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Automatie differentiation of linear features extracted from remotely 
sensed imagery 

S.J. Wallace, M.J. Hatcher and R.G. Ley, Hampshire; G. Priestnall, Nottingham; R.D. Morton, 
Cambridge 

Abstract 

An approach to automated feature extraction is presented which uses an object-oriented geodata model as the 
framework to store contextual knowledge and to use this both to control feature extraction routines and to auto­
matically differentiate between linear feature classes (roads, railways, rivers etc.). The problem of geographic ex­
traction has proved complex and ideally requires the incorporation of contextual clues similar to those used by 
human interpreters of imagery. The paper describes a proof of principle system developed under UK Ministry of 
Defence Corporate Research funding. The geodata model comprises a class hierarchy representing the features 
under study and their likely relationships. Each class of object within this model contains criteria that need to be 
satisfied in order to strengthen the belief that an instance of that object type has been recognised. The system 
described has at its core a spatially enabled object oriented database. This enables the extraction of linears to be 
divorced from the classification process which gives the system the flexibility to build up evidence of class mem­
bership from a variety of sources. In this way linears can be tagged with initial probabilities of class membership 
and refined following further processing, such as network building stages, where classification conflicts are identi­
fied and resolved to provide more probable class memberships. 

1. lntroduction 

1. 1 Background 
Although l inear features are recognisable by 

humans in the majority of medium to high resolu­
tion remotely sensed imagery, the task of algor­
ithmically discriminating between the linear fea­
tures observable in imagery is complex and calls 
for an approach based upon objects rather than 
pixels. The properties of objects and their place­
ment within the wider scene may be considered 
in order to utilise some of the contextual knowl­
edge used by humans. This paper presents an 
approach to managing the complexity of this re­
cognition problem, which involves the develop­
ment of a flexible and extensible system set 
within a spatial object-oriented database envir­
onment. 

The Automatie Linear Feature ldentification 
and Extraction (ALFIE) project is led by QinetiQ 
(formerly the UK Defence Evaluation and Re­
search Agency), and involves the School of Geo­
graphy at the University of Nottingham, and La­
ser-Scan Limited. lt is funded under the UK Min­
istry of Defence Corporate Research Pro­
gramme. The project is driven by the need to ra­
pidly populate military Synthetic Natural Environ­
ment (SNE) databases. Standard military data­
sets are typically used to provide the bulk of the 
data for a SNE database. However, such data­
sets may not be available for the specific area 
ot interest, they require augmentation and filter­
ing, and may be based on out-of-date mapping. 
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The requirement therefore exists to generate tai­
lored, up-to-date geospatial data in a cost effec­
tive manner. The strategy presented also has di­
rect implications for operational automated map 
production and revision systems. 

1.2 Aims 

The prime requirement of the research is the 
investigation and design of a methodology which 
supports rapid database generation for any part 
of the world. Timeliness and universality are fun­
damental considerations. The aim is to investi­
gate the development of a fully automated ex­
traction process which is capable of extracting 
more than one type of l inear feature. The output 
of the research is a prototype system which 
aims to ingest a variety of remotely sensed ima­
gery, extract all (as yet unknown) l inear features, 
and automatically assign each l inear object to 
the appropriate object class (in this case rail­
ways, rivers, and different classes of road). As 
part of the process, the aim is to capture some 
of the contextual knowledge used by humans to 
characterise each linear object and enable the 
discrimination between each object class. 

1.3 Related work 
In disciplines where the object or pattern un­

der investigation has quite a predictable shape, 
size and type, then reliable total automation can 
be achieved. However, the problems of develo­
ping transferable rules for automated object ex-
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traction to geographical features have been re­
cognised for many years (McKeown et al, 1 985). 
Due to geographical objects being so variable, 
attempts to extract them in a totally automated 
fashion have been largely unsuccessful unless 
restrictions are placed upon the source image 
type or the characteristics of the target object. 

