nm

B
�
nm

� �
; ð27Þ

where R is the radius of the mean earth’s
sphere. If the data field l were geoid undula-
tions, the scaling is done using the following
expression (cf. (25))

C
�
nm

S
�
nm

� �
¼ 	R

GM

R

a

� 	n
A
�
nm

B
�
nm

� �
; ð28Þ

where 	 is a mean value of normal gravity.

3. Use the nondimensional potential harmonic
coefficientsC

�
nm,S

�
nm computed in the last step

to create the computed field ~l on the ellipsoid
by the modified subroutine SSYNTH using (15)
and (16). Note that within the modified
SSYNTH subroutine the computation of the
Legendre functions (or their integrals in case of
mean blocks data field) is done within the
subroutine (instead of reading it from a file as
the original version written by Colombo). This
again allows both very fast computation and

saving of the disk space. The Legendre
functions (or their integrals) are computed on
the surface of the ellipsoid, where the needed
polar distance � is computed by

� ¼ 90� �  ; ð29Þ

where  is the geocentric latitude given by
(Torge, 1980, p. 50)

 ¼ arctanbð1� e2Þ tan�c; ð30Þ

and e is the first eccentricity of themean earth’s
ellipsoid. The modified subroutine SSYNTH
automatically scales the computed field
according to its characteristic. For gravity
anomalies data field, the scaled field l̂ is
computed from the non-scaled ~l, computed by
the original expressions (15) and (16), using
the following expression (cf. (23))

l̂ ¼ GM
r2
ðn� 1Þ a

r

� �n
~l; ð31Þ

where r is the geocentric radius, given by

r ¼ a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2ð2� e2Þ sin2 �

1� e2 sin2 �

s

: ð32Þ

For the geoid undulation data field the scaled
field l̂ is computed from the non-scaled field ~l
using the following expression (cf. (25))

l̂ ¼ GM
	�r

a

r

� �n
~l: ð33Þ

where 	� is the normal gravity on the surface of
the ellipsoid given by (Heiskanen andMoritz, p.
76):

	� ¼ 	e
1þ k sin2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2 sin2 �

p
;

ð34Þ

where k is given by

k ¼ ð1� fÞ 	p � 	e
	e

: ð35Þ

Here 	e and 	p stand for the normal gravity at
the equator and the pole, respectively, and f
stands for the flattening of the mean earth’s
ellipsoid.

4. Compute the residual field � l, which is already
on the surface of the ellipsoid, by

� l ¼ l� l̂: ð36Þ
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5. To assure good and quick convergence of the
iterative solution, it is recommended to scale
the residual field � l obtaining a scaled residual
field � l by the expression

� l ¼ r

a

� �p
� l; ð37Þ

where p is a factor computed empirically in
such a way that it is decreased if the solution
converges slowly. The factor p ranges between
2 Nmax, with an initial value of p ¼ Nmax.

6. Assume that the scaled residual field is defined
on the sphere. Compute the residual non-
scaled harmonic coefficients � Anm, � Bnm

using the modified HARMIN subroutine.

7. Scale the computed non-scaled residual
harmonic coefficients � Anm, � Bnm depending
on the data field characteristic to compute the
nondimensional potential harmonic coeffici-
ents � Cnm, � Snm. For gravity anomalies data
field, the scaling is done using the following
expression (see (23))

� Cnm

� Snm

� �
¼ R2

GM

1

n� 1

R

a

� 	n
� Anm

�Bnm

� �
: ð38Þ

For geoid undulations data field, the scaling is
done using the following expression (cf. (25))

� Cnm

� Snm

� �
¼ 	R

GM

R

a

� 	n
� Anm

� Bnm

� �
: ð39Þ

8. Compute the nondimensional potential harmo-
nic coefficients Cnm, Snm by

Cnm

Snm

� �
¼ C

�
nm

S
�
nm

� �
þ � Cnm

� Snm

� �
: ð40Þ

9. Use the nondimensional potential harmonic
coefficients Cnm, Snm, computed in the last
step, to create a computed scaled field l̂ (same
as step 3).

