Paper-ID: VGI_196102

Bemerkungen und Formeln zur Berechnung langer geodätischer Strecken

Karl Hubeny¹

¹ Graz, Technische Hochschule, Rechbauerstr. 12

Österreichische Zeitschrift für Vermessungswesen 49 (1, 2), S. 3-10, 33-39

1961

BibT_EX:

```
OARTICLE{Hubeny_VGI_196102,
Title = {Bemerkungen und Formeln zur Berechnung langer geod{\"a}tischer
Strecken},
Author = {Hubeny, Karl},
Journal = {{\"0}sterreichische Zeitschrift f{\"u}r Vermessungswesen},
Pages = {3--10, 33--39},
Number = {1, 2},
Year = {1961},
Volume = {49}
}
```


Bemerkungen und Formeln zur Berechnung langer geodätischer Strecken

Von Karl Hubeny, Graz

Das lineare Maß einer langen geodätischen Strecke beginnt mit etwa 1000 Kilometern, einem Betrag, der außerhalb oder zumindest am äußeren Rande jenes Bereiches liegt, in den man die größten Bogenlängen (Netzdiagonalen) der klassischen Triangulation einordnen kann. Dem eben gebrauchten Begriff "lange geodätische Strecke" liegt die üblich gewordene Unterscheidung zwischen kurzen, mittleren und langen geodätischen Strecken zugrunde, der man - nebenbei bemerkt - eigentlich eine Begründung geben müßte, wenn diese drei Begriffe ein eindeutiges Ordnungsprinzip darstellen sollen. Eine solche läßt sich auch tatsächlich finden; man kann dazu entweder auf Größenordnungen der Triangulation oder auf die Dimensionen der Bezugsfläche zurückgreifen. Im ersten Falle wäre das Element das Dreieck erster Ordnung, die nächste Größenordnung das Landesnetz, dem wieder das einen Kontinent überdeckende Dreiecksnetz überzuordnen ist. Man kann nun als "kurze" geodätische Strecke etwa die Dreiecksseite erster Ordnung einschließlich der noch möglichen Extrema nach oben hin ansprechen und gelangt so zu einem Bereich bis um 100 km, vielleicht noch etwas mehr, wobei der Schwerpunkt zwischen 30 und 50 km liegt. Wesentlich dehnbarer wird der Begriff der "mittleren" Strecke, wenn man sie mit den Diagonalen eines Landesnetzes in Verbindung bringt; bezieht man ihn aber auf Teile von Triangulationsnetzen, wie sie im Rahmen einer Netzausgleichung als Einheiten entstehen können, so könnte die Länge der Diagonalen etwa beim zehnfachen des früheren Betrages, also etwa bei 300 bis 500 km, liegen, welcher Betrag sich aber auch bis 1000 km und vielleicht noch mehr ausweiten kann. Darüber hinaus wäre der Bereich der "langen" geodätischen Strecken anzunehmen. Diese Einteilung paßt sich, zum mindesten für die obere Grenze der Schwerpunktsbildungen innerhalb der beiden ersten Begriffe, einigermaßen den Größenordnungen von 0,01 und 0,1 des mittleren Erdradius an, so daß man Bogenlängen bis 0,02 des Erdradius als kurze, von 0,02 bis 0,2 als mittlere und über 0,2 des Erdradius als lange geodätische Strekken ansprechen könnte.

Fast möchte es scheinen, es seien beim Entstehen dieser Begriffe nicht allein derartige Überlegungen Pate gestanden, sondern sie seien auch von anderen, recht trivialen Gegebenheiten her beeinflußt worden: Die erwähnten und einigermaßen plausibel begründeten Bereiche decken sich nämlich ziemlich gut mit jenen, die – einschließlich der möglichen Abwandlungen – mit den *Legendreschen* Potenzreihen (kurze geodätische Strecken) und mit den daraus hervorgehenden Mittelbreitenformeln (mittlere Bogenlängen) überstrichen werden können. Die über den Geltungsbereich dieser letzteren Formeln hinausgehenden Bogenlängen wären demnach in den Bereich der langen geodätischen Strecken einzureihen.

Für die Lösung der Hauptaufgaben steht eine Fülle von Formelsystemen zur Verfügung, in deren Gesamtheit sich bekanntlich zwei tragende Gedanken abzeichnen: Die Entwicklung von *Legendre* und die Zuordnung eines sphärischen Dreiecks nach *Bessel*. Während die erste Gruppe einschließlich ihrer vielen Varianten auf die Bereiche der kurzen und der mittleren Bogenlängen beschränkt bleibt und auch, begründet durch die Natur ihrer Ansätze, bleiben muß, ist die *Bessel*sche Lösung mit ihren Abwandlungen keiner Begrenzung der Bogenlänge unterworfen. Zwischen diesen beiden Möglichkeiten liegt in einer bemerkenswerten Mittelstellung die *Jordan-Bessel*sche Lösung der Hauptaufgaben mit maximalen Bogenlängen von etwa 3500 km.

Ein wesentlicher Unterschied zwischen den beiden Lösungsgruppen zeichnet sich im übrigen auch in rechentechnischer Hinsicht ab. Viele der auf die Legendreschen Entwicklungen zurückgehenden Lösungen sind nämlich mit Hilfe geeigneter Tafeln gut und einfach schematisierbar und können in aufeinanderfolgende Multiplikationen und Additionen aufgelöst werden; diese Bemerkung gilt auch für die Jordan-Besselsche Lösung. Im Gegensatz hiezu erweisen sich Formelsysteme auf der Grundlage des Besselschen Gedankens etwas spröde in bezug auf ihre rechnerische Auswertung, wobei als Begründung nicht nur der Lösungsweg an sich angeführt werden muß, sondern bis zu einem gewissen Grad auch die Form, die man den Formelsystemen gibt. Als Endziel soll doch ein Formelsystem von klarer und möglichst einfacher Struktur mit festen Zahlenkoeffizienten angestrebt werden. Allein schon die Einführung abkürzender Hilfsfunktionen, etwa in der Form u = u(v(x)) stört bereits beträchtlich die Übersichtlichkeit des Rechenganges. Grundsätzlich ist ferner zu bemerken, daß die schematisierte Maschinenrechnung einem Iterationsverfahren längst nicht mehr jene Unbequemlichkeiten rechnerischer Natur anhaften läßt, als dies einstmals der Fall war. Ein klar vorgezeichneter Iterationsvorgang auf der Grundlage eines einfachen Formelsystems ist meist rascher zu bewältigen und damit wirtschaftlicher als eine direkte Rechnung mittels Formeln komplizierter Natur. Zieht man ferner noch den Aufbau mancher Formelsysteme mit in Betracht, so gewinnt man ein wenig den Eindruck, die Loslösung von der logarithmischen Rechnung sei nicht immer völlig gelungen, wobei noch andere, nur Erschwerungen mit sich bringende und anscheinend festes Traditionsgut darstellende Gepflogenheiten vielfach konsequent beibehalten werden. Mit der letzten Bemerkung ist die Behandlung der

