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Abstract 

Transponders for Altimeter Calibra
tion and Height Transfer 

Peter Pesec, Hans Sünkel, Nadja Fachbach, Graz 

Transponders receive altimeter signals and return them, after ampl ification, to the altimeter satellite. They provide 
a well-defined reflexion suliace of some square-decimeters which replaces the sea suliace at virtually any arbitrary 
point on mainland. As each radar pulse can be detected individually no averaging is required which leads to a si
gnificant increase of the precision of the measurements. Applications are manifold leading from altimeter calibration 
and orbit control to the determination height differences and of very accurate absolute geoid profiles along the 
ground track of the satellite. The report summarizes the activities of the Graz group and its future plans. 

Zusammenfassung 

Transponder empfangen Altimeter Radarpulse und senden diese verstärkt an das Satellitenaltimeter zurück. Im 
Gegensatz zu Anwendungen der Altimetrie über Meeresflächen ist die reflektierende Fläche von einigen Qua
dratdezimetern exakt definiert und der Einsatzbereich für beinahe beliebige Punkte am Festland gegeben. Nach
dem jeder Radarpuls eindeutig aufgelöst werden kann, kann auf Mittelungsmethoden verzichtet und die Meß
genauigkeit erheblich gesteigert werden. Die Anwendungsbereiche sind vielfältig, sie erstrecken sich von Altimeter
Kalibrierungen über Beiträge zur Bahnbestimmung von Altimetersatelliten bis zu exakten Höhenübertragungen 
zwischen der Meeresobeliläche und dem Festland sowie zwischen Punkten am Festland. Aus letzteren können 
sehr genaue absolute Geoidprofile entlang der Bahnprojektion abgeleitet werden. Der vorliegende Beitrag faßt die 
bisherigen und geplanten Arbeiten der Grazer Gruppe in diesem Bereich zusammen. 

1 .  lntroduction 

A transponder is a "simple" electronic device 
which receives satel l ite altimeter signals and re
turns them, after amplification, to the signal 
source. 

Unl ike the sea surface the reflecting surface is 
a precisely defined point target which produces, 
l ike corner reflectors in satellite laser ranging,  un
ambigous returns. No averaging procedure of 
different reflect ion points is required, the returns 
detected by the altimeter satellite during the 
transponder's stay in the foot-print show a nice 
parabol ic shape (slant range as a function of 
t ime). The value of the slant range at the vertex 
of the parabola g ives the shortest distance be
tween the satel l ite and the transponder, which 
is roughly the height of the satel l ite above the 
transponder ( ± 7 mm) if the transponder is lo
cated within 1 00 m of the ground track. 

Additional informations can be extracted 
which are correlated to the along track compo
nent of the satel l ite posit ion. lt is a straight-for
ward matter to measure the time of the received 
pulses with respect to an external t ime-reference 
(e.g. the one per second clock pulse of a GPS
receiver) with an accuracy of ± 5 microseconds. 
In order to identify the epoch times of the contin-

252 

uous pulse flow h itt ing the transponder some 
pulses are suppressed in a systematic way by 
switching off the transponder for definite periods 
(like in old optical satel l ite geodesy) and record
ing the suppressing t imes. 

The ident ification of the vertex of the parabola 
from a !arge number of measurements (altimeter 
waveforms) significantly reduces the noise of 
the altimeter. Variat ions of the fit procedure 
show a very stable behaviour of the vertex 
(some mi l l imetres) . lt can be emphasized that, 
current ly, transponders introduce errors of below 
1 cm in the range and some microseconds in the 
pulse-timing equ ivalent to about 1 0  to 70 cm of 
the satell ite along-track component. 

Without going into more details about the re
duction. of the altimeter data (see e.g.  [4]) it is ob
vious that the determined height is not a true 
geometrical height but affected by ionosphere 
and troposphere. To reduce the measured height 
to a "vacuum" value the total electron content 
along the signal and the tropospheric zenith de
lay have to be est imated. As the measurement it
self takes only some seconds and is confined to 
one single frequency, a careful monitoring of the 
matter between the transponder and the satell ite 
is required in order not to water down the trans
ponder accuracy. 
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2. lonospheric and Tropospheric Corrections 

The height of the altimeter satell ite above 
ground (the transponder reflecting surface) is 
only biased by signal propagation delays and 
the altimeter itself. 

Informations on the ionosphere are globally 
available (NNSS, IGS, ionosondes, geostationary 
satell ites, seasonal models) and can be esti
mated for the particular transponder position by 
carrying out simultaneous GPS-measurements 
and mapping the ionospheric component (L4) of 
each GPS-satellite to the zenith direction. The si
tuation is fac i litated by the fact that the influence 
of the GPS-derived ionospheric parameters on 
altimeter measurements is reduced by a factor 
of 50 due to the d ifferent wavelengths, but com
pl icated because GPS-derived values determine 
the total ionospheric delay for a distance of 
20.000 km above the earth's surface [1 ] .  The 
portion of the delay affecting the measurements 
to e.g. ERS- 1 /2 at a height of 700 km is difficult 
to estimate. In summary, we believe that iono
spheric delays can be estimated with accuracies 
of better than ± 1 O mm. 