Semi-automated approaches often involve the 
manual identification and seeding of a certain 
type of object, the geometry of which is then ex­
tracted (e.g. Vosselman and de Knecht, 1 995). 
An alternative approach is to reduce the search 
space for objects by using existing map data to 
guide the extraction process (Bordes et al, 
1 997). Such approaches must address issues of 
cartographic generalisation and in particular the 
degree to which positional information can be re­
lied upon (Abramovich & Krupnik, 2000). At­
tempts to increase the level of automation may 
utilise some of the contextual information which 
humans effortlessly employ when interpreting 
an image. The placement of an object within the 
wider scene and its inter-relationships with other 
objects at a range of scales would constitute 
general contextual knowledge (Priestnall and 
Wallace, 2000). When putting these broad con­
cepts into practice more specific mechanisms 
for representing contextual clues are described. 
Contextual regions and local rule-based 
'sketches' (Baumgartner et al , 1 997) represent 
different levels of spatial context. Containment 
within broad land use regions influences the 
type of object patterns observed, and at the lo­
cal level certain rules can describe commonly 
observed inter-relationships between objects of 
different types. Local relationships between 
roads and linear groupings of buildings are pre­
sented by Stilla and Michaelson (1 997). In addi­
tion to knowledge contained within one scene, 
col lateral evidence from other imagery can be 
used (Tonjes and Growe, 1 998). 

2. Methodology 

2. 1 Overview 

The attributes of a feature may vary depending 
on the region of interest. For example, the nature 
of a road may differ for rural and urban areas 
(called context regions). For this reason ALFIE 
has the ability to treat these areas separately. 
ALFIE aims to use context by deriving a number 
of attributes associated with a l inear object 
within different context regions. Object orienta­
tion (0-0) is fundamental in the approach taken. 
Extracted linear features are maintained as ob-

base. By defining suitable methods it becomes 
possible to interrogate primitive l inear objects 
for contextual information that can be used in 
their classification. 'Value methods' dynamically 
extract attributes from both source image and 
extracted l inear primitives. As this information is 
derived on the fly by the method, rather than 
being stored as a static attribute, the information 
can be guaranteed to be up-to-date, honouring 
automatically any changes made to the data­
base. A total of eighteen methods were devised 
with five proving particularly successful at differ­
entiating between feature classes. These are: 
width; variation in width; sinuosity; dominant 
spectral value; and variation in spectral value. 

A ful l  description of the ALFIE processes can 
be found in Priestnall and Wallace (2000), Wal­
lace et al (2001), and Priestnall et al (2003, in pre­
paration). The salient features of the process are 
described here to provide the context for the re­
sults reported. ALFIE uses a toolkit of extraction 
algorithms to cater for the variation in image 
types and resolutions used. For a fully auto­
mated system the most appropriate algorithm 
has to be automatically selected for the given in­
put image. A control strategy is therefore re­
quired which initiates and tracks each stage of 
the extraction and classification process. The re­
search is addressing these issues in a modular 
fashion in an attempt to provide a flexible frame­
work which facilitates the incorporation of new 
algorithms and provides the capability to extend 
the system to extract features other than l inears. 

2.2 Process f/ow 

Table 1 details the processing undertaken dur­
ing each stage of the processing under the con­
trol of a control interface. 

Operation Contra/ Module 

Selection of imagery 
Choice of algorithm Preparation 

Selection of parameters 
Pre-processing of imagery Pre-processing 

Derive contextual information Collateral Extraction 

Extraction of linear primitives Linear Extraction 

Classification/identification of 
extracted linears 
Construction of topology Classification 