immer auftretenden Wallisschen Integrale von der Form $\int_{0}^{x} \sin^{2n} x \, dx$ gemeint;

meist werden sie durch Überführung von $\sin^{2n} x$ in eine die Kosinus der Winkelvielfachen enthaltende Funktion umgeformt, wodurch nach der Integration an Stelle der Potenzen die Sinus der Winkelvielfachen treten. Es ist nun schwer einzusehen, warum — auch bei logarithmischer Rechnung — die Werte sin 2x, sin 4x, sin 6x, ... leichter zu berechnen sein sollten als die Werte von $\sin^2 x$, $\sin^4 x$, $\sin^6 x$, ...; im Gegenteil, es werden nach der Bildung von 2x, 4x, 6x, ... neue Funktionsaufschlagungen notwendig, wobei überdies Varianten in der Vorzeichenfolge auftreten können.

Diese Bemerkungen, mögen sie auch etwas kritisch klingen, sollen nicht etwa den Wert des Vorhandenen schmälern; sie sollen lediglich Möglichkeiten der Vereinfachung aufzeigen, und sie mögen auch die Begründung für den in der vorliegenden Arbeit in dieser Richtung hin unternommenen Versuch geben. Wir stellen uns die Aufgabe, auf einem möglichst einfachen Wege zu einem einzigen Formelpaar für die Lösung der beiden Hauptaufgaben über beliebig lange geodätische Strecken zu gelangen, wobei wir noch die Bedingung stellen, daß einfache, mit der Rechenmaschine leicht zu bewältigende Formeln entstehen sollen, deren Koeffizienten aus festen Ausgangswerten schematisch ermittelt, oder besser, mit einem einzigen Argument tabelliert werden können.

Wie alle das Thema betreffenden Formelentwicklungen stellen wir die beiden Differentialgleichungen

$$ds = -\frac{a}{V} d\sigma$$
, $dl = -\frac{1}{V} d\lambda$... (1a, 1b)

an die Spitze unserer Überlegungen. Hierin beziehen sich die mit den lateinischen Buchstaben s, l bezeichneten Größen auf das Ellipsoid, die mit den griechischen Buchstaben σ , λ benannten Größen auf das *Bessels*che Hilfsdreieck der Kugel mit dem Radius a. In (1) ist V die aus $V^2 = 1 + e'^2 \cos^2 \varphi$ gebildete Hilfsfunktion; die ellipsoidische Strecke s ist im linearen, die sphärische Seite σ im Bogenmaß einzuführen. Ersetzt man in der Hilfsfunktion V die zweite Exzentrizität e' nach

$$e'^2 = \frac{e^2}{1 - e^2}$$

durch die erste Exzentrizität e und die ellipsoidische Breite φ durch die ihr nach tg² $\beta = (1 - e^2)$ tg² φ zugeordnete, als reduzierte Breite bezeichnete Kugelbreite β , so ergibt sich

$$\frac{1}{V} = \sqrt{1 - e^2 \cos^2 \beta}, \qquad \qquad \dots \qquad (2)$$

womit die Differentialgleichungen (1) in

$$ds = a \sqrt{1 - e^2 \cos^2 \beta} \ d\sigma \quad , \quad dl = \sqrt{1 - e^2 \cos^2 \beta} \ d\lambda \qquad . \quad . \quad (3a, 3b)$$

übergehen. Wie man leicht zeigen kann, führen sie zu elliptischen Integralen. Wir lassen jedoch diese Lösungsmöglichkeit beiseite und entwickeln die rechten Gleichungsseiten nach dem binomischen Satz, was zu den wegen der Größenordnung e^2 rasch konvergierenden Ausdrücken

$$ds = a \left(1 - \frac{1}{2} e^2 \cos^2 \beta - \frac{1}{8} e^4 \cos^4 \beta - \frac{1}{16} e^6 \cos^6 \beta - \dots \right) d\sigma \qquad \dots (4a)$$

$$dl = \left(1 - \frac{1}{2}e^2\cos^2\beta - \frac{1}{8}e^4\cos^4\beta - \frac{1}{16}e^6\cos^6\beta - \dots\right)d\lambda \qquad \dots (4b)$$

führt.

Im Gegensatz zu einer Reihe anderer Entwicklungen betrachten wir den Verlauf der geodätischen Kurve nicht mit einem der Punkte $\alpha = \frac{1}{2}\pi$ als Ausgangspunkt; wir wählen statt dessen — siehe auch *Levallois* und *Dupuy* — hiefür einen ihrer Schnittpunkte mit dem Äquator. Den so gewählten Ausgangspunkt bezeichnen wir mit P_0 und erteilen allen auf ihn bezogenen Größen den Index Null. Den auf der geodätischen Kurve bewegten Punkt bezeichnen wir mit P, wobei wir die auf seine Lage bezogenen Größen ohne Index einführen. Das sphärische Hilfsdreieck auf der Kugel mit dem Radius *a* ergibt sich dann nach Abb. 1; für die weitere Rechnung benützen wir demnach nicht das Polardreieck, sondern das rechtwinkelige sphärische Dreieck P_0PP' .

Wir gehen von der Differentialgleichung (4a) aus und entnehmen dem eben erwähnten rechtwinkeligen sphärischen Dreieck $P_0PP' \sin \beta = \cos \alpha_0 \sin \sigma$, woraus sich $\cos^{2n}\beta = (1 - \cos^2 \alpha_0 \sin^2 \sigma)^n$ ergibt. Die letztere Beziehung führen wir in (4a) ein und erhalten

Abbildung 1

worin die Größen As, Bs usw. nach

$$A_{s} = a \left(1 - \frac{1}{2} e^{2} - \frac{1}{8} e^{4} - \frac{1}{16} e^{6} - \frac{5}{128} e^{8} - \dots \right) = a \sqrt[3]{1 - e^{2}} = b$$

$$B_{s} = a \left(\frac{1}{2} e^{2} + \frac{2}{8} e^{4} + \frac{3}{16} e^{6} + \frac{20}{128} e^{8} + \dots \right)$$

$$C_{s} = a \left(-\frac{1}{8} e^{4} - \frac{3}{16} e^{6} - \frac{30}{128} e^{8} - \dots \right)$$

$$D_{s} = a \left(\frac{1}{16} e^{6} + \frac{20}{128} e^{8} + \dots \right)$$

$$E_{s} = a \left(-\frac{5}{128} e^{8} - \dots \right)$$

zu berechnen sind. Sie sind für ein bestimmtes Ellipsoid konstante Zahlen, deren Summe, wie man sieht, den Betrag a ergeben muß.