On the other hand the means to monitor the 
tropospheric delay are very cumbersome as in 
most cases the simple model l ing of the tropo
sphere via measured ground-data does not 
work for the wet part of the partial water vapour 
pressure. The employment of water vapour 
radiometers (WVR) combined with informations 
from weather baloons and distributed ground 
meteo-data seems to be a prerequisite for keep
ing the accuracy of transponder derived heights 
at the level of below ± 20 mm. 

3. Possible Applications 

The employment of transponders for support
ing altimetry missions is obvious. The well-de
fined reflecting surface of the transponder allows 
for a pulse per pulse analysis of the reflected 
data as opposed to the averaging procedure ap
plied for "diffuse" surfaces l ike oceans, ice, or 
other f lat areas. lt further enables the use of alti
meters in areas of rough topography, virtually in 
any locality as long as the transponder can be si
tuated along the satel l ite ground track and no 
other reflecting surfaces exist in the close vici
n ity. lt operates in a quasi-passive mode, the ac
tive components being l imited to the signal am
pl ification procedure and the pre-setting of op
eration-windows to reduce power consumption. 
In  this mode transponders can operate fairly un-
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attended as long as power can be supplied; 
data accumulation is confined to the source as 
long as the timing feature is disabled. 

The following scenario indicates the possible 
applications: 

Two transponders are situated along the 
ground track of an altimeter satel l ite. Their posi
tions are computed by GPS-methods in a g lobal 
reference frame ITRF (eventually supplemented 
by SLR). The corrected heights of the satel l ite 
above the transponders and eventually above a 
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Fig. 1: Closed self-contro/ling measurement system 
rea/ized during the transponder campaign COMPASS II. 

nearby sea surface are measured by altimetry. 
The satel l ite orbit is determined via SLR, PRARE, 
GPS in the same ITRF. This system defines a 
closed loop where the misclosures are a mea
sure of the sum of errors introduced by the dif
ferent procedures (see Fig. 1 ). lf this system cov
ers only a local region some of the quantities are 
correlated and the errors reduced by forming dif
ferences. Dependent on which part of this closed 
system is examined the following appl ications 
can be seen (see also [2]): 

3. 1 Altimeter Calibration 

lf the height of the satel l ite above the trans
ponder is determined by independent means 
(SLR, PRARE) transponder measurements can 
be used for the calibration of the on-board alti
meter. A transponder deployment close to a 
SLR site and tied to this site by GPS removes 
part of the orbital errors and contributes to the 
verification and comparison of the altimeter 
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range biases of ERS-1 and ERS-2 simply by 
comparing laser- and radar-derived distances. 
Costly arrangements l ike the "Venice Tower" are 
superfluous, the transponder behaves l ike a re
ference target replacing the sea surface in the 
gulf of Venice by a considerably more accurate 
reference surface. 

3.2 Orbit Determination and Contra/ 

The orbit of ERS-1 is currently determined by 
combining an accurate model of the gravitational 
and non-conservative forces acting on the satel
l ite with the somewhat sparse laser ranging data 
provided by the world-wide network of SLR sta
tions. This situation was improved for ERS-2 by 
the PAARE tracking system.  Transponders tied 
to ITRF by GPS contribute, point by point, to or
bit determination by giving estimates of the ra
d ial component (rms about ± 2 cm) and the 
along-track component (rms about ± 30 cm) in
dependent of weather conditions. Although this 
method is relatively cost-effective it provides an 
independent check and assessment of the qual
ity of the g lobal orbital model. 

3.3 Height Transfer 

Transponders are suitable for providing extre
mely precise targets for altimeter measurements 
in a rough topography. lf the satel l ite orbit is pre
cisely known, with exception of a translation, this 
orbit can be used to "transfer" the height of a 
terrestrial transponder site to another transpon
der site. In addition, transponders provide a l ink 
between the coastland and the mean (averaged) 
sea surface (playing the role of a tide-gauge for 
the time of the overpass) . lt is evident that uncer
tainties in the orbit play a secondary role the 
shorter the "transfer distance" is. Likewise, a 
considerable part of the atmospheric delays is 
cancelled, leaving the problem to model local ef
fects. Altimeter measurements are only subject 
to zenith delays, the high frequency band damps 
ionospheric delays, they provide an indepen
dent, nearly model-free method to complement 
and verify GPS height determination on main
land. 

3.4 Monitoring of Uplifts and Subsidences 

Transponders allow the automatic collection of 
data in unattended mode for long time periods. 
Although the data-rate is pretty low (1 O data
sets per year for a 35-days repeat orbit) it is suf
ficient to mon itor vertical displacements, espe-
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cially in perilous environment l ike near volca
neous or on ice caps. 