Network building 
Validation Validation 

Final editing Manual 

jects within Laser-Scan Ltd's 0-0 spatial data- Table 1. Operations undertaken by each control module 
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In essence, the control strategy selects the 
most appropriate algorithm for the g iven input 
image. The results of the extraction are popu­
lated to the 0-0 database as 'unclassified'. The 
value methods are run to derive the contextual 
information for each l inear and the unclassified 
lines attributed with the results. A Cluster­
Weighted Model (CWM) classifier is used to de­
termine the initial probabilities of class member­
ship. The output from the CWM is a straightfor­
ward probability table, which has as many col­
umns as there are discrete valued dimensions. 
These discrete dimensions correspond to the 
database methods determined to be significant 
discriminators. The CWM is trained using a 
manually created truth dataset representing a ty­
pical set of features where class membership is 
known. Following classification the linear fea­
tures are populated to the relevant feature class. 
At this stage the lines are still fragmented and 
therefore a network building stage is initiated 
with the aim of creating a topologically correct 
network for each feature class. Junctions are de­
termined either with comparison to existing 
coarse resolution mapping (e.g. VMap) or by pat­
tern matching techniques. Corridors are built be­
tween these junctions taking into account the 
classification of extracted lines between the 
junctions and the underlying image characteris­
tics. 

3. Results 

3. 1 Extraction of linear primitives 

Table 2 provides details of metrics derived for 
the initial l inear feature extraction phase. Results 
are provided which compare fully automatic ex­
tractions made for both urban and rural context 
regions with reference datasets for an area 
around Worcester, UK. Figure 1 shows an exam­
ple extraction for a subset area showing a major 
dual carriageway junction within the urban area. 
The urban reference dataset for this area is given 
in Figure 2 with the area of extraction shown in 
the top right of the figure. (Note: minor roads 
are not indicated in the Figure 2 for clarity but 
were included in the metrics). The metrics 
quoted are for extractions made by the selected 
algorithm (which may be different) for both rural 
and urban areas operating on a Russian KVR im­
age with GSD -2m. The metrics are those used 
by Harvey (1 997) as a means of quantifying ex­
traction results. 

At this stage in the processing no filtering of 
the extraction result has been made and there­
fore a significant number of false positives are 
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Figure 1. Example initial extraction result 

l ikely. Further refinement occurs after this stage. 
The extraction is characterised by fragmented 
lines although the major features such as the 
junction slip roads and the railway running 
north-south have largely been delineated . A sig­
nificant number of false positives in the form of 
short linears can be seen and these typically re­
present building edges. In  Table 2 the percen­
tage complete figure is a measure of the refer­
ence model that is covered by the extraction re­
sult. The percentage correct is the inverse. The 
rank distance is a normalised distance measure 
between the extraction and reference data, ran­
ging from 0 to 1 00, while the branching factor in­
dicates the degree to which the extraction „over 
extracts". With a perfect result this factor would 

Figure 2. Reference dataset for the urban area. 
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be 0 while a factor of 1 indicates that for every 
correctly extracted line a false line has also 
been extracted. Theretore the higher the number 
the greater the number of false extractions. 

lntersecting the extractions with the reference 
datasets show that 72% of l inears in the rural 
areas have been extracted while this figure falls 
to 37% for the urban areas. 

% Com- % Correct Rank Branching 
plete Distance Factor 

Rural 52.72 9.77 37.91 9.24 
Urban 30.88 8.75 22.69 1 0.43 

Table 2. Initial extraction metrics 

This reduction is due mainly to the increased 
complexity of the scene in the urban areas with 
a significant proportion of the lines extracted re­
presenting building edges rather than the l inear 
network features of interest. The figures in Table 
2 quantify what is evident in the extraction -
that a significant number of false positives, (or 
"noise") have been extracted. lt is these false po­
sitives that lead to the smaller percentage cor­
rect figures. Clearly the requirement exists to re­
duce the "noise" in the extractions. This is 
achieved through the generation and analysis of 
context information and these pieces of evi­
dence are used to generate initial assessments 
of the feature class into which each line falls. 