Die nunmehr auszuführende Integration von (5) führt zu Integralen von der Form

$$\int_{0}^{\sigma} \sin^{2n}\sigma \ d\sigma,$$

die man als Wallissche Integrale bezeichnet und nach

$$\int_{0}^{\sigma} \sin^{2n} \sigma \, d\sigma = -\frac{1}{2n} \cos \sigma \, \sin^{2n-1} \sigma + \frac{2n-1}{2n} \int_{0}^{\sigma} \sin^{2n-2} \sigma \, d\sigma \qquad \dots \tag{7}$$

zu berechnen sind. Man findet für n = 1, 2, 3, ...

$$\int_{0}^{\sigma} \sin^{2} \sigma \, d\sigma = \frac{1}{2} \sigma - \frac{1}{2} \cos \sigma \sin \sigma,$$

$$\int_{0}^{\sigma} \sin^{4} \sigma \, d\sigma = \frac{3}{8} \sigma - \frac{3}{8} \cos \sigma \sin \sigma - \frac{1}{4} \cos \sigma \sin^{3} \sigma,$$

$$\int_{0}^{\sigma} \sin^{6} \sigma \, d\sigma = \frac{5}{16} \sigma - \frac{5}{16} \cos \sigma \sin \sigma - \frac{5}{24} \cos \sigma \sin^{3} \sigma - \frac{1}{6} \cos \sigma \sin^{5} \sigma \, \text{usw.},$$

womit sich aus (5) ergibt

+

۲

į

$$s = \left(A_s + \frac{1}{2}B_s\cos^2\alpha_0 + \frac{3}{8}C_s\cos^4\alpha_0 + \frac{5}{16}D_s\cos^6\alpha_0 + \frac{35}{128}E_s\cos^8\alpha_0 + \dots\right)\sigma + \left(-\frac{1}{2}B_s\cos^2\alpha_0 - \frac{3}{8}C_s\cos^4\alpha_0 - \frac{5}{16}D_s\cos^6\alpha_0 - \frac{35}{128}E_s\cos^8\alpha_0 - \dots\right)$$

$$\cos \sigma \sin \sigma +$$

$$+ \left(\qquad -\frac{1}{4} C_s \cos^4 \alpha_0 - \frac{5}{24} D_s \cos^6 \alpha_0 - \frac{35}{192} E_s \cos^8 \alpha_0 - \ldots \right) \\ \cos \sigma \, \sin^3 \sigma + \frac{1}{24} C_s \cos^4 \alpha_0 - \frac{5}{24} C_s \cos^6 \alpha_0 - \frac{35}{192} E_s \cos^8 \alpha_0 - \ldots \right)$$

$$\left(\begin{array}{cc} -\frac{1}{6} D_s \cos^6 \alpha_0 - \frac{7}{48} E_s \cos^8 \alpha_0 - \ldots \right)$$

 $\cos \sigma \sin^5 \sigma +$

Da die Werte A_s , B_s , C_s usw. für ein bestimmtes Ellipsoid nach (6) fest vorgegebene Zahlen sind, sind es natürlich auch deren in den Klammern vor den Produkten $\cos \sigma \sin \sigma$, $\cos \sigma \sin^3 \sigma$,... stehenden Bruchteile. Schreibt man die Klammerausdrücke mit vereinfachten Bezeichnungen, so erhält man

$$s = [A_s] \sigma + [B_s] \cos \sigma \sin \sigma + [C_s] \cos \sigma \sin^3 \sigma + [D_s] \cos \sigma \sin^5 \sigma + [E_s] \cos \sigma \sin^7 \sigma + \dots, \qquad \dots (10)$$

wobei sich die Bedeutung der mit eingeklammerten Buchstaben bezeichneten Koeffizienten durch Vergleichung mit (9) ergibt. Werden die Parameter der Ellipsoide von *Bessel, Hayford* und *Krassowsky* eingeführt, so ergeben sich die Koeffizienten von (10) aus

 $0,000\,06\,\cos^8\alpha_0-\ldots$ $|E_{s}| = +$

Die jeweils oberste Zahl bezieht sich auf das Ellipsoid von Bessel, die mittlere auf das von Hayford und die unterste auf das Ellipsoid von Krassowsky. Der Ausdruck $[A_s]$ ist hiebei mit $(c^0)^{-1}$ multipliziert, so daß der sphärische Bogen σ in Graden alter Teilung eingeführt werden kann.

Die den Übergang von der sphärischen auf die ellipsoidische Bogenlänge vermittelnde Formel (10) ist mit der Rechenmaschine leicht zu berechnen. Für eine vorgegebene geodätische Kurve ist das äquatoriale Azimut α_0 bekannt; durch Aufschlagen einer einzigen Winkelfunktion $\cos \alpha_0$ können die Potenzen $\cos^{2n} \alpha_0$ gebildet werden, die mit (11) die Werte der Koeffizienten in (10) ergeben. Auf die Anwendung von (10) im Rahmen der Hauptaufgaben werden wir später zurückkommen.

In ähnlicher Weise integrieren wir die Differentialgleichung (4b). Wir schreiben sie zuvor in der Form

$$dl = d\lambda + \left(-\frac{1}{2}e^{2}\cos^{2}\beta - \frac{1}{8}e^{4}\cos^{4}\beta - \frac{1}{16}e^{6}\cos^{6}\beta - \ldots \right) d\lambda \qquad (12)$$

und substituieren im zweiten Teil der rechten Gleichungsseite, indem wir aus dem Dreieck $P_0 P P'$ (Abb. 1) die Beziehung $tg \lambda = \sin \alpha_0 tg \sigma$ entnehmen und daraus

bilden. Diesem Dreieck entnehmen wir weiter $\cos^2 \sigma = \cos^2 \lambda \cos^2 \beta$, womit (13) in

$$d\lambda = \frac{\sin \alpha_0}{\cos^2 \beta} \, d\sigma \qquad \qquad \dots \quad (14)$$

