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Nehmen wir an, der mittlere Fehler des Winkels zwischen Sonne und einem 
Flugzeug wäre ± 15" und der mittlere Fehler nach G I. (11) abgeschätzt wäre ± 10", 
dann wäre der Fehler einer Azimutmessung 

v1s2 + 102 = ± 18" 

Beachtet man noch, daß in jedem der drei Standpunkte die Azimutmessung 
erfolgt, d. h. für jede der drei Seiten zweimal die Azimute fast unabhängig vonein ­
ander bestimmt werden, so folgt der mittlere azimutale Fehler des Standpunktdrei ­
ecks mit ± 18": 1/6 ='= ± 10". 

Abschließend vergleichen wir noch eine terrestrische Trilateration bzw ; Triangu­
lation mit dem beschriebenen Ver fahren. Wir können feststellen, daß die terrestrischen 
Verfahren zwar höchste Gena uigkeit erreichen, daß sie aber einen gewaltigen Auf­
wand von Zeit und Arbeit für die Erkundung, für den Signalbau, für die Durchfüh­
rung der Vermessung, für die Stabilisierung und für die Luftsichtbarmachung bean­
spruchen. Die Trilateration in der Luft erfordert zwar einen ungewöhnlich hohen 
technischen Aufwand, aber in vielen Fällen wird dieser Aufwand im Vergleich 
zur erreichbaren Leist ung nur sehr gering zu bewerten sein. 
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On Model Formation With Remote Sensing Imagery 

By F. Leber!, Enschede (The Netherlands) 

1. Introduction 

The imaging remote sensing systems on w hich the photogrammetric interest 
is presently focussed, are enumerated in table 1. Not considering the conventiona l 
frame camera, the number of contributions in the open literature to the problem of 
deriving object-space coordinates from remote sensing imagery is rather smal l. 

However, for a number of systems of table 1, model formation with remote 
sensing imagery has been discussed. An excellent review of the state of the art was 
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given by Konecny in [ 5] .  As concerns panoramic and continuous strip photography, 
a basis was established by Case [1] .  Derenyi 's study [2], which concerns the relative 
orientation of continuous strip photography, can be generalized to imagery obtained 
from the recti-linearly scanning optical-mechanical sensor, as it is presently applied 
for Multispectral Sensing (MSS) and Infrared Linescanning (IRLS). With regard 
to imagery from the Plan Position Indicator (PPI), reference has to be made to the 
book of D. Levine on radargrammetry [8], in which the concept of a PPI-stereo­
plotter is described. 

Model formation with Side-Looking Airborne Radar (SLAR) imagery has been 
tried by Laprade, using the visually perceived parallax in a analogue manner [ 7], 
[8]. Based on this, Goodyear developped an automatic analogue stereoplotter [12], 
[1 5] .  Recently it has been reported, that also the AS- 1 1 A  Analytical Plotter could 
be successfully applied to the mapping from overlapping SLAR-imagery (Norvelle 
[1 3]). A numerical investigation on the propagation of error of the measured slant 
range into the model coordinates was performed by Rosenfield in [14] .  The concept 

I Conventional Frame Camera 

II Panoramic Camera 
1 .  Scanning in a plane perpendicular to the flight direction (vertical 

mode, rectilinear scan) 
2. Scanning in a plane forming an angle cp0 =f: 900 with the flight direc-

tion (oblique mode) 

III Continuous Strip Photography 
1 .  Imaging in a plane perpendicular to flight direction (vertical mode) 
2. Imaging in a plane forming an angle cp0=t=900 with the fiight direc-

tion (oblique mode) 

IV Optical -Mechanical Scanning 
1 .  In a plane perpendicular to fiight direction (vertical mode) 
2. In a plane not perpendicular to fiight direction (oblique mode, 

rectilinear scan) 
3. In a cone with flight direction as axis (oblique mode, hyperbolic scan) 
4. In a cone with vertical axis ( circular scanning) 

V Echotime Measurement with Plan Position Indicator 

VI Si de-Looking Echo time Measurement 
1 .  In a plane perpendicular to flight direction 
2. In a plane not perpendicular to fiight direction (oblique mode, 

rectilinear scan) 
3. In a cone with fiight direction as axis (oblique mode, hyperbolic scan) 

Table 1 : Imaging remote sensing systems of prime photogrammetric interest 
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of combining simultaneous SLAR- and IRLS -im agery for model-formation has 
been published by Moore [10 ]. 

Except for Rosenfield 's paper [14 ], no contribution is known to the author 
regarding the effect of an erroneous set of imaging parameters and of flight con­
figurations onto the accuracy of model coordinates. In this paper, therefore, we will 
deal to a limited extent with the cofactors of model coordinates as derived from 
overlapping re mote sensing imagery. 