3.2 Classification 

Table 3 details the result of the classifier in de­
termining the most probable feature class for 
each true positive extracted line (combined for 
both urban and rural areas) when compared to 
the reference datasets. lt can be seen that dual 
carriageways have a high correct classification 
percentage. Although spectrally similar to other 
roads, with which there is some misclassifica­
tion, the key discriminant here is width. Differen­
tiating between single carriageway roads and 
railways has proved more problematic. These 
tend to be spectrally similar and of similar width. 
lt fine resolution imagery is available, texture 

can provide some degree of discrimination since 
road surfaces tend to be more homogeneous 
than the elements comprising a railway feature. 

Rivers are the most straightforward to classify 
since water is more spectrally distinct than the 
elements comprising other l inear features. Thus 
a water mask is created from a multi-spectral im­
age as part of the col lateral extraction phase. 
This can then be intersected with the extraction 
result to provide high classification probabilities 
for the intersecting features. 

3.3 Network building 

The ideal output from the ALFIE system is a 
complete network of l inear features, topologi­
cally correct, and correctly classified. Clearly a 
number of intermediate outputs can be gener­
ated from the ALFIE system which facil itates 
manual correction or completion as appropriate. 
Space precludes a ful l  description of the results 
but Figure 3 shows the final output to the system 

Figure 3. ALFIE system final output 

Road - Dual Road - Single Railways Rivers Carriageway Carriageway 
Road - Dual Carriageway 80% 0% 0% 0% 
Road - Single Carriageway 15% 56% 31 % 0% 
Railways 5% 31 % 68% 3% 
Rivers 0% 1 2% 1 %  97% 

Table 3. Classification confusion matrix 
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for the urban test area. This represents all those 
features that were (1 ) correctly extracted, (2) cor­
rectly classified, and (3) topologically correct fol­
lowing the completion of the network between 
identified junctions. 

Prior to the network building stage, analysis 
with the reference datasets show that the lines 
extracted correctly represented 1 8% and 1 6% 
of the overall network for the rural and urban 
areas respectively. Following the network build­
ing stage to join extracted lines of the same fea­
ture class, these percentages increased to 70% 
and 21 % respectively. Comparison with the re­
ference dataset in Figure 2 shows that the dual 
carriageway in the top right corner has been par­
ticularly weil delineated and the railways have 
been classified correctly following refinement of 
the classification probabilities during the network 
building stage. Geometrie inaccuracies are ap­
parent particularly where the railway passes 
through a station where a number of parallel 
tracks exist. The river feature running north-east 
to south-west has also been successfully deli­
neated although the second river channel run­
ning mainly north-south shows gross geometric 
inaccuracies due to an error in the network build­
ing stage. Where the network building has been 
possible, major single carriageway roads have 
also been delineated successfully. A more rigor­
ous network building algorithm should improve 
on the overall connectivity since many of the 
roads not evident in the final result were suc­
cessfully extracted. 

4. Conclusions 

A framework for automated linear feature ex­
traction has been presented. The aim has been 
to automatically extract lines of different linear 
feature classes. To investigate this, a number of 
elements have had to be included within the pro­
totype system. This has required less emphasis 
on the extraction algorithms per se and more on 
the overall methodology of automating the ex­
traction and classification process. The frame­
work is modular providing a flexible system and 
ensuring that improved algorithms can be incor­
porated as and when required. A control strategy 
has helped to manage the complexity of the pro­
blem and has allowed contextual information to 
be incorporated in various ways throughout the 
process flow. The adoption of an object-oriented 
geospatial database has facilitated complex dis­
criminating characteristics of objects to be dyna­
mically extracted. This enables the extraction 
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process to be divorced from the classification 
stages, allowing evidence of feature class mem­
bership to be gathered from a number of image 
sources. 

Fellow on work is already underway to incor­
porate 30 information into the process flow. 
This not only allows 30 objects to be extracted 
but also allows another critical piece of evidence 
to be used as part of the classification process. 
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