3.5 Absolute Geoid Profiles 

Al l  appl ications discussed so far are based on 
purely geometrical considerations (apart from or
bit model l ing and the definition of the sea sur
face). Earth physics comes into play when de
ploying several transponders along a ground 
track, combining SLR orbit determination, alti
metry and orthometric height control ,  and com
paring it with GPS + orthometric height derived 
geoid heights. 

4. Experiences in Height Transfer 

Based on an idea of R.J .  Powell [3] two trans
ponders (NORDA, ESTEC) were deployed along 
the Venice arc during the cal ibration phase of 
ERS-1 and the following month (COMPASS I I) in 
order to demonstrate the efficiency of transpon
ders as altimeter targets on mainland using the 
concept of height transfer. Utmost care was ta
ken to monitor atmospheric conditions during 
the overpasses and to tie the transponder loca
tions at Revine (ltaly) and Oberböden (Austria) 
by GPS. Relevant details are reported in [4] , a 
further joint report wi l l  be published this year by 
P. Cross, University of Newcastle upon Tyne. 

Altogether five common ERS-1 overpasses 
could be detected, the final result for the 
"height-misclosures" was shown to be 

2.8 cm ± 2.6 cm 

indicating that in spite of the various error 
sources the applied method leads to very satis
factory results. 

In view of this promising result ISRSG Graz 
purchased a newly designed transponder ver
sion including the t iming option for monitoring 
the along-track component of the satel l ite orbit 
(see Fig. 2) . As a pilot project, the demonstration 
of the transponder technique for monitoring the 
height of the SHELL oi l  platform Brent (1 60 km 
north-east of Shetland lslands) by height transfer 
to Schindlet (near Zurich) was conducted using 
the ERS-1 overpass on Sunday, Ju ly 1 0, 1 994 
at 21 .20 UT. The new Graz transponder was de
ployed at Schindlet. After a quick-look analysis 
of the altimeter data carried out by Rutherford 
Appleton Lab. the results for the Graz transpon
der suggest an uncertainty of ± 1 mm in the ver
tical and ± 40 cm for the along-track which con
firms the expected specifications. The final re
sults [5] show that the precision of altimeter de-
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9 10 11 12 13 

Fig. 2: ERS-112 Subtracks in Austria (35 days repeat orbit) 

rived height differences is in the order of ± 3 
cm, consistent with COMPASS I I .  

5.  ERS-2 Altimeter Calibration and Orbit De
termination 

In response to the ESA Announcement of Op
portunity for ERS-1 /ERS-2 a common project 
"The Use of Transponders with ERS-1 and 
ERS-2 Altimeters" was worked out by Rutherford 
Appleton Laboratory (Didcot, UK), Geodetic In
stitute of the University of Newcastle upon Tyne 
(UK), Royal Greenwich Observatory (Cambridge, 
UK), Geophysical Department 
of the University of Copenha-
gen (Denmark), and Institute 
for Space Research (Graz, 
Austria). Special emphasis 
was laid on the role of trans-
ponders (4 of them are pre
sently available in Europe) for 
the calibration of the ERS-2 
altimeter and a direct com
parison with ERS-1 , which 
are presently operating in a 
tandem-mode (identical 35-
days repeat orbits with 1 day 
separation). 

The transponder measure
ments were originally planned 

Echo Powet-

14 15 16 17 

Fig. 3: Graz Transponder deployed at LASS (near Lust
bühel) 

to be carried out at five Fig. 4: Radar altimeter returns for ERS-1 pass <26.08. 1995> at Ramsau/ 
cross-over points (intersec- Dachstein. 
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tion of north- and south-going passes) displayed 
in Fig . 3. Two of them showed too many local re
flections to be of any further use, therefore three 
new sites were defined along the particular sub
tracks. As an example the radar altimeter returns 
for an ERS-1 overpass at RAMS (Ramsau / 
Dachstein) are shown in Fig. 4. All sites were 
connected to the International Terrestrial Refer
ence Frame by preceding or on-site GPS-mea
surements, the latter also being used for the esti
mate of the ionospheric corrections. Special at
tention is paid to the cross-over point LASS, si
tuated in the near vicin ity of the Graz laser sta
tion (7 km) for which altimeter derived heights 
and laser distances are highly correlated and 
can be used for a direct calibration of the ERS-2 
altimeter. 

6. Current Status and Future Plans 

The recent measurements have shown a sub
stantial decrease of the power of the emitted re
turn pulses by a factor of 8 compared to the first 
measurements in Schindlet, which complicates 
the data reduction for noisy sites. The reason 
may be the failure of one amplifier inside the 
transponder which is presently investigated. 
After some test-measurements near the obser
vatory Lustbühel it is planned to repeat the mea
surements in Austria for a further 70 days period. 