8

übergeht. Die Substitution mit (14) ergibt zunächst

$$dl = d\lambda + \sin \alpha_0 \left(-\frac{1}{2} e^2 - \frac{1}{8} e^4 \cos^2 \beta - \frac{1}{16} e^6 \cos^4 \beta - \ldots \right) d\sigma, \qquad \dots (15)$$

worin wir in weiterer Folge mit der schon benützten Beziehung $\cos^{2n}\beta = (1 - \cos^2\alpha_0 \sin^2\sigma)^n$

die Veränderliche σ einführen. Wir erhalten schließlich aus (12)

$$dl = d\lambda + \left[\left(-\frac{1}{2} e^2 - \frac{1}{8} e^4 - \frac{1}{16} e^6 - \frac{5}{128} e^8 - \dots \right) \sin \alpha_0 + \\ + \left(+\frac{1}{8} e^4 + \frac{2}{16} e^6 + \frac{15}{128} e^8 + \dots \right) \sin \alpha_0 \cos^2 \alpha_0 \sin^2 \sigma + \\ + \left(-\frac{1}{16} e^6 - \frac{15}{128} e^8 - \dots \right) \sin \alpha_0 \cos^4 \alpha_0 \sin^4 \sigma + \\ + \left(-\frac{5}{128} e^8 + \dots \right) \sin \alpha_0 \cos^6 \alpha_0 \sin^6 \sigma + \dots \right] d\sigma,$$

welchen Ausdruck wir mit vereinfachter Bezeichnung der Koeffizienten in

$$dl = d\lambda + [A_l \sin \alpha_0 + B_l \sin \alpha_0 \cos^2 \alpha_0 \sin^2 \sigma + C_l \sin \alpha_0 \cos^4 \alpha_0 \sin^4 \sigma + D_l \sin \alpha_0 \cos^6 \alpha_0 \sin^6 \sigma + \dots] d\sigma \qquad (17)$$

umschreiben. Die Bedeutung der nur von der benützten Bezugsfläche abhängigen Koeffizienten A_l , B_l usw. ergibt sich durch Vergleichung mit (16); ihre Summe ist $-\frac{1}{2}e^2$. Bei der Integration treten wieder die *Wallis*schen Integrale auf, mit deren Lösungen wir schließlich aus (17) erhalten:

$$\begin{split} l &= \lambda + \left(A_{l} \sin \alpha_{0} + \frac{1}{2} B_{l} \sin \alpha_{0} \cos^{2} \alpha_{0} + \frac{3}{8} C_{l} \sin \alpha_{0} \cos^{4} \alpha_{0} + \right. \\ &+ \frac{5}{16} D_{l} \sin \alpha_{0} \cos^{6} \alpha_{0} + \frac{35}{128} E_{l} \sin \alpha_{0} \cos^{8} \alpha_{0} + \ldots \right) \sigma + \\ &+ \left(- \frac{1}{2} B_{l} \sin \alpha_{0} \cos^{2} \alpha_{0} - \frac{3}{8} C_{l} \sin \alpha_{0} \cos^{4} \alpha_{0} - \frac{5}{16} D_{l} \sin \alpha_{0} \cos^{6} \alpha_{0} - \right. \\ &- \frac{35}{128} E_{l} \sin \alpha_{0} \cos^{8} \alpha_{0} - \ldots \right) \cos \sigma \sin \sigma + \\ &+ \left(- \frac{1}{4} C_{l} \sin \alpha_{0} \cos^{4} \alpha_{0} - \frac{5}{24} D_{l} \sin \alpha_{0} \cos^{6} \alpha_{0} - \right. \\ &- \frac{35}{192} E_{l} \sin \alpha_{0} \cos^{8} \alpha_{0} - \ldots \right) \cos \sigma \sin^{3} \sigma + \\ &+ \left(- \frac{1}{6} D_{l} \sin \alpha_{0} \cos^{6} \alpha_{0} - \frac{7}{48} E_{l} \sin \alpha_{0} \cos^{8} \alpha_{0} - \ldots \right) \\ &- \frac{1}{6} D_{l} \sin \alpha_{0} \cos^{6} \alpha_{0} - \frac{7}{48} E_{l} \sin \alpha_{0} \cos^{8} \alpha_{0} - \ldots \right) \\ &- \frac{1}{8} E_{l} \sin \alpha_{0} \cos^{8} \alpha_{0} - \ldots \right) \\ &- (18) \end{split}$$

Schreibt man auch diesen Ausdruck mit vereinfachter Bezeichnung der Koeffizienten, so ist

$$l = \lambda + [A_l] \sigma + [B_l] \cos \sigma \sin \sigma + [C_l] \cos \sigma \sin^3 \sigma + + [D_l] \cos \sigma \sin^5 \sigma + [E_l] \cos \sigma \sin^7 \sigma + \dots$$
(19)

Die Koeffizienten von (19) sind, ähnlich wie früher, für die Ellipsoide von Bessel, Hayford und Krassowsky zu berechnen aus

$$\begin{bmatrix} A_{l} \end{bmatrix} = - \begin{cases} 0,003 342 773 182 \\ 0,003 367 003 367 \\ 0,003 352 329 869 \end{cases} \sin \alpha_{0} + \begin{cases} 0,000 002 802 903 \\ 0,000 002 843 753 \\ 0,000 002 818 979 \end{cases} \sin \alpha_{0} \cos^{2} \alpha_{0} - \\ - \begin{cases} 0,000 000 007 057 \\ 0,000 000 007 212 \\ 0,000 000 007 117 \end{cases} \sin \alpha_{0} \cos^{4} \alpha_{0} + 0,000 000 000 025 \\ \sin \alpha_{0} \cos^{6} \alpha_{0} - Gl_{\cos^{8} \alpha_{0}} + \dots \end{cases}$$

$$\begin{bmatrix} B_{l} \end{bmatrix} = - \begin{cases} 0,000 160 5945 \\ 0,000 162 9350 \\ 0,000 161 5156 \end{cases} \sin \alpha_{0} \cos^{2} \alpha_{0} + \begin{cases} 0,000 000 4043 \\ 0,000 000 4132 \\ 0,000 000 4078 \end{cases} \sin \alpha_{0} \cos^{4} \alpha_{0} - \\ 0,000 000 4078 \end{cases} \sin \alpha_{0} \cos^{6} \alpha_{0} + Gl_{\cos^{8} \alpha_{0}} - \dots$$

$$\begin{bmatrix} C_{l} \end{bmatrix} = + \begin{cases} 0,000 000 2695 \\ 0,000 000 2755 \\ 0,000 000 2719 \end{cases} \sin \alpha_{0} \cos^{4} \alpha_{0} - 0,000 000 0010 \sin \alpha_{0} \cos^{6} \alpha_{0} + \\ + Gl_{\cos^{8} \alpha_{0}} - \dots \end{cases}$$

$$(20)$$

$$[D_l] = - 0,000\ 000\ 0008\ \sin \alpha_0 \cos^6 \alpha_0 + Gl_{\cos^8 \alpha_0} - \dots$$

 $[E_l] = + 0,000\ 000\ 000\ 003\ \sin \alpha_0\ \cos^8 \alpha_0 - \dots$

Da man den ellipsoidischen Längenunterschied in der Regel in Graden alter Teilung zu erhalten wünscht, ist in den beiden ersten Termen von (19) der sphärische Längenunterschied λ und der Großkreisbogen σ im selben Maße, d. h. in Graden alter Teilung, einzuführen; den weiteren Koeffizienten $[B_l]$ bis $[E_l]$ ist die in Graden alter Teilung ausgedrückte Umwandlungszahl ρ^0 bereits beigefügt.