But first, the projection equations for the systems of table 1 are given in the 
following. After this, various :flight configurations to obtain overlapping imagery 
and problems with the acquisition of imaging parameters are briefiy discussed. 
Finally, the description and discussion of the results of a numerical investigation 
of the error propagation into the projection equations serves to evaluate qualitatively 
and quantitati vely a number of various fiight con figurations proposed. 

2. Projection equation for remote-sensing-imagery 

lt is possible to give a general projection equation for remote-sensing imagery, 
and to specialize this equation for the various cases of table 1 such as to get the 
formulae as given in [5 ]. 

The general projection equation is 

Xp = Xo + C(B . A .  u + LiX) „. (1 a) 

or explicitely : 

. „ (1 b) 

In this equation the vector Xp de fines the model point and X0 the origin ofthe 
coordinate-system of the sensor platform, i. e. of the aircraft, satellite or ship, with 
respect to a cartesian terrain or model system. u is the vector of the modelpoint in 
the sensor's coordinate system, and LiX the vector between the origin of the platform 
and the sensor systems, but in the platform-system (see figure 1). 

A is the orthogonal matrix, which rotates tbe sensor system into the one of 
the sensor 's mounting. B rotates the mounting system into the platform-system, 
and C is the exterior orientation of the platform (in particular the aircraft) in the 
model coordinate system. 

In table 2 the specialisations of the general projection equation for the various 
imaging systems are summarized. In this, 'A represents a scale factor, E the unit matrix, 
x, y the image coordinates, c the camera principal distance, <P0 the "squint '', i. e. 
the complement to 900 of half the vertex angle of the cone, in which scanning is 
clone. s is the slant range and also the length of the vector u. .Q is tbe depression 
angle as measured from the uv-plane to the "line of sight" between the sensor and 
the object. .Q* is the depression angle formed between the projection of the line of 
sight into the vw-plane and tbe v-coordinate axis. 
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Figure 1: Coordinate systems used in equation (1) 
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Whereas the matrix C has the conventional appearance and represents the 
photogrammetric rotations 

<p
, w, x, one has to write for B: [cos 

<p
o 

B= 0 
sin cro 

0 -sin 
<p

ol 1 0 
0 cos cp0 

So B allows for "stereosystems" with an angle of convergence of 2 .  cp0• 

I u - 'A (x, y, -c)T A= E 

II u - 'A (x, +c . cos D.*, -c . sin D.*)T .Q* = 90 ° - y/c 
1. A - B = E E = identity or unit 
2. A - E; B =!= E matrix 

III u - (o, y, -c)T. 'A 
1. A - B=E 
2. A - E B =!= E 

IV 

1. 
2. 
3. 
4. 

u - 'A (sin 1>0, cos 1>0 . cos D.*, cos 1>0 . sin D.*)T . c  A = E 
.Q* = 90 ° - y/c 

V 

VI 
1. 
2. 
3. 

<Po= o 
<Po = o 
<Po =I= o 
<Po =I= o 

B = E 
B =!= E 
B = E 
B =!= E (corresponds to 

<p
o = - rc/2) 

u - s. (cos cx.. cos n, sin cx.. cos 0., sin .Q)T A = E 

u = s. 
<Po = o 
<Po= o 
<Po =I= o 

(sin 1>0, (cos2.Q - sin2<P0)1/2, sin .Q)T 
B = E 
B =!= E 

(formulation of Hockeborn [4]) 

Table 2: Special cases as derived from general projection equation (1) for the sensing systems given 

in table 1 

For system IV/4 in table 1, i. e. the circular scanning, 

B u 0 
1 
0 � l 

For the side-looking echotime measurement (case VI), thus for SLAR (or SONAR), 
it can be shown, that for LiX = (0, 0, 0) : 

u2 + v2 + w2 = s2 = (Xp - X0)2 + (Yp - Y0)2 + (Zp - Z0)2 

and 

„. (2a) 
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tan <I>o = ___ 
d1_1_· (_X_p_-_X_o)_+_d_1_2_· (_Y:_P __ Y:_o)_+_d_1_3_· (_Z_p _-_Z_0)_� 

c� �d1,1 . (Xp - Xo) + d;,z . (Yp - Yo) + d1,3 . (Zp - Z0)]2 ) 1'2 „. (2b) 

with 

D = AT. ßT. CT 

This is the formulation as used in e. g. [14]. 

3. Modelformation 

In the projection equation (1), two groups of parameters occur : one can be 
measured before the flight (pre-flight calibration), and the second depends on the 
exterior orientation of the sensor and location of the object point. In another way 
the parameters of equation (1) are for each sensor to be classified as given (observed) 
or as to be derived from the imagery. 

There is a main difference between the direction-measuring and the echotime­
measuring systems. This is because there is in the first group of systems (I-IV) an 
unknown scale factor /.., and in the second group (V -VI) the unknown depression 
angle TI to be determined, in addition to the inner and exterior orientation as weil 
as the object space - or model coordinates. 