After that the Graz transponder wi l l  be em
ployed, together with the Copenhagen transpon
der, for a dedicated mission which aims at the 
connection of North Sea and the Adriatic on the 
one hand and the connection of the individual 
sea surfaces to the coastland on the other. 

References: 

[1] Leitinger R., P. Pesec: lonospheric Corrections for the Land
Based Altimetry Campaign. In: Proc. of Symp. on Refraction 
of Transatmospheric Signals in Geodesy; The Hague, Neth
erlands, 1 992. 

[2] Pesec P„ H. Sünkel, N. Windholz: The Use of Transponders 
in Altimetry; In: IAG Symposia No. 1 1 3  (Gravity and Geoid), 
Springer Verlag, 1 995. 

[3] Powell R.J: Relative Vertical Positioning Using Ground-Level 
Transponders with the ERS-1 Altimeter; IEEE Trans. 
Geoscience and Remote Sensing, GE24, 1 986. 

[4] Denys P.H., A.R. Birks, P.A. Cross, R.J. Powell: Precise 
Height determination using the ERS-1 Radar Altimeter and 
Active ground Based Transponders, Central Europe, Au
gust-November 1 991 ; Final report prepared for the Eur
opean Space Agency, Dept. of Surveying, UNoT and RAL, 
Didcot. UK. Final Report Version 4.0, 1 993. 

[5] Denys P.H., A.R. Birks, P.A. Cross, R.J. Powell: The Brent 
Alpha Transponder Altimetry Trial North Sea - Switzerland; 
Report prepared for Shell UK Exploration and Production. 
Final report Version 3.0, 1 995. 

Address of the authors: 

Dr. Peter Pesec, o. Univ.-Prof. Dipl-Ing. Dr. Hans 
Sünkel„ Dipl.-Ing. Nadja Fachbach: Department of Sa
tellite Geodesy, Institute for Space Research, Austrian 
Academy of Sciences, Lustbühelstraße 46, A-8042 
Graz. 

On the Separation of Gravitation and lnertia in 
the Case of Free Motion 

Wenbin Shen, Helmut Moritz, Graz 

Abstract 

The authors explored the possibility of separating gravitation from inertia in the case of free motion according to 
general relativity, proposed a general method of determining the relativistic gravity field of the earth, and put for
ward and proved two important statements. 

Zusammenfassung 

Die Verfasser untersuchten die Möglichkeit der Trennung von Gravitation und Trägheit in dem Fall der freien 
Bewegung gemäß der allgemeinen Relativitätstheorie. Es wurde eine allgemeine Methode zur Berechnung des re
lativistischen Gravitätsfeldes der Erde vorgeschlagen. Weiters wurden zwei wichtige Theoreme aufgestellt und be
wiesen. 

1 .  lntroduction 

Quite a few geodesists paid attention to 
relativistic effects in geodesy [2, 5, 7, 8, 1 2] .  
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lt is generally agreed that, if an order 1 o-s -
1 0-9 or a higher accuracy requ irement is 
needed, the relativistic effects should be con
sidered. 
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When a particle is in the state of motion in a 
gravitational field, it experiences some forces, 
which generally include gravitational andinertial 
forces. Same forces may be balanced by each 
other, and others may not. In the special case 
that the particle is moving freely in the gravita
tional field, the nature of the particle is very im
portant. In this case, the particle will not sense 
any force or the forces it senses are completely 
balanced so that it senses a resultant zero, be
cause of Einstein's equivalence principle, which 
states that the gravitational mass is equivalent 
to the inertial mass, and later generalized as fol
lows: in a c/osed freely falling system, one cannot 
find out whether the system is in the state of free 
fall in a gravitational field or in the state of uni
form motion or at rest far away from any matter 
sources [1 6) .  Hence, generally it is believed that 
gravitation and inertia are not distinguishable. 
But this belief is correct only if one considers 
the force at one point only. In a finite region how
ever, gravitation and inertia can be separated, at 
least in principle, because the gravitational field 
is essentially different from the "inertial field". 
Roughly speaking , the inertial field is smoother 
and more regular than the gravitational field, so 
that we can find some kind of quantity which is 
sensitive only to the gravitational effects. This 
quantity is the Riemann tensor, which has an ab
solute character. We can conclude that there is a 
gravitational field or none, according as the Rie
mann tensor does not vanish or vanishes. In the 
case of free motion, if we can find a way to de
termine the Riemann tensor, then we have sepa
rated gravitation from inertia, and in this sense, 
gravitation and inertia are absolutely distinguish
able. This conclusion was first pointed out by 
Synge [1 4) ,  and later followed a detailed study 
emphasizing the application in geodesy by 
Moritz [7). However, unfortunately, we have not 
yet reached a final confirmation. The key pro
blem is: is it possible to find the Riemann tensor 
in a closed local reference system, no matter 
what methods one applies, without exchanging 
signals with the external world? The answer is 
positive. In the fol lowing, we wil l  explore this pro
blem. 