Setzen wir in (19) $\lambda = \sigma = \pi$, so erhalten wir die halbe Umlaufperiode einer geodätischen Kurve, die sich zufolge sin $\sigma = 0$ für $\sigma = \pi$ aus (19)

$$l = \pi (1 + [A_l])$$
 ... (21)

ergibt, woraus natürlich für die ganze Umlaufperiode

$$l = 2 \pi (1 + [A_l])$$
 . . . (22)

folgt. Die Umlaufperiode einer geodätischen Kurve ist, da bei der in Eurasien gebräuchlichen Zählung von Azimut und Länge das Vorzeichen von sin α_0 stets mit dem von λ und *l* übereinstimmt und daher — siehe (20) — der Absolutwert des Klammerausdruckes in (21) oder (22) im allgemeinen kleiner als die Einheit sein muß, bekanntlich stets kleiner als 2π . Sie liegt innerhalb der durch sin $\alpha_0 \rightarrow 0$ (Meridiane) und sin $\alpha_0 \rightarrow 1$ (Äquator) gegebenen Grenzen, also zwischen

$$l = 2 \pi$$
 und $l = 2 \pi \sqrt{1 - e^2}$. (23)
(Schluß folgt.)

10

OSTERREICHISCHE ZEITSCHRIFT FÜR VERMESSUNGSWESEN

Herausaeaeben vom

ÖSTERREICHISCHEN VEREIN FÜR VERMESSUNGSWESEN

Offizielles Organ

des Bundesamtes für Eich- und Vermessungswesen (Gruppen f. Vermessungswesen), der Österreichischen Kommission für die Internationale Erdmessung und der Österreichischen Gesellschaft für Photogrammetrie

REDAKTION:

emer. o. Prof. Dipl.-Ing. Dr. techn. H. Rohrer, o. Prof. Hofrat Dr. phil., Dr. techn. eh. K. Ledersteger und ORdVD. Dipl.-Ing. Dr. techn. Karl Levasseur

Baden bei Wien, Ende April 1961	49. Jg.
	Baden bei Wien, Ende April 1961

Bemerkungen und Formeln zur Berechnung langer geodätischer Strecken

Von Karl Hubeny, Graz

(Schluß)

Bevor wir auf die Berechnung der Hauptaufgaben mit (10) und (19) eingehen, nehmen wir noch einige Abschätzungen hinsichtlich der Größenordnung der einzelnen Glieder innerhalb der vorliegenden Formeln vor, wozu wir die Eingangswerte $\sigma = \pi$ und die möglichen Maxima der aus den Winkelfunktionen gebildeten Produkte voraussetzen.

Zunächst zur Formel (10). Im Koeffizienten $[A_{\bullet}]$ liegt der mit der obigen Annahme maximale Einfluß des Terms mit e^8 in der Größenordnung einiger Zehntelmillimeter und in allen übrigen Teilen sogar noch wesentlich darunter. Verzichtet man darauf, den Millimeter zu garantieren, so darf man in (10) bzw. (11) alle Glieder mit e^8 , d. h. mit $\cos^8 \alpha_0$ weglassen, wodurch sich (10) auf den Umfang

 $s = [A_s] \sigma + [B_s] \cos \sigma \sin \sigma + [C_s] \cos \sigma \sin^3 \sigma + [D_s] \cos \sigma \sin^5 \sigma$. . . (24) reduziert.

Ähnliches gilt für die Formel (19). Der Einfluß des ersten Gliedes liegt bei Weiterbenützung der obigen Annahme, wie man sich leicht überzeugen kann, bei etwa 2000". Das Glied mit $\cos \sigma \sin \sigma$ ergibt dagegen im Maximum nur mehr einen Betrag in der Größenordnung der Zehntelsekunde. Da gegenüber diesem die weiteren Glieder stets mindestens mit dem Faktor e^2 absinken, ist als letzter noch einzubeziehender Term der mit $\cos \sigma \sin^5 \sigma$ anzusehen, d. h. es dürfen in (19) und (20) jedenfalls die Glieder mit e^{10} weggelassen werden. Die weitere Abschätzung zeigt aber auch einen nur sehr geringen Einfluß der Glieder mit $\cos^6 \alpha_0$, d. h. jener mit e^8 , der innerhalb des Terms mit σ einige wenige Zehntelmillimeter, in den weiteren Termen wesentlich weniger beträgt. Will man nicht gerade den Millimeter garantieren, so kann (19) und entsprechend auch (20) auf den Umfang

$$l = \lambda + [A_l] \sigma + [B_l] \cos \sigma \sin \sigma + [C_l] \cos \sigma \sin^3 \sigma \qquad \dots \qquad (25)$$

beschränkt werden, d. h. alle Glieder mit e^8 oder $\cos^6 \alpha_0$ dürfen unberücksichtigt bleiben.

Mit (10) und (19) liegen Formeln vor, die zwar grundsätzlich den *Bessel*schen Formeln entsprechen, sich aber von ihnen durch die Einführung von α_0 an Stelle der maximalen Breite, durch eine etwas andere Entwicklung und eine andere äußere Form unterscheiden. Durch die Auflösung in leicht und schematisch berechenbare Produkte und Summen sowie durch ein Minimum an notwendigen Funktionsaufschlagungen sind sie mit der Rechenmaschine einfach und rasch zu berechnen. Als besondere Eigenschaft muß aber hervorgehoben werden, daß ihre Koeffizienten für ein bestimmtes Ellipsoid Funktionen allein des Azimuts α_0 sind und mit ihm als Argument tabelliert werden können. Liegen einmal derartige Tafeln vor — ihre Berechnung ist vom Verfasser in Aussicht genommen —, so reduziert sich der Aufwand an Rechenarbeit auf ein Minimum.

Abbildung 2a,b

Im folgenden soll noch auf die Benützung der mitgeteilten Formeln im Rahmen der Lösung der beiden Hauptaufgaben etwas näher eingegangen werden. Den zunächst auf die erste Hauptaufgabe bezogenen Überlegungen liegen die Bezeichnungen der Abb. 2 zugrunde. Gegeben seien P₁, α_1 und s_{12} ; gesucht sei P₂, d. h. die ellipsoidische Breite φ_2 dieses Punktes und sein Längenunterschied l_{12} gegenüber P₁. Das Azimut α_2 können wir außer Betracht lassen, da es, wenn die Aufgabe im eben erwähnten Rahmen gelöst ist, aus dem sphärischen Sinussatz oder, wenn man will, aus dem *Clairaut*schen Satz berechnet werden kann.