10.Repeat the steps 4, 5, 6 and 7.

11.Compute the nondimensional potential harmo-
nic coefficients Cnm, Snm of the i-th iteration
using their values in the preceding iteration
and the residual nondimensional harmonic
coefficients � Cnm, � Snm (computed from step
7) by

Cnm

Snm

� �

i

¼ Cnm

Snm

� �

i�1

þ � Cnm

� Snm

� �
; ð41Þ

where the subscripts i and i� 1 refer to the
iteration steps.

12.Repeat the steps 9, 10 and 11 until two
successive iteration steps give practically the
same harmonic coefficients, or alternatively,
no practical change in the residual field
between two successive iteration steps is
happened.

5. The Proposed Technique: Field on Sphere

Let us consider that we have a field defined on the
sphere. In the following, we list the steps of the
developed technique in this case.

1. Consider a field of gravitational observables l
(e.g., gravity anomalies) defined on the
sphere. Using the modified HARMIN sub-
routine ((7) and (10)) compute the initial values
of the non-scaled harmonic coefficients A

�
nm,

B
�
nm. The Legendre functions (or their inte-

grals) are computed on the surface of the
sphere, where the needed polar distance � is
computed by

� ¼ 90� � �: ð42Þ

It should be noted that A
�
nm, B

�
nm represent the

output of Colombo’s (1981) original HARMIN
subroutine.

2. Scale the computed non-scaled harmonic
coefficients A

�
nm, B

�
nm depending on the data

field characteristic to compute the nondimen-
sional potential harmonic coefficients C

�
nm,

S
�
nm. If the data field l were gravity anomalies,

the scaling is done using the following
expression (see (23))

C
�
nm

S
�
nm

� �
¼ R2

GM

1

n� 1
A
�
nm

B
�
nm

� �
: ð43Þ

If the data field l were geoid undulations, the
scaling is done using the following expression
(cf. (25))

C
�
nm

S
�
nm

� �
¼ 	R

GM
A
�
nm

B
�
nm

� �
: ð44Þ

The coefficientsC
�
nm, S

�
nm represent the scaled

coefficients computed by Colombo’s techni-
que.

3. Use the nondimensional potential harmonic
coefficientsC

�
nm,S

�
nm computed in the last step

to create the computed field ~l on the sphere by
the modified subroutine SSYNTH using (15)
and (16). The Legendre functions (or their
integrals) are computed on the surface of the
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sphere, where the needed polar distance is
computed again by

� ¼ 90� � �: ð45Þ

The modified subroutine SSYNTH automati-
cally scales the computed field according to its
characteristic. For gravity anomalies data field,
the scaled field l̂ is computed from the non-
scaled field ~l, computed by the original
expressions (15) and (16), using the following
expression (cf. (23)).

l̂ ¼ GM
R2
ðn� 1Þ ~l: ð46Þ

For the geoid undulation data field the scaled
field l̂ is computed from the non-scaled field ~l
using the following expression (cf. (25)).

l̂ ¼ GM
	R

~l: ð47Þ

4. Compute the residual field � l, which is already
on the surface of the sphere, by

� l ¼ l� l̂: ð48Þ

Generally, according to the approximations
involved in the FFT technique, the computed
field l̂ does not coincide with the data field l,
and hence the residual field � l is not zero. This
is the reason of the iterative process in the case
of data field on the sphere.

5. Compute the residual non-scaled harmonic
coefficients � Anm, � Bnm corresponding to the
residual field � l using the modified HARMIN
subroutine.

6. Scale the computed non-scaled residual
harmonic coefficients � Anm, � Bnm depending
on the data field characteristic to compute the
nondimensional potential harmonic coeffici-
ents � Cnm, � Snm. For gravity anomalies data
field, the scaling is done using the following
expression (see (23))

� Cnm

� Snm

� �
¼ R2

GM

1

n� 1
� Anm

� Bnm

� �
: ð49Þ

For geoid undulations data field, the scaling
is done using the following expression (cf.
(25))

� Cnm

� Snm

� �
¼ 	R

GM
�Anm

� Bnm

� �
: ð50Þ

7. Compute the nondimensional potential harmo-
nic coefficients Cnm, Snm by

Cnm

Snm

� �
¼ C

�
nm

S
�
nm

� �
þ � Cnm

� Snm

� �
: ð51Þ

8. Use the nondimensional potential harmonic
coefficients Cnm, Snm, computed in the last
step, to create a computed scaled field l̂ (same
as step 3).