2. The Geodesic Deviation Equation 

Let us choose a co-moving proper reference 
frame, an orthonormal tetrad, which consists of 
four mutually orthonormal base vectors, with 
the fourth vector coinciding with the unit tangent 
vector of the worldl ine (it is the geodesic in our 
present case). In this case, the tetrad is parallelly 
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transported [6, 1 3, 1 4) . The four mutually ortho
rnormal base vectors can be expressed as [6, 
1 2) :  

}.P a e(«l = '(«) -,-i ax 
(1 ) 

where J,f"l are the coefficients to be chosen. We 
note that, in this paper, Einstein's summation 
convention and the light unit system (c = 1 )  are 
adopted; and furthermore, for Greek indices, the 
summation covers 0, 1 ,  2, 3 ;  for Latin indices 1 ,  
2 ,  3. 

The orthonormality of a tetrad is given by the 
following condition 

gJn'e(a)Jle(p)v = l](aß) = 1/aß (2) 

where the index (a) denotes a specific vector (or 
tensor) and the index 11 denotes the component 
with respect to coordinates x1', g1"' is the inverse 
of g1"" which is the general metric tensor and re
duces to the Minkowsky tensor 111"' =diag(-1 , 1 , 1 , 1 )  
if the spacetime becomes flat. 

The general expression of the geodesic devia
tion can be written as follows [1 4,  1 5) :  

(3) 

where D is the covariant differential operator, T;· 
is the tangent vector to the geodesic, X1' and a1' 
denote the diplacement vector and the relative 
acceleration between two neighbouring 
geodesics, R;.",/' is the Riemann tensor. Equa
tion (3) gives the relativistic generalization of the 
Newtonian tidal equation. 

With respect to the co-moving proper refer
ence tetrad e(�J· the geodesic deviation equation 
can be expressed as [1 4, 1 5) 

d2)(/a) df2" + 1{"PJ R(epofJJTMX(PJT(l'iJ = 0 

where 

R(epi5ß) = R;.""1,ef;Je(�Je�)e('ß) 
and 

rf J.J = dx(J.J 
dt 

(4) 

(5) 

(6) 

is the particle's 4-velocity observed in the cho
sen tetrad. 

Equation (4) is simi lar to equation (3). The ad
vantage of equation (4) is in that this equation is 
measurable in  practice, at least partly. To con
firm this conclusion, let us further investigate 
this equation. 
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3. The Determination of Riemannian Compo
nents 

Suppose we use a gradiometer to measure the 
relative acceleration of two neighbouring geode
sics, and let the gradiometer be at rest relative 
to the satellite, then, in the co-moving local refer
ence frame, equation (4) becomes: 
d2X(o) 
df 

= 0 (7) 

d2X(iJ 0' dT + R(ojo;r' = o (8) 

On the right hand side of equation (8), the first 
term is interpreted as the relative acceleration of 
the t�o proof masses and can be measured by 
grad1ometers [1 ,4,6,9]. Equation (8) has the 
same form as the tidal equation expressed in 
the frame of Newtonian mechanics [8,9] 

f= d2�„- � �j I df2 - 8Xi axi 

where f; is the tidal force, d2Udt2 is the relative 
acceleration (in the sense of Newtonian me
chanics) of the two proof masses, and �i is the 
distance between the two proof masses. This 
equation has been applied extensively in satellite 
gradiometry [5, 1 O]. lt can be shown that the 
equation (8) reduces to the above classical tidal 
equation under the Newtonian limit. 

By appropriate orientations (puting the proof 
masses in the directions of e(iJ respectively), we 
can make R(oiOJ) = O(i i=J) [6]. In this case, equation 
(8) becomes 
d2X(;J "' 
-- + R(O'O'X'11 = 0 
dt2 I 11 

where the relation 

x(0 = ,1(ij)xw = x(i) 

(no sum over i!) (9) 

has been introduced. Hence, from (9) we can 
find the Riemannian components R(o;o,): 

R(oio1) = - (d;;(iJ)IX(i) (no sum over i!) (1 0) 

and the remaining components R(oioi) = O(i i=J). 

To find the Riemann tensor R;_,."'" we should 
apply equation (4), from which, noticing the 
orthonormality of the tetrad ef;,J: 
ef;, J eh") = c5� (1 1 )  

by multiplying both sides of the equation (5) with 
e�Je(f,Je�Je(f� we get: 

R - R e(�J (•V (µJ (uJ '"'"ß - (�11pu) 1, e" e" e ß 
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(1 2) 

We are most interested in Ro;Oi• i.e., 
Ro;oj = R(�•ipu) e({Je<;1Je(f/e�") (1 3) 

Suppose we can choose such a tetrad e(a) so 
that the r1 components e� >= 0, if rx i:. ri. Then.