Aus einem der bekannten Zusammenhänge

tg
$$\beta = \sqrt{1 - e^2}$$
 tg φ , cos $\beta = \frac{1}{\sqrt{1 - e^2}} \cos \varphi$, sin $\beta = \frac{1}{\sqrt{V}} \sin \varphi$. . . (26)

$$\sin \alpha_0 = \sin \alpha_1 \cos \beta_1 \qquad \dots \qquad (27)$$

und

$$\sin \sigma_1 = \frac{\sin \beta_1}{\cos \alpha_0}$$
, $\sin \lambda_1 = \operatorname{tg} \alpha_0 \operatorname{tg} \beta_1$... (28)

die zugeordneten sphärischen Größen α_0 , σ_1 und λ_1 erhalten werden.

Mit der Kenntnis von α_0 sind die Koeffizienten der Formeln (10) und (19) oder abgekürzt nach (24) und (25) vollständig gegeben. Wir errechnen daraus mit (28) die Größen s_1 und l_1 .

Es ist nun nach Abb. 2a $s_2 = s_1 + s_{12}$. Aus (10) bzw. (24) ist der Wert σ_2 zu berechnen, der der ellipsoidischen Bogenlänge s_2 entspricht. Wir setzen zunächst

$$\sigma_2 \doteq \frac{s^2}{[A_s]} \qquad \dots \qquad (29)$$

und gehen mit diesem Näherungswert in (10) oder (24) ein. Damit erhalten wir einen Wert (s_2) , der sich vom Sollwert s_2 mehr oder weniger stark unterscheidet. Wir verändern nunmehr das lineare Maß der obigen Näherung für σ_2 ungefähr um den Betrag $s_2 - (s_2)$ und nehmen in unmittelbarer Nähe des so erhaltenen, verbesserten Näherungswertes ein diesen einschließendes, etwa auf 0,001^o abgerundetes Paar von Näherungswerten $\sigma_{2,1}$ und $\sigma_{2,2}$ an, mit denen wir eine der Formeln (10) oder (24) durchrechnen und so das Wertepaar $s_{2,1}$ und $s_{2,2}$ erhalten. Der scharfe Wert für σ_2 läßt sich nun, weil der Funktion $\sigma = \sigma(s)$ im betrachteten kleinen Bereich ein fast linearer Verlauf zugeschrieben werden darf, durch Interpolation zwischen den vorliegenden Werten leicht finden. Er ergibt sich mit

$$\sigma_2 = \sigma_{2,1} + \frac{\sigma_{2,2} - \sigma_{2,1}}{s_{2,2} - s_{2,1}} (s_2 - s_{2,1}) \qquad \dots \qquad (30)$$

Ist so der der ellipsoidischen Bogenlänge s_2 zugeordnete Großkreisbogen σ_2 gegeben, so erhält man damit nach

 $\sin \beta_2 = \cos \alpha_0 \sin \sigma_2$ und $\sin \lambda_2 = \operatorname{tg} \alpha_0 \operatorname{tg} \beta_2$... (31, 32) die beiden sphärischen Bestimmungsstücke für den Punkt P_2 . Geht man mit diesen in die Formel (19) bzw. (25) ein – deren Koeffizienten liegen mit α_0 schon fest –, so erhält man die ellipsoidische Länge, während sich aus der Umkehrung einer der Formeln (26) die gesuchte ellipsoidische Breite φ_2 des Punktes P_2 ergibt. Sein Längenunterschied gegen den Punkt P_1 folgt aus $l_{12} = l_2 - l_1$.

Zur Berechnung der zweiten Hauptaufgabe — es sind nunmehr φ_1 , φ_2 und l_{12} gegeben — ist die Kenntnis des Parameters α_0 der die beiden Punkte durchlaufenden geodätischen Kurve Voraussetzung. Er wird, ebenso wie früher σ_2 , durch Interpolation zwischen einem Paar von Näherungswerten gefunden.

Eine erste Näherung für α_0 gewinnen wir durch Auflösung des sphärischen Polardreieckes P_1PP_2 , wozu wir zweckmäßig die aus den *Gauß*schen Gleichungen hervorgehenden Formeln

$$tg \frac{1}{2} (\alpha_1 + \alpha_2) = \frac{\cos \frac{1}{2} (\beta_1 + \beta_2)}{\sin \frac{1}{2} (\beta_2 - \beta_1)} tg \frac{1}{2} \lambda_{12} \qquad \dots (33)$$

$$tg\frac{1}{2}(\alpha_2 - \alpha_1) = \frac{\sin\frac{1}{2}(\beta_1 + \beta_2)}{\cos\frac{1}{2}(\beta_2 - \beta_1)} tg\frac{1}{2}\lambda_{12} \qquad \dots (34)$$

benützen, in die als Näherung für den unbekannten sphärischen Längenunterschied λ_{12} entweder der ellipsoidische Längenunterschied oder, besser, ein aus

$$\lambda_{12} = \frac{1}{6} \left(V_1 + 4 \, V_m + V_2 \right) \, l_{12} \qquad \qquad \dots \quad (35)$$

zu berechnender Näherungswert eingeführt wird. Man gewinnt dadurch einen ersten Näherungswert für α_0 , woraus nach den Formeln (28) die zugehörigen sphärischen Stücke λ_1 , σ_1 und λ_2 , σ_2 vorläufig genähert berechnet werden können.

Die Annäherung nach (35) führt noch bei Bogenlängen um 1000 km zu einem ausreichenden Ergebnis; darüber hinausgehend benützt man den so erhaltenen Näherungswert von α_0 sowie die daraus abgeleiteten Werte σ_1 und σ_2 , um mit Hilfe der aus (25) folgenden Näherung

$$\lambda_2 - \lambda_1 \doteq l_2 - l_1 - [A_l] (\sigma_2 - \sigma_1) \text{ oder } \lambda_{12} \doteq l_{12} - [A_l] (\sigma_2 - \sigma_1) \qquad \dots (36)$$

einen gegenüber (35) wesentlich schärferen Wert für λ_{12} zu berechnen. Damit geht man nochmals in die Formeln (33) und (34) ein – die Faktoren von tg $\frac{1}{2}\lambda_{12}$ liegen