3. 1 On the determination of the elements of exterior orientation 

The question arises as to how to determine the exterior orientation, which is 
variable within the imagery taken by systems of type II to VI. There are the following 
possibilities : 

relative orientation 
measurement 
estimation with the help of control points 
assuming an ideal path and orientation of the sensor. 

The photogrammetric method of relative orientation to obtain data of exterior 
orientation by a triangulation in space is to be applied in the first instance to over­
lapping images of category I and II only. In an extensive investigation on continuous 
strip photography, however, Derenyi concludes in [2], that a somewhat satisfactory 
relative orientation for the purpose of triangulation is only possible with this type 
of imagery if two convergent (type III/2) strip cameras are combined with one of 
type III/l (see for this also Konecny [5] and Masry [9]). 

The continuous strip of imagery is thereby cut in pieces along the flight line, 
so that the random functions ofthe elements of exterior orientation can be approxima­
ted witbin a piece by simple polynomials of first or second order. The procedure of 
relatively orienting on piece of imagery to the previous one produces the exterior 
orientation as group of joint polynomials. 

Generalizing the experimental results as obtained by Derenyi for the case of 
strip-photography in such a way that they are also valid for other imaging systems 
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with comparatively severely reduced geometric resolution, one must conclude that 
the method of relative orientation cannot produce better but rather inferior results 
as compared to the direct measurement during flight. This is due to the mean square 
error of unit weight, cr0, which is large in systems IV -VI as compared to strip 
photography. 

The method of relative orientation cannot be applied to overlapping imagery 
taken in different flight-lines to obtain exterior orientation, because there is no 
possibility to perform a (numerical) "triangulation" by means of pieces of imagery, 
so that measurement is a good though expensive alternative. 

The use of control points in a plotting procedure is better not tried for the deter­
mination of the elements of exterior orientation, since the number of unknowns is 
impractically large (matrix C and vector X0 in (1)). In the case that control points 
are given it is considered to be more practical to compute model coordinates under 
the assumption of an idealized exterior orientation and to improve these preliminary 
model coordinates with an interpolation method. In this last procedure, only three 
entities are interpolated, namely the errors in the three model coordinates. This seems 
more favourable than interpolation of the 12  elements of exterior orientation. 

The unknowns of the exterior orientation could also be derived from simul­
taneous exposures with a frame camera, by applying aerial triangulation. This 
auxiliary photography would first give values for the exterior orientation at discrete 
points along the flight line. lt could also be applied for an orientation of the conti­
nuous imagery using areas of common overlap between the frame and continuous 
imagery. This concept may seem contradictory, since frame photography should 
make continuous imagery unnecessary, at least from a photogrammetric point of 
view. But there is the case, as in the SLAR-Project RAD AM in Brasil [1 1 ] ,  that frame 
photography is taken anyway together with SLAR. Due to cloud cover, the frame 
photography may then just be used to improve the data of exterior orientation. 
Plotting, however, would have to be clone from SLAR. 

3. 2 Flight configurations 

The standard input for conventional photogrammetric model formation consists 
of overlapping photographs taken along one flight line. This is generally not possible 
with systems of the categories III to VI, but only in a special case of convergent 
sensors with <1>0 '# 0 and/or B '# E. Mostly, however, the imagery to be used for 
plotting will be produced along separate flight lines. lt is therefore necessary to 
consider the possibilities and alternatives to obtain overlaps and to study their conse­
quences. 

Figure 2 shows the idealized sketches of a number of flight configurations 
allowing for producing overlapping imagery. The most interesting is variant (a), 
since it can (under certain restrictions, see 3. 1) enable a triangulation to be carried 
out. With the systems III, IV and VI, which in a very short period of time only image 
a line of the object space, this scheme (a) is only possible with convergent sensors, 
thus with optical axes that are directed forward and backward. There is one exception: 
the side-looking echotime measurement with forward and backward directed conical 
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impulses does not allow the derivation of model-coordinates. This is because the 
imagery from each impulse defines a circle which is concentric with respect to the 
flight line. The two circles will by necessity be coincident (having same center and 
equal radii) and would define no specific points of intersection. Therefore, a "stereo­
SLAR-system" with alternately emitting conical impulses in forward and backward 
directions does not fulfill its purpose. Only plane convergent impulses could make 
up a meaningful stereo-SLAR-system. (The two circles will in this case be in two in­
clined planes, thus intersecting in unique point(s).) 
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Figure 2 :  Idealized flight configurations to obtain overlapping imagery 

I I 
I I I 

V 

With reference to optical-mechanical scanning both concepts of convergence 
(conical and plane) define a model point(s). The hyperbolic scan, however, produces 
more accurate heights, as can be found from the propagation of the mean error of 
measurement of image coordinates, cr0• 
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Two convergent plane scans produce a height error : 

, H. (cos2i:po . tan2 QB/2 + l)1/2 . cr0 m n = H . . .  flight height 
c .  sin i:p0 

whereas two convergent scanning cones give : 

11 
H. (cosz n + 1)1f2 . cr0 ("' d 

. . 
A d' ) m n = , r;::, . ior envat10n see ppen 1x 

v 2 . sm <l>o . C  

In other words : the hyperbolic scan ( = scanning cone) allows for a better base­
height ratio with increasing distance from the flight line, SO that m" H < 1111 n for Ü > 0. 