' 
we 

have 
Ro;oi = R(o;o1)e(8>ef0e�>e9J (no sum over i, j!) (1 4) 

Since gradiometers have been appropriately 
oriented (R(iOiO) = 0, i i:.j, [6]), we have 
Ro;oj = 0, if i i:.j (1 5) 

Ro;o; = R(o;o1)e(g>efJe�>e� (no sum over i!) (1 6) 

.. From (1 0), we can see that R(o;011 are the quan
t1t1es measured by gradiometers which are fixed 
on a satellite. Then, from (1 5) and (1 6), we can 
find Ro;oj. which are independent of the coordi
nate system. In this way, the gravitational effects 
are separated from inertia, at least partly. We 
should keep in mind that, according to the 
equivalence principle, in a freely moving elevator 
(or satellite), one can not teil whetherone is in the 
state of free fall or the state of uniform motion or 
a� rest, no matter what method one uses, pro
v1ded one does not exchange signals with the 
world outside the elevator. However, by some 
�inds of devices (such as gradiometers), one 
fmds that the devices can "feel" the action of 
t�e gravitatio� (even if in a very small region pro
v1ded the dev1ce can be made as small as possi
ble). This conclusion is very attractive and it 
means that in a strict sense Einstein's equiva
lence principle is correct only at one point. Ex
tending to any finite region, even if very small, 
the equivalence principle holds no more. 

Now, let us explore how to determine Ra·o· 
f ' 

1 i 
rom equat1on (1 6) or (1 3) in practice. In a general 

�urved spacetime (four dimensional manifold), it 
1s not easy to determine the base vectors of the 
orthonormal tetrad. However, with some kind of 
approximation, it becomes easier. 

Let us introduce the standard PPN coordinate 
induced tetrad (at rest with respect to the coordi
nates) [1 2] : 

a e(t)=IJ +-, 
at 

with 

a e(i)=11- -· ax' 

'7 ± = 1 + GM 
- r 

(1 7) 

(1 8) 

where G is the gravitational constant and M is 
the earth's mass. Suppose we have chosen the 
spherical polar coordinate grid (t, r, 8, J,) with its 
origin at the earth's center, where r is the dis
tance between the origin and the field point, e is 
the polar angle, and }, is the longitude. The tan-
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gent vectors to the coordinate l ines of the coor
dinate grid (t, r, 8, },) are respectively 

a1at, a1ar, ame. am 
Although the above tetrad is orthogonal, it is 

not parallel ly transported (in general case). In 
fact, it is at rest with respect to the global coordi
nates (t, r, 8, },) . At every point P passed by the 
satel l ite, there exists a coordinate induced tetrad 
e(�)· However, in order to correlate the Riemann 
tensor with the measured quantities, we need to 
find the paral lel ly transported tetrad e'(�)• which 
is a proper reference frame of the satellite. For 
this purpose, we need to know the velocity of 
the satel l ite. Fortunately, in this case, the velocity 
is known. 

Let us use v to denote the ordinary 3-velocity 
of the satel l ite observed in the geocentric star-fi
xed coordinate system (GSS). Then, the como
ving parallel ly transported tetrad e'(�) can be ob
tained by a Lorentz transformation A�l, i .e . ,  

e(a) = A�le(fl) (19) 
where 

Al8l = 1 + � u2 
(i) (0) i -A(o} = A(i) = - v = - ü;, 
("} . 1 . 

Ad) = ö1 + 2 ü1 V; 
(20) 

With the above tetrad, equation (1 2) or (1 3) 
should be used. In this case, we cannot find 
R1,"a/J or Ro;oj. because only some components 
of R(�•ipa) have been measured. Hence, we need 
to apply an approximate method, with which the 
Riemann tensor can be found, and as a result 
the earth's gravitational field can be determined. 

4. The Determination of the Gravitational Field 

In the spacetime considered in section 3 ,  sup
pose we have chosen a global spherical polar 
coordinate grid (t, r, 8, }.). In this case, at every 
fixed spacetime point P, there exists a coordi
nate induced tetrad e��) (12], which is g iven by 
expression (1 7). 

lt should be pointed out here that in general 
case one cannot find exact solution for deter
mining a gravitational field. One must use ana
pproximate method. In our present case, if we 
use the Post-Newtonian Approximation (16], we 
wil l  find that only five potential quantities need 
to be determined, where four of them can be cal
culated by a normal model (a uniform sphere) 
and the fifth is connected to the measured Rie
mannian components R(oioJ)-
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With the Post-Newtonian Approximation,  the 
metric tensor 91," can be expressed as (16] 
900 = - 1 - 24> - 24} - 21/J (21 )  

(22) 

9;j = öij - 2öijcf> (23) 

where cf>, ijJ, [ (which are on the orders ü2, ü3, ü4) 
are the first Newtonian potential, second Newto
nian potential, and vector potential, respectively. 