dabei ein für allemal fest - und berechnet einen, wie man sagen könnte, "endgültigen" Näherungswert für α_0 , der sich vom Sollbetrag nur mehr um eine geringfügige Abweichung etwa in der Größenordnung der Sekunde, meist sogar nur um kleine Bruchteile davon unterscheidet. Für die weitere Rechnung führt man wieder zwei diesen Näherungswert einschließende runde Werte $\alpha_{0,1}$ und $\alpha_{0,2}$ ein, deren Differenz mit dem Grad der Annäherung in der gleichen Größenordnung liegt. Jeder dieser beiden Werte wird nun zur Berechnung der beiden Wertepaare $\sigma_{1,1}$, $\lambda_{1,1}$ und $\sigma_{2,1}$, $\lambda_{2,1}$ (mit $\boldsymbol{\kappa}_{0,1}$) sowie $\sigma_{1,2}$, $\lambda_{1,2}$ und $\sigma_{2,2}$, $\lambda_{2,2}$ (mit $\alpha_{0,2}$) benützt, mit denen anschließend in (19) bzw. (25) eingegangen wird, wobei zwei zugeordnete Wertepaare σ_1 , σ_2 , λ_1 , λ_2 eine ellipsoidische Längendifferenz $l_2 - l_1 = l_{12}$ liefern. Aus der mit (36) bewirkten weitgehenden Annäherung für α_0 läßt sich wieder der Schluß ableiten, daß der Funktion $\alpha_0 = \alpha(l_{12})$ im Bereich zwischen den angenommenen runden Werten $\alpha_{0,1}$ und $\alpha_{0,2}$ ein fast linearer Verlauf zugeschrieben werden darf. Zwischen den angenommenen Ausgangswerten $\alpha_{0,1}$, $\alpha_{0,2}$, den damit nach (19) bzw. (25) abgeleiteten Näherungswerten $l_{12,1}$, $l_{12,2}$ sowie den Sollwerten α_0 und l_{12} besteht dann in weitgehender Annäherung die Beziehung

$$\alpha_0 = \alpha_{0,1} + \frac{\alpha_{0,2} - \alpha_{0,1}}{l_{12,2} - l_{12,1}} (l_{12} - l_{12,1}) \qquad \qquad \dots \quad (37)$$

woraus der gesuchte Parameter α_0 der die beiden Punkte P_1 und P_2 durchlaufenden geodätischen Kurve mit hinreichender Schärfe ermittelt werden kann. Führt man diesen und die damit aus (28) folgenden Werte neuerlich in (19) oder (25) ein, so muß sich damit der aus der Angabe bekannte Längenunterschied l_{12} ergeben.

Sollte dies zufolge eines zu wenig scharfen ursprünglichen Näherungswertes für α_0 , d. h. zufolge ungünstiger Annahmen für das Wertepaar $\alpha_{0,1}$ und $\alpha_{0,2}$ nicht

der Fall sein, so müßte, indem man nunmehr das aus (37) folgende Ergebnis als Näherungswert für α_0 ansieht, mit einem auf dieser Grundlage neuerlich und mit einem kleineren Intervall angenommenen Wertepaar $\alpha_{0,1}$, $\alpha_{0,2}$ die Rechnung wiederholt werden. Der Vorgang könnte durch Annahme eines dritten Wertes $\alpha_{0,3}$ und quadratische Interpolation auch für weniger scharfe Näherungen brauchbar gemacht werden.

Nachstehend sei der eben beschriebene Rechengang der zweiten Hauptaufgabe nochmals in Stichworten zusammengefaßt.

- 1. Berechnung einer ersten Näherung für α_0 aus (33) bis (35) und (27); Berechnung der zugeordneten Werte von σ_1 und σ_2 nach (28).
- 2. Berechnung von $[A_1]$ in (25) und Ermittlung der weitgehenden Näherung für λ_{12} aus (36), woraus wieder aus (33), (34) und (27) ein verbesserter Wert für α_0 gewonnen wird.
- 3. Annahme der beiden runden Werte $\alpha_{0,1}$ und $\alpha_{0,2}$, in unmittelbarer Nähe von α_0 , für die jeweils die beiden Wertepaare $\sigma_{1,1}$, $\lambda_{1,1}$ und $\sigma_{2,1}$, $\lambda_{2,1}$ sowie $\sigma_{1,2}$, $\lambda_{1,2}$ und $\sigma_{2,2}$, $\lambda_{2,2}$ aus (28) berechnet werden; Ermittlung der Koeffizienten (19) oder (25) mit $\alpha_{0,1}$ und $\alpha_{0,2}$.
- 4. Durchrechnung von (19) oder (25) mit den eben ermittelten Wertepaaren, Bestimmung von α_0 aus (37). Kontrolle dieses Wertes.
- 5. Endgültige Berechnung von σ_1 und σ_2 , Berechnung der Koeffizienten in (10) bzw. (24); daraus Berechnung von $s_{12} = s_2 s_1$; Berechnung von α_1 und α_2 nach (27).

Soweit der Rechengang für die beiden Hauptaufgaben, bei dessen flüchtiger Betrachtung es vielleicht scheinen mag, daß mit den angegebenen Formeln — ist doch in jedem Falle eine Iteration notwendig — gegenüber den bekannten Formelsystemen kein Vorteil erreicht würde, ja sogar zufolge der Iteration Nachteile gegenüber direkten Formeln bestünden.

Es muß nun zunächst festgehalten werden, daß die mitgeteilten Formeln natürlich keine grundsätzlich neue Lösung der Hauptaufgaben darstellen, sondern sich — wie könnte es zufolge ihres Ansatzes auch anders sein — in die Reihe der Abwandlungen der Besselschen Lösung einfügen. Im Sinne der eingangs erwähnten Absicht wurde aber versucht, in ihrer Ableitung einfachste Wege zu beschreiten und eine Beschränkung auf ein für beide Hauptaufgaben gültiges Formelsystem vorzunehmen. Diese letzteren Umstände allein wären allerdings auch noch kein wesentlicher Fortschritt; wenn ein solcher besteht, so liegt er nach der Meinung des Verfassers in der Form, die den Formeln gegeben werden konnte. Eine völlig schematisch ablaufende Berechnung ihrer Koeffizienten, die in beiden Formeln Funktionen nur eines Argumentes sind, ein Minimum an notwendigen Aufschlagungen von trigonometrischen Funktionen und, in weiterer Folge, die Auflösung in einige wenige Multiplikationen bilden die Charakteristik des damit möglichen Rechenganges. Da die Koeffizienten überdies, worauf schon verwiesen wurde, mit einem einzigen Argument tabelliert werden können, ist die Rechenarbeit soweit reduziert, daß deren absoluter Umfang kaum wesentlich höher liegen dürfte als der, den man zur Berechnung kurzer geodätischer Strecken etwa mit den Legendreschen Potenzreihen - wenn deren Koeffizienten gleichfalls tabelliert vorliegen - aufzuwenden hat. Dem gegenüber wiegt die jedesmal notwendige Iteration gering. Mit einer bestimmten Absicht wurde in diesem Zusammenhang die Lösung der zweiten Hauptaufgabe nochmals in Stichworten zusammengefaßt: Es sollte damit unterstrichen werden, daß die notwendige Iteration nicht unbedingt in einem Herantasten an den gesuchten Wert bestehen muß, sondern daß ihr auch ein rechnerisch glatter Verlauf gegeben werden kann. Dies ist aber wieder nur dann möglich, wenn die benützten Formeln die Voraussetzungen hiezu bieten, Voraussetzungen, die von den Formeln (19) oder (25) sicherlich weitgehend erfüllt werden, besonders dann, wenn ihre Koeffizienten tabelliert vorliegen.