3. 3 Computation of model coordinates 

Assuming that the parameters for the inner and exterior orientation are known, 
then each image point P' is producing one set of three equations (type (1)) with 
four unknowns : X, Y, Z, )...' for direction measuring systems, and X, Y, Z, 0' for 
echotime measuring systems. If the point P is imaged another time also, then once 
again three equations are produced, in which only )..." or O" is added as new unknown. 
So the computation of modelcoordinates represents an overdetermined problem. 

Formulation of the computation of the model coordinates by means of the two 
sets of equations of type (1) gives thus 6 equations with 5 unknowns. Elimination 
of the model coordinates results in the coplanarity condition : 

C'(B . A . u' + ßX) - (X'o - X"0) - C"(B . A . u" + ßX) = 0 .  

This is a set of three equations in two unknowns )...', )..." or O', 011, respectively. 
To obtain the model coordinates, it would be required to first compute corrections 
to the entities cortsidered as observations and subsequently determine the unknown. 

Eliminating from the original 6 equations with 5 unknowns the )...', )..." or O', O", 
respectively a more effective procedure would result, since the solution of the remaining 
system of 4 equations in three unknowns gives directly the three model coordinates. 
For angle measuring sensors, this procedure would be analogous to the photo­
grammetric formulation by means of the collinearity conditions. For echotime 
measuring sensors, however, the reduced equations are the non-linear ones given 
as formula (2). 

Another way of computing model coordinates is to choose three out of the four 
equations in the three unknown model coordinates and to solve the three equations 
without overdetermination. The selection of the three equations must be such that 
the determinant of the coefficient matrix is possibly large. For the case of echotime 
measurement, the equations are non-linear, so that more than one solution will 
result. Replacing one of the three selected equations by the remaining fourth (again 
such that the coefficient matrix does not approach singularity), another (group of) 
solution(s) will be provided. For the example of echotime measurements, this can 
be geometrically interpreted in the following way (see also Konecny [5]) : Two 
spheres (formula (2 a)) are intersected, producing a circle. This circle is intersected 
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first with one cone (formula (2b)) having its vertex at one sensor position and pro­
ducing (in the general case) four points of intersection. Intersecting it then with the 
other cone (vertex at other sensor position), again four points will be defined. Only 
one point will coincide in both solutions, being the proper one. Taking the arithmetic 
mean of both will improve the final accuracy. 

4. Cof actors of model coordinates 

The quality of model coordinates as derived from remote sensing imagery, 
can be judged by means of the matrix of cofactors, Qx. For this purpose a limited 
numerical investigation has been performed, in which Qx was determined with the 
law of error propagation. As input was given the matrix of weight coefficients of 
the measured entities, Qe. The investigation was limited to the 4 schematical flight 
configurations of figure 2 and continuous imagery of the direction and echotime­
measuring type. 

4. 1 The computation method 

A large number of possibilities is available to compute the vector X from a 
pair of groups of equations of type (1). 

For the present numerical investigation, the original two groups of equations (1) 
were reduced to only 4 equations in the three unknown model-coordinates. This 
was interpreted then as an adjustment problem according to Standard Problem IV : 

with v being the corrections to the observed quantities, X the unknowns, w the 
contradictions and A and B as coefficient matrices. 

Thus the matrix of cofactors of X, Qx, results as : 

This rigourous method can be compared with the simplifying procedure as 
described in section 3. 3, which gives the unknown model coordinates as the arithmetic 
mean of the two determined solutions : 

(X) = lfz (X1' + X2') 

X1', X2' result each from solving only three out of the four equations, in the way' 
as mentioned in section 3. 3. The cofactors of (X) then are 

(Qx) = 1/4 (Qx1 + Qx2 + Qx1x2 + Qx2xÜ 

lt can be shown that Qx and (Qx) are identical for certain flight configurations. 
This is explained for the example of SLAR, scheme (b) : The left strip of imagery 
defines, as the locus of each imaged point, the intersection of a sphere (see equation 
(2a)) with a cone (2b). 
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Assuming the vertex angle of the cone to be 1800, this degenerates to a plane. 
The right strip of imagery is defining another sphere and plane. For the scheme (b) 
now, the two planes coincide, so that two of the 4 equations in the unknowns X, 
Y and Z are identical. Obviously then Qx and (Qx) are identical too. 