The Riemannian components can be ex
pressed as follows (1 6]: 

Ro;oj = cf>ij + 3cf>;c/>j + 2cf>c/>;j - öij(\l cf>)2 + f ;j, 
1 Roijk = 2 (8;8j(k - 8;8�j) - 81(Ö;jc/>k - Ö;kc/>i), 

R;jkl = Ö;kc/>jl - öilcf>jk - öjkcf>il + öjlcf>ik (24) 

where 8;= 8/ax;, 81= 8/at, cf>;= 8;cf>, cf>ij= 8;q c/>, etc. 

To determine the potential cf>, we first establish 
the connection between Rpvr;,ß and R(�•ipa)· The 
connection between R1,"aß and R(�•ipa) can be ea
sily establ ished through the Lorentz transforma
tion A(2;�fa): 
R(�11pa) = A(2;�fa) Rl"'a/J 
where 

(25) 

A(2;�fa) = Afo A(;,) A(p) Afa) (26) 

and Afo is given by equation (20). Then, from the 
above two equations we have: 

R(OiOJ) = R111•a/JA(o)A/;JA(o)Afi1 (27) 

From (20) and (27), accurate to ü4, we find that 
the following connection holds: 

( 2) 1 k 1 k R(oiOJ) = Ro;oj 1 +u - 2 Ro1okv Vj 2 - Rokojll ll; 
- Roikjllk - Rojkil + Rkimjllkvm (28) 

lf substituting (24) into (28), we find that equa
tion (28) connects the measured quantities R(o;o11 
with the potentials cf>, (; and ijJ. Obviously, it is 
impossible to find the potentials by using the 
measured quantities R(om,1 at only one point. 
However, by using a lot of sets of quantities 
R(0;011 (observed in one or more satellite orbits) it 
may be possible to determine the potentials. To 
confirm this conclusion, let us first consider the 
Newtonian l imit: accurate to ü2. In this case, 
from (28) and the first equation of (24) we get 

Ro;oj = R(oiOJ) = c/>ij (29) 

Now since the components Ro;oj have been 
found, we can use the conventional method (1 O] 
to determine the first Newtonian potential cf>. 
The basic idea is as follows: 

Set 

V= -4> (30) 
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in agreement with the common concept of the 
potential used in geodesy. Combining (29) and 
(30) we get 

8;qV = - R(OiOJ) (31) 

Suppose that in the region where the mass 
density p vanishes the potential V can be ex
pressed as a spherical harmonic expansion [1 O]: 

V= C+C;x;+ GM 'ff,± Cnma{ir1Ynma(P) (32) 
R n=O m=O •=0 r 

where C and C; are constants to be determined 
(if only considering the earth 's potential, C and 
C; are equal to zero), Cnma are unknown potential 
coefficients to be determined , N is a large en
ough possitive integer (depending on the accu
racy required), and 

Ynmo(P) = Pnm(cos8)cos(mJ,), 
Ynm1 (P� = Pnm(cos8)sin(mJ,) (33) 
are ful ly normalized spherical harmonics of de
gree n and order m. 

Substituting equation (32) into (31) we get 

GM N n 1 R - LLL CnmaD;Dj[(-r+1Ynma(P)]= - R(OiOJ) (34) 
R n=O m=O •=Ü r 

Note that point P is on the trajectory (orbit) of the 
satell ite. With equation (34), in principle, the 
coefficients Cnma can be determined , provided 
sufficiently many sets of the Riemannian compo
nents R0;oi are observed. (For practical reasons, 
greater and weil determined coefficients, corre
sponding to a reference gravity field ,  should be 
taken out first.) 

Suppose we have determined all the coeffi
cients Cnma from equation (34), then, from equa
tion (32) we know that the potential V has been 
determined up to four constants C and C;. These 
four constants cannot be determined by the Rie
mann ian components R0;oi· However, in the case 
of determining the gravity field of the earth, we 
require that the potential V approaches zero 
with P tending to infinity; then, C = C; = 0. In 
this sense, the potential V is completely deter
mined [10]. 

Now we aim at the accuracy of v4. From (28) 
and (24) we get: 

vij = - rPii = - R(oio,1 + O;j (35) 
where 

O;i = {[3U;Ui + 2U Uii-oii (VlfJ2+ i/Jii] 
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-[2Uijv2 - � U;kVkVj - � ukjVkV; + OijUkmVkvm] 
1 1 +[8;8h - 2 8;8k(i - 2 8i8k(;]} (36) 

U (the normal spherical potential) as weil as (; 
and ijJ are calculated by a normal spherical 
model [11]. In this sense, Vii have been deter
mined as the measured quantities. 

Substituting equation (32) into (35), we get a 
relativistic model of satel l ite gradiometry (accu
rate to the order of v4) 
GM N n 1 R - LLL CnmaD;Dj [(-r+1Ynma]=-R(oi01)+Q;j (37) 
R n=Om=Ü•=Ü r 

which is a generalization of the Newtonian model 
(34). 