Abschließend sei noch ein Anwendungsbeispiel mitgeteilt, in dem eine von Bodemüller in "Formeln und Tafeln zur Berechnung der beiden geodätischen Hauptaufgaben für das Internationale Ellipsoid bei großen Entfernungen", München, 1955, mitgeteilte Rechnung wiederholt wird.

Mit der auf das Ellipsoid von Hayford bezogenen Angabe

$$\varphi_1 = +50^{\circ}, \varphi_2 = -62^{\circ} 57' 03,203 824'', I_{12} = +95^{\circ} 05' 38,299 430''$$

wurde die zweite Hauptaufgabe nach den mitgeteilten Formeln berechnet, für die sich bei Bodemüller die Ergebnisse

 $\alpha_1 = 140^{\circ} 00' 00,000 022'', \alpha_2 = 114^{\circ} 46' 41,484 203'' und s_{1,2} = 14 999 999,997 m finden.$

Nach dem Übergang auf die reduzierten Breiten

 $\beta_1 = 49,904 \ 819 \ 892^0 \ und \ \beta_2 = -62,872 \ 547 \ 9055^0$

wird nach (33) bis (35) eine erste Näherung für die Azimute mit

 $\alpha_1 = 139,994\ 805\ 519^0$ und $\alpha_0 = 24,458\ 752\ 7626^0$

gefunden. Daraus folgt das Wertepaar

 $\sigma_1 = 122,818\ 3790$ $\sigma_2 = 257,887\ 3600,$

mit dem nach (36) eine weitergehende Näherung des sphärischen Längenunterschiedes mit

 $\lambda_{1,2} = 95,282\ 135\ 850$

und damit aus (33), (34) eine zweite Näherung für die Azimute mit

 $\begin{array}{l} \alpha_1 = 140,000\ 001\ 4528^0 = 140^0\ 00'\ 00,005\ 230''\\ \alpha_2 = 114,778\ 193\ 8068^0 = 114^0\ 46'\ 41,497\ 704''\\ \alpha_0 = \ 24,455\ 936\ 5723^0 = \ 24^0\ 27'\ 21,371\ 660'' \end{array}$

errechnet wurde. Man beachte, daß sich die beiden Azimute bereits auf Beträge von 0,005" und 0,014" den Sollwerten nähern; im ungefähr gleichen Grad ist die Annäherung für den Parameter α_0 zu erwarten.

Bis hierher wurden wesentlich mehr Stellen als nötig mitgeführt; die siebenstellige Rechnung auf 0,1'' hätte vollauf genügt. Die weitere Rechnung wurde zehnstellig mit den auf die Glieder mit e^6 beschränkten Formeln (24) und (25) ausgeführt.

Um die Geschmeidigkeit des Interpolationsverfahrens für α_0 zu zeigen, wird die Rechnung für zwei Paare von runden Näherungswerten vorgenommen, nämlich für

$$\begin{array}{l} \alpha_{0,1} = 240 \; 27' \; 21'' \\ \alpha_{0,2} = 240 \; 27' \; 22'' \end{array} \quad \text{und} \quad \begin{array}{l} \alpha_{0,1} = 240 \; 27' \; 20'' \\ \alpha_{0,2} = 240 \; 27' \; 30''. \end{array}$$

Das Detail des weiteren Vorganges sei weggelassen; man gewinnt aus dem ersten Paar von runden Näherungen die ellipsoidischen Längenunterschiede

> $l_{12,1} = 95^{\circ} \ 05' \ 35,749 \ 855''$ $l_{12,2} = 95^{\circ} \ 05' \ 42,558 \ 240''.$

während das zweite Paar die Längenunterschiede

 $l_{12,1} = 950\ 05'\ 28,942\ 149''$ $l_{12,2} = 950\ 06'\ 37\ 035\ 835''$

$$i_{12,2} = 95^{\circ} 00^{\circ} 57,055855$$

liefert. Die Interpolation nach (37) ergibt im ersten Falle

 $\alpha_0 = 240\ 27'\ 21,374\ 476''$

$$\alpha_0 = 240\ 27'\ 21,374\ 178'',$$

mit welchen Werten sich übereinstimmend die gesuchte Bogenlänge mit

 $s_{12} = 14\,999\,999,99\,\mathrm{m}$

errechnen läßt.

Ebenso übereinstimmend ergibt sich aus beiden Werten der sphärische Längenunterschied mit

$$\lambda_{12} = 95^{\circ} \, 16' \, 55,708 \, 516''$$

der mit (33), (34) zu den Azimuten

 $\alpha_1 = 1400\ 00'\ 00,000\ 008''$ $\alpha_2 = 1140\ 46'\ 41,484\ 152''$

führt. Die Übereinstimmung dieser Werte mit den anfangs mitgeteilten Ergebnissen von *Bodemüller* ist, da sie im Rahmen der gewählten Rechengenauigkeit liegt, durchaus befriedigend.

Zu den Zahlenwerten ist noch zu bemerken, daß die Mitführung von sechs Dezimalen der Bogensekunde in den Azimuten überflüssig und auch der abgekürzten Formeln wegen eigentlich sinnlos ist; der Vorgang wurde gewählt, um das Ergebnis nicht mit rechnerischen Unsicherheiten zu überlagern.

Die zahlenmäßige Erprobung der mitgeteilten Formeln und die Berechnung des Beispiels besorgte Herr Dipl.-Ing. D. Geiger.

Näherungs-Zentroid als optimale Punktlage bei der analytischen Berechnung des mehrfachen Vorwärts- und Rückwärtseinschnittes

Von Walter Smetana, Wien

(Veröffentlichung des Bundesamtes für Eich- und Vermessungswesen)

1. Einleitung

Bei der in der Praxis vorkommenden trigonometrischen Bestimmung von Einschaltpunkten (EP) nach der Methode des mehrfachen Vorwärts- bzw. Rückwärtseinschneidens wird es von Bedeutung sein, das Rechenverfahren zu wählen, das auf rationellstem Wege die optimale Punktlage liefert, deren Genauigkeit den Anforderungen der Praxis entspricht und dennoch mit der Genauigkeit der wahrscheinlichsten Punktlage in schrankenmäßiger Übereinstimmung bleibt. Wie diese Berechnung am zweckmäßigsten und wirtschaftlichsten erfolgen kann, soll hier auf Grund jahrelanger Erprobung gezeigt werden.