i� 

2 . 5 

1 0  

30 

by 

0 . 5 

1 

1 .  5 

Y=O Y= . 75 

Qx o . 6  o . 6  

Q;y' 0 . 7 185 

Qz 304 328 

Qx o . 6  o . 6  

Q;y' 0 . 7 1 2 . 2  

Qz 19 . 0  20 . 5  

Qx 0 . 7 0 . 7 

Q;y' 0 . 7 2 . 0  

Qz 2 . 1  2 . 3  

Scheme ( a )  
plane scan 

Y=O Y=. 75 

Qx o . 6  o , 6  

Q;y' 1 . 3 3 , 6  

Qz 1 1 .  7 1 3 , 6  

Qx o . 6  o . 6  

Q;y' 1 . 3 0 . 9  

Qz 4 . o  3 , 4  

Qx 0 . 7 o . 6  

Q;y' 1 . 3  1 .  0 

Qz 2 . 9  1 . 8 

Scheme (b ) 

Y=1 . 5 

o . 8  

899 

399 

o . 8  

568 

25 . 0  

0 . 9  

6 . 9  

2 . 8  

Y=1 . 5 

0 . 7 

45 . 2  

3 1 . 8  

0 . 7  

4 . 9  

6 . 9  

0 . 7 

1 . 3 

2 . 9  

�� 

2 . 5 

1 0  

30 

bz 

2 

3 

Y=O Y= . 75 

Qx o . 6  o . 6  

Q;y' 0 . 7 1 1 9 

Qz 304 2 1 0  

Qx o . 6  o . 6  

Q;y' 0 . 7 8 . o  

Qz 19 . 0  1 3 , 3  

Qx 0 . 7 o . 8  

Q;y' 0 . 7 1 . 5 

Qz 2 . 1  1 . 7 

Scheme ( a) 
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2 . 7 
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0 . 9  

2 2 . 7 

1 7 . 1  

1 .  0 

1 3 , 9 

1 0 . 9 

1 . 1 

1 4 . 3  

1 0 . 3  

Table 3/1: Cofactors of modelcoordinates, derived from overlapping imagery produced by optical 
mechanical scanning. Y, bx, by and bz are given as multiples of the fiying height 
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4. 2 Results 

Qx has been computed under various assumptions for the base b = (X0" - X0'), 

the angle 2 cp0 for convergence, the squint <D0, the angle rx between two corresponding 

flight lines and the position of point P. The unit of measurement was the flying height 
(Zo' - Zp). The ratio among cofactors of the observed entities (X0, <p, w, x) as well 
as s for SLAR has been assumed as : 

Qxo :  Qyo :  Qzo :  Q<p: Qw : Qx : Qs = 1 :  1 : 0.2 : 0.04 : 0.04 : 0.04 : 0.5 .  

For the optical mechanical scanning it was assumed that the base is  defined 
more accurately due to the better geometric resolution and the larger scale. Further­
more, the orientation of the sensor is supposed to be known to a lesser degree of 
precision due to the fact that it is a comparatively less expensive sensor, so that 

Qxo : Qyo :  Qzo : Q<p :  Qw :  Qx: Qn = 1 :  1 : 0.4 : 0. 1 6 : 0. 1 6 : 0. 1 6 : 0. 16 .  

4. 2 .  1 Optical-mechanical scanner 

After computation of the spatial coordinates, one obtains their weight coeffi­
cients as given in tables 3. lt turns out, that the X-model coordinates can be well 
determined by imagery from all schemes with parallel flight lines (schemes (a) - (c)), 
whereas the cofactors of the Y- and Z-coordinates become the smallest with the 
"opposite-side" stereo arrangement of scheme (b). For the heights therefore, the 
scheme (b) is considered to be optimum as far as error propagation is concerned, 
and gives the best values for Z in the middle of the overlapping area (Qz � 1 . 8  for 
by = 1 .5 H, from scheme (c)). 

bx Y=O Y= . 75 Y=1 . 5 

Qx 

,/ 
o . 6  0 . 7 

0 Qy 1 . 2 1 . 2 
-

Qz 5 . 6 2 . 9  

Qx 1 . 2 1 . 0 1 . 1  

0 . 75 Qy o . 6  1 . 0 1 . 2 

Qz 5 . 6  2 . 9  2 . 0  

Qx 1 . 2 1 . 2 1 . 3 

1 . 5 Qy 0 . 7 1 . 1  1 . 3 

Qz 2 . 9 2 . 0  1 . 5 

· Scheme (d )  
Table 3/2: Cofactors of modelcoordinates, derived from overlapping image1y produced by optical 

mechanical scanning. Y, bx, by and bz are given as multiples of the flying height (cont'd) 
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The idea of convergent "stereosystems'', considered as a prom1smg concept 
to overcome the mapping difficulties with remote sensing systems, and including the 
alternative of rectilinear or hyperbolic scanning is disappointing (tables (a), (b)). 
In comparison to other imaging arrangements, the error propagation into Y- and 
Z-coordinates is very unfavourable. A small angle of convergence (2 <po = 50) with 
rectilinear scan does produce along the edge of the imaged area cofactors of extreme 
size. For 2 <po = 200, these reduce to Qy = 57, Qz = 25, but only for 2 <po = 600, 
the cofactors take on acceptable values of Qy = 7, Qz = 3 .  