9. Repeat the steps 4, 5 and 6.

10.Compute the nondimensional potential harmo-
nic coefficients Cnm, Snm of the i-th iteration
using their values in the preceding iteration
and the residual nondimensional harmonic
coefficients � Cnm, � Snm (computed from step
6) by

Cnm

Snm

� �

i

¼ Cnm

Snm

� �

i�1

þ � Cnm

� Snm

� �
; ð52Þ

where the subscripts i and i� 1 refer to the
iteration steps.

11.Repeat the steps 8, 9 and 10 until two
successive iteration steps give practically the
same harmonic coefficients, or alternatively, no
practical change in the residual field between
two successive iteration steps has happened.

6. Numerical Tests

In order to examine the proposed technique, two
computational tests were carried out. In the first
test, the OSU91A geopotential model (Rapp et al.,
1991) complete to degree and order 360 has been
used to create two 30’�30’ global data fields on
the surface of the ellipsoid using the modified
SSYNTH subroutine. The first field represents
point gravity anomalies and the second field
represents mean geoid undulations. The develo-
ped technique (HRCOFITR program) as well as
Colombo’s technique (modified HARMNIN sub-
routine) have been used to compute the
nondimensional potential harmonic coefficients
complete to degree and order 360 for both data
fields.
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Figure 1 shows the difference between the
OSU91A coefficients and the coefficients compu-
ted by the developed technique for the point
gravity anomaly data field defined on the ellipsoid.
The solution needed 88 iterations performed in 37
minutes on a Pentium 300 MHz PC. It should be
noteed that the estimated zonal harmonics are
defined in the zero tide system. Except the even
zonal harmonics (which have errors in the order of
10�12 – 10�11) and the higher degree harmonics
(n > 300) till order 120 (which have errors ranging
between 10�15 and 10�11), all other harmonics
have practically zero error. This shows that the
developed technique computed the harmonic
coefficients with a relatively high accuracy. The
residual field (data field created by OSU91A
coefficients minus computed field created by
estimated coefficients) ranges only between
�0:74 mgal to 0.79 mgal with a zero mean and
a standard deviation of 0.05 mgal (practically no
residuals).

Figure 2 shows the difference between the
OSU91A coefficients and the coefficients compu-
ted by Colombo’s technique for the point gravity
anomaly data field defined on the ellipsoid. Figure
2 shows that all harmonic coefficients have
significantly great errors having its maximum
value in the order of 10�8 for the lower degrees
decreasing slowly with the degree to a value in the
order of 10�13 for higher degrees. The residual
field ranges between –29 mgal to 15 mgal with a
zero mean and a standard deviation of 1.8 mgal.
This comes directly from the fact that Colombo’s
technique assumes that the field is defined on the
sphere, which signalizes that Colombo’s tech-
nique is not adequate to analyze data fields
defined on the ellipsoid.

Figure 3 shows the difference between the
OSU91A coefficients and the coefficients compu-
ted by the developed technique for the mean
geoid undulation data field defined on the
ellipsoid. The solution needed 172 iterations
performed in 2.5 hours on Pentium 300 MHz PC.
Except the even zonal harmonics for n > 30
(which have errors in the order of 10�15 – 10�12)
and the higher degree harmonics (n > 260) till
order 60 (which have errors ranging between
10�15 and 10�12), all other harmonics have
practically zero error. The residual field ranges
only between �0.71 cm to 0.79 cm with a zero
mean and a standard deviation of 0.04 cm
(practically no residuals). This shows again the
capability of the developed technique for estima-
ting high accurate harmonic coefficients for fields
defined on the surface of the ellipsoid.