The hyperbolic scan is  clearly producing more accurate results, but can not, 
with the small convergence angles, reach the ones obtainable by scheme (b). Y is 
by far less precisely defined than Z. Wbat is then the use of this concept ? lt is the 
possibility of carrying out a strip triangulation, which should allow for a better 
determination of the data of exterior orientation than the direct measurement. But 
from Derenyi's investigation [2] the conclusion can be drawn that relative orientation 
is not promising (see section 3 . 1). And even under the hypothetical assumption that 
the relative orientation could provide more accurate data for exterior orientation 
than direct measurement as assumed above, then still the resulting cofactors are 
very large, even for the example of the more accurate hyperbolic scan. 

Table 3 (b) demonstrates in addition, that Qz decreases with increasing distance 
between P and the flight line - which is the opposite of the case of Qy. This is 
caused by the increase of the base-height-ratio, wbich overcompensates the deteriorat­
ing effect of the reduced image scale (or resolution) with increasing Y. 

"Same side stereo" as realized in scheme (c) with parallel flight lines above each 
other (table 3 (c)) does not allow the computation of heights along the flight track 
to be carried out : Z is not defined. The inaccuracy of Y-coordinates increases with 
the distance from the fiight track. From table 3 (d) it can be concluded that, for a 
given set of cofactors for the observed quantities, there is an optimum bz: 1 < bz < 3. 
An interesting configuration is scheme (d), which defines X and Y with cofactors 
smaller than, or equal to 1. 

The accuracy of Z increases with increasing Y, but is similar to that from 
scheme (b). 

There is no correlation between the model coordinate X and ( Y, Z), except 
for scheme ( d), while Y and Z are strongly correlated. There is no loss of accuracy 
when applying the simple arithmetic mean from the two determined solutions, 
except for scheme (d). 

We may then conclude that : 
The superior flight configuration is the "opposite side"-case, indicated as scheme 

(b). Comparable accuracy can only be expected from scheme (d). The application 
of convergent systems does not lead to improvements in metric accuracy, especially 
with small convergence angles (2 <po � 200). 

4. 2. 2 Side-Looking-Radar 

The cofactors of SLAR-model coordinates are generally !arger than the ont;s 
for the optical-mechanical scanner. 



56 

As is obvious from table 4, the X coordinate is well defined in all fiight con­
figurations, whereas the heights cannot be satisfactorily determined, except for one 
case. Considering Qz in scheme (b), it turns out that it becomes rather large in the 
centre of the model area. Under the abovementioned assumptions, Qz reaches a 
values of 34. Along the edge of the model area only can a Qz be expected of a size 
near the error of unit weight. But it is exactly there where the qualitative usefulness 

1� Y=1 Y=2 . 5 Y=5 by Y=1 Y=2 . 5 Y=5 

Qx 0 . 5  · o . 6  1 . 0 Qx 0 . 7 o . 6  0 . 7  

2 . 5  Qy 283 54 . 8  22 . 1  5 Qy 1 . 1  o . 8  1 . 6 

Qz 283 338 536 Qz 2 . 4  5 , 0 0 . 7 

Qx 0 . 5  o . 6  1 . 0 Qx 0 . 9 0 . 9  1 . 0 

1 0  Qy 1 7 . 7 4 . o  2 . 1  1 0  Qy 1 . 2 1 . o  o . 8  

Qz 17 , 4  20 . 9  33 . 4  Qz 3 . 2  1 1  • 1 1 9 . 2  

Qx o . 6  0 . 7 1 . 2 Qx 1 . 0 1 . 1 1 .  5 

30 Qy 2 . 1  1 . 0 0 . 9  1 5 Qy 1 . 3 1 . 1 o . 8  

Qz 1 . 7 2 .  1 3 . 6  Qz 3 . 2  1 3 . 5  33 , 7  

Scheme ( a )  Scheme ( b )  

bz Y=1 Y=2 . 5 Y=5 bx Y=1 Y=2 . 5 Y=5 

Qx o . 6  0 . 7 1 .  0 Qx 0 . 9  1 . 2 2 . 0  

1 Qy 1 3 . 1  8 . 4  7 . 7-' 1 Qy 0 . 9  0 . 7 0 . 7 

Qz 6 . 5 22 . 2  78 . 5 Qz . 1 . 6 2 . 9  4 . o  

Qx 0 . 7 0 . 9  1 . 3 Qx 0 . 7 o . 8  1 . 5 

5 Qy 4 . 2  2 . 5  2 . 3  5 Qy 2 . 0  1 . 8 1 . 5 

Qz 1 . 2 1 . 8 4 . o  Qz 4 . o  1 7 . 2  44 . 6  

Qx 0 . 9  1 . 1  1 . 6 Qx o . 6  o . 8  1 . 2 

1 0  Qy 3 , 5  2 . 1  1 . 9 1 0  Qy 4 . 9 4 . 5 3 . 8  

Qz 0 . 9  1 . 0 1 .  6 Qz 7 . 0  36 . 2  1 1 2 

Scheme ( c )  Scheme (d)  
Table 4 :  Cofactors of modelcoordinates, derived from overlapping side-looking radar imagery. 

Y, bx, by and bz are given as multiples of the flying height 
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of SLAR-imagery is limited (see : by = 5, Y = 5, table 4b) .  Scheme (c) can produce 
more accurate Y-coordinates with increasing distance from the flight track. Qz 
obviously deteriorates in this direction. A larger b z reduces the size of Qy and Qz, 

whereas Qx increases slightly. 

With cross-strips (scheme (c)) there is a good definition of the model point in 
the vicinity of the flight lines only. With increasing bx  and the object point in the 
distant corner of the model area, the Qz deteriorates rapidly ( e. g. Qz > 100 for 
b x  = 1 0 . H, Yp = 5 . H). 

Also for the SLAR-principle there exists the possibility to arrange a convergent 
system such as to obtain overlapping imagery. In section 3 .2  it was mentionned, 
that the conical convergence, as applicable in the optical-mechanical scanner, does 
not define a model point. Only by forward and backward directed oblique plane 
impulses, so that cp0 =!= 0, a model can be formed with a convergent SLAR-system. 
An angle of convergence of 200 still gives disappointing results (table 4a). For 
2 . cp0 = 600, however, the cofactors improve to satisfactory values. Qz even becomes 
in this case superior to the corresponding values obtainable by all other configurations. 
The question remains, how a convergence of 600 affects the interpretability of the 
imagery. 

With reference to the correlation among the model coordinates the following 
results may be drawn : X is not correlated with Y and Z, exept for scheme ( d). Y and 
Z are strongly correlated. Neglecting this correlation and computing Y and Z as 
simple arithmetic mean of the two solutions Yi. Y2, Zi. Z2, should, for configuration 
(d), be avoided. 

So the conclusion is : 

Planimetrie plotting can best be done with schemes (b) or (a), the latter with 
large angle of convergence ( ,...., 600) .  Plotting of heights with the highest accuracy 
is possible with the last configuration. 

4. 2. 3 Combination of Continuous Echo time and Direction M easuring Sensors 

When considering the model formation from overlapping imagery of differing 
characteristics, then one should not forget, that such a combination is doubtful for 
the following reason : the measurement of direction is most accurate right below the 
sensor, at a depression angle of 900, whereas the measurement of echotime satis­
factorily resolves terrain details only at depression angles other than 900, thus up 
to 750. The resolution properties are very different, so as the size and location of 
the imaged area with respect to the flight line are not similar in both systems. 

For their combination, therefore, none of the proposed flight configurations 
could be considered an operational arrangement to produce overlapping imagery. 

However, for the purpose of computing model coordinates, there exists the 
realistic possibility to supplement a SLAR-strip with depression angles from a 
simultaneous radar interferometer. This differs from the other configurations . menti-
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oned in sections 4. 2. 1 and 4. 2. 2, since there is no overdetermination through super­
fiuous projection equations. 

y 1 1 . 5 2 . 5 5 

Qx 1 . 3 1 . 5 2 . 2 5 . 2 

Qy 1 .  6 1 . 7 1 . 7 1 .  8 

Qz 1 .  0 1 . 3  2 . 5 8 . 4 

Table 5 :  Cofacto1s of model coordinates derived from a system measuring simultaneously echo 
time and depression angle (Read Y instead of y) 

Table 5 shows the results for such an arrangement for the following weight 
assumptions : 

Qxo :  Qyo :  Qzo :  Qcp :  Q(J) :  Qx : Q. : Qn = 1 :  1 : 0.4 : 0. 1 6 : 0. 1 6 : 0. 1 6 : 0. 5 : 0. 1 6  

where Y i s  determined rather well. In judging the numerical values, one has to bear 
in mind, tbat, besides the lack of overdetermination, the weight coefficients for the 
observations differ from those assumed for tables 3 and 4. 

5. Conclusions, Recomendations 

In the investigation of the model formation with remote sensing imagery the 
present study starts from a general projection equation, which can be specialised 
for the various imaging systems. The model coordinates in these equations are ex­
pressed as functions of quantities, which are assumed to be measured. The effect 
of various fiight configurations to obtain overlapping imagery for given accuracies 
of measurable quantities is studied. By means of the law of error propagation, the 
cofactors of the model coordinates are computed for the optical mechanical scanning, 
the side looking radar and a combination of these two principles. 