Fig. 1. Difference between OSU91A coefficients and the
coefficients computed by the developed technique for
the point gravity anomaly data field defined on the
ellipsoid.

Fig. 2. Difference between OSU91A coefficients and the
coefficients computed by Colombo’s technique for the
point gravity anomaly data field defined on the ellipsoid

Fig. 3. Difference between OSU91A coefficients and the
coefficients computed by the developed technique for
the mean geoid undulation data field defined on the
ellipsoid.
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It should be noted that a similar conclusion for
using Colombo’s technique to estimate the
harmonic coefficients for the mean geoid undula-
tion data field has been made. The difference
between the OSU91A coefficients and the
coefficients computed by Colombo’s technique
for the mean geoid undulation data field shows a
graph completely similar to Fig. 2.

In the second test, the OSU91A geopotential
model complete to degree and order 360 has
been used to create a 30’�30’ global point gravity
anomaly data field on the surface of the mean
earth’s sphere using the modified SSYNTH
subroutine. The developed technique (HRCOFITR
program) as well as Colombo’s technique
(modified HARMNIN subroutine) have then
been used to compute the nondimensional
potential harmonic coefficients complete to
degree and order 360.

Figure 4 shows the difference between the
OSU91A coefficients and the coefficients
computed by Colombo’s technique for the
point gravity anomaly data field defined on the
sphere. Figure 4 shows that only the zonal
harmonics with a band of non-zonal harmonics,
increases smoothly till m ¼ 50 at n ¼ 360, have
significantly higher errors (ranging between
10�15 and 10�10). All other harmonics have
practically zero error. The residual field ranges
between �6.78 mgal to 4.55 mgal with a zero
mean and a standard deviation of 0.43 mgal.
The significantly high errors appearing here are
due to the approximations involved in the FFT
technique.

Figure 5 shows the difference between the
OSU91A coefficients and the coefficients compu-
ted by the developed technique for the point
gravity anomaly data field defined on the sphere.
The solution needed 120 iterations performed in
40 minutes on a Pentium 300 MHz PC. Figure 5
shows that only the zonal harmonics with a very
narrow band of non-zonal harmonics, increases
linearly tillm ¼ 12 at n ¼ 360, have slightly higher
errors (ranging between 10�15 and 10�11). All
other harmonic coefficients have practically zero
error. The residual field ranges only between
�0.41 mgal to 0.41 mgal with a zero mean and a
standard deviation of 0.08 mgal (practically no
residuals). This shows that using the developed
technique improves the accuracy of the estimated
harmonic coefficients even if the field is defined on
the sphere.

Fig. 4. Difference between OSU91A coefficients and the
coefficients computed by Colombo’s technique for the
point gravity anomaly data field defined on the sphere.

Fig. 5. Difference between OSU91A coefficients and the
coefficients computed by the developed technique for
the point gravity anomaly data field defined on the
sphere.

7. Conclusion

The paper presents an efficient technique for
harmonic analysis on a spheroid (both the sphere
and the ellipsoid). The main idea of the proposed
technique, implemented in the HRCOFITR pro-
gram, is performed using Colombo’s (1981) main
subroutines HARMIN and SSYNTH (using FFT
technique for harmonic analysis and synthesis on
the sphere), after significant and critical modifica-
tions implemented by the author, in an iterative
and scaling process for harmonic analysis on both
the sphere and the ellipsoid. In order to examine
the developed technique, two computational tests
have been carried out. In the first test, two data
fields on the ellipsoid have been created using
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OSU91A geopotential model. In the second test a
data field on the sphere has been created using
OSU91A geopotential model. In all cases, the
harmonic coefficients have been analyzed using
Colombo’s technique as well as using the
developed technique. The results proved that
the developed technique gives always better
accuracy for the estimated harmonic coefficients
as well as for the residual field. The results also
show that using the developed technique
improves the accuracy of the estimated harmonic
coefficients even if the field is defined on the
sphere. This is due to the approximations involved
in the FFT technique used in Colombo’s technique.
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