The main conclusions can be drawn from the seif explanatory tables. However, 
one may summarize these on the basis of error propagation 

(i) for optical mechanical scanning : 
scheme (b) allows for the best model formation ; 
X-coordinates are well determined in all configurations ; 
the convergent systems are disappointing; the errors propagate unfavourably 
into model coordinates ; 
hyperbolic scanning is superior to rectilinear scanning for convergent systems ; 
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there is no correlation of Xwith Y- and Z-coordinates, except for scheme (d) ; 
Y and Z are strongly correlated ; 

(ii) for the echotime measurement : 
scheme (b) allows for the best mo<lel formation; heights are only inaccurately 
defined in the middle of the model area; 
X-coordinates are generally well defined ; 
cross strips (scheme (d)) do not improve the model coordinates with respect 
to error propagation ; 
convergent SLAR-systems are disappointing; they only could be successful 
if large convergence angles are applied, e. g. 600 ; 
with regard to correlation among the model coordinates the same hol<ls as 
for optical mechanical scanning; 

(iii) for a combination of both principles :  
the physical difference of the sensors hampers the realisation of the geo­
metrical concept ; 
the measurement of the depression angle with a radar interferometer would 
give model coordinates of relatively high and homogenous accuracy. 

With regard to further investigations it is advisable, on the basis of the obtained 
results, to stress concepts (a) and (b) of figure 2. lt would be desirable to perform a 
practical test using real imagery. This, however, is only possible for scheme (b), 
since appropriate convergent systems with large convergence angles are not available 
at the present time. 

The numerical values in the tables 3-5 should, as far as their absolute size is 
concerned, be interpreted with care since they are based on rather arbitrary assump­
tions for the weight coefficients of the observed quantities. Some photogrammetrists 
may certainly consider the resulting values for the cofactors of the model points rather 
large. However, the values as given in the tables concern absolute accuracy, and 
the coordinate errors of neighbouring points are correlated, so that control points 
may improve the absolute accuracy. 

Further study should therefore be devoted to the implementation of stochastic 
filtering and interpolation of the errors of model coordinates. 
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Appendix: height accuracy obtained from optical-mechanical scanning 

Convergent plane scan 

The height h of a point B with reference to a datum through point A is defined 

in figure 3 and can be computed by means of 

h = flP/(2 . tan cp0) fl P . . . Parallax difference 
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where 

flp = PA - PB = pA . AA - PB · AB P . . .  Parallax 

The scale of the imagery, 'A, is variable in y-direction : 

H ( 1 ) itz 
'A = - . -z- + tanz 

n 
c cos cpo 

The measurement of the parallax difference consists of the observation of the 
x-coordinates of A', A", B', B". Assuming a mean observational error cr0 in the photo­
graph, this will lead to 

Thus 

mZ (PA) = 2 crZ0 . HZ / (cZ . cosZ <po) 
HZ ( 1 ) mZ (PB) = 2crZ0 • -z . -z- + tan

z 
ÜB 

c cos cp0 

HZ ( 2 ) mZ (b..P) = crZ0 . -z . 2 . --z- + tanZ üB 
c cos <?o 

Taking the square root gives 

m (h) = 
cr0 . H . (cosZcp0 . t

.
anZ ÜB/2 + 1)112 

c .  sm <po 

Convergent conical scan 

Here, h results from 

h = b..P . cos ÜB/(2 . tan <I>0) - H . cos ÜB 
( 1 - �) 

COS UB 

The same consideration as above then obviously leads to 

cr0 . H. (cosZ ÜB + 1)112 m(h) = ----'--�------'-----lf2. sin <I>o . c 

x' � 
1 r e' h' 1 0 y � · � · - · - · - · - · - - -' 1 

x• i i 
I ' ' e• 

A' 
„ 1 t. 1 1 i y• ��' �--'-' ��������-+---+--
1 1 

i----- Pe ___ „ 

Figure 3 :  Definitions for derivation of height accuracy from convergent optical mechanical scanner 
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A Theoretical Random-Error Propagation Law for Anblock-Networks 
With Constrained Boundary 

By P. Meissl, Vienna 
Zusa111me11fass1111g 

Anblocknetze setzen sich aus einer großen Anzahl aneinanderliegender elementarer Figuren 

zusammen. Für jede Figur liegen separate photogrammetrische Messungen vor, die es gestatten, 

die Gestalt der Figur in einem unbekannten Maßstab zu rekonstruieren. Ebner hat für große ideali­

sierte Anblocknetze mit festgehaltenen Randpunkten mittels Computer numerische Fehlerstudien 

durchgeführt. An Hand seiner Resultate vermutete er, daß der durchschnittliche Koordinatenfehler 

nach strengem Ausgleich einem ähnlichen logarithmischen Gesetz folgend mit der Anzahl der Netz­

punkte anwächst, wie dies vom Autor im Falle großer Nivellementnetze nachgewiesen wurde. 

Ebners Vermutung wird hier auf analytischem Wege bewiesen. Die genaue Form des asymptotischen 

Fehlergesetzes wird gefunden. 

Summary 

Anblock-networks are composed of a !arge number of adjacent elementary figures. For each 

figure separate photogrammetric measurements are taken, allowing to reconstruct the shape of the 
figure in an unknown scale. Ebner has performed computer simulation studies for !arge idealized 