5. Proofs of Two Statements 

Now, we put forward the following two state
ments: 

1. In the case of using gradiometers an a satel
lite, with some kind of approximation, the Rie
mann tensor R1,v afl can be found. 

2. In the case of free motion, if the measured 
Riemannian components R(okol) are always 
equal to zero, then, accurate to v2, the whole 
Riemann tensor R111.aß equals zero. 

Let us first prove the second statement. Sup
pose 

R(OkO/) = 0 (38) 
From (34) and (38), the potential coefficients 

Cnma must be equal to zero: 

Cnma = 0 (39) 
Then, from equation (32) we have 

V= C + C;>! 
This potential denotes a global uniform gravi

tational field. However, in reality, no global uni
form gravitational f ield exists; hence we have 

V=C 
or without loss of generality, we choose C = 0, 
i .e .  

c/J= -V=O (40) 
This equation means that there exists no mass 

sources in our spacetime. Consequently we 
have 

rjJ = 0, ( = 0, ijJ = 0 (41) 
I n  this case, we can choose a global coordi

nate system in which the metric tensor is the 
Minkowsky metric 17111• = diag(-1, 1, 1, 1 ) . In this co
ordinate system, the Riemann tensor Rµvr:t.ß is 
equal to zero: 

(42) 
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Since any tensor is invariant under coordinate 
transformations, the above equation holds in 
any coordinates, i .e . ,  the Riemann tensor R111.aß 
is always equal to zero. This completes the proof 
of the second statement. 

To prove the first statement, we need only to 
prove that the metric tensor 9111• can be deter
mined with the aid of the Post-Newtonian Ap
proximation. In fact, we have shown (see section 
4) that the first Newtonian potential <P can be de
termined provided that as many sets of the Rie
mannian components R(okoQ as possible are ob
served. As a result. equations (21 ) , (22} and (23} 
teil us that the metric tensor 9111• can be deter
mined. Once 9111. is determined, R1,vaß is also de
termined. This completes the proof. 

6. Discussion 

In principle, the relativistic gravity field can be 
determined strictly by satellite gradiometry. The 
method is very general. First, we determine </J, 1/J 
and (; by measuring as many sets of the compo
nents R(okoQ as possible. Now </J, t/l and (; are 
connected with R1m,ß by equation (24) and RJ1,·aß 
is connected with R(okoQ through Lorentz trans
formations; hence </J, t/f and (; (using spherical 
harmonic expansion forms) are connected with 
R(okOQ· In this way, </J, t/l and (; can be determined 
and consequently 9w can be found by equations 
(21 ) , (22) and (23). Once the metric tensor 91"' is 
determined, as a result the (relativistic) gravita
tional field expressed in the geocentric star-fixed 
system (GSS) is determined. This field, in es
sence, is just the gravity field expressed in the 
geocentric earth-fixed system (GES). To trans
form the expression from GSS to GES is 
straightforward. 
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Radially Symmetrie Zero-Potential Densities for 
the Solution of Gravitational Inverse Problems 

Sylvia Krappmann, Helmut Moritz, Graz 

Abstract 

There are infinitely many density distributions that are compatible with a given external potential (gravitational 
inverse problem). This non-uniqueness is best expressed by the possibility to add arbitrary zero-potential densities 
which change the mass distribution without affecting the external potential. The present paper investigates special 
radially symmetric zero-potential densities, which can be used as some kind of spline functions for approximating 
more general zero-potential densities. 

Zusammenfassung 

Ein gegebenes Außenraumpotential kann durch unendlich viele Dichteverteilungen erzeugt werden (inverses 
gravimetrisches Problem). Diese Mehrdeudigkeit wird am besten dadurch ausgedrückt, daß man beliebige Nul/po
tentialdichten addieren kann, die zwar die Massenverteilung verändern, aber keine Wirkung auf das Außen
raumpotential ausüben. Im vorliegenden Artikel werden spezielle radialsymmetrischen Nul lpotentialdichtenunter
sucht, die für die Approximation allgemeinerer Nullpotentialdichten als eine Art Spline-Funktionen verwendet wer
den können. 

1 .  lntroduction 

The gravitational potential V of a body is given 
by the well-known Newton integral 

V(P) = G J J J ���) dv0, (1) 
V 

where P denotes the point at which V is to be 
computed and Q is the variable integration point 
to which the density p and the volume element 
v refer; lpo is the distance between P and Q; the 
gravitational constant is denoted by G as usual. 

lt is an essential point that the potential V is 
linear i n  the density p, cf. [4]. Thus we can write 

V= N p, (2) 

where N defined by the integral (1 ) denotes the 
l inear Newtonian operator. lf the external poten
tial V is given, we solve the gravitational inverse 
problem by inverting (2) 

p = W1 V, (3) 

which provides us an opportunity to determine 
the unknown density p. But the operator N-1 is 
a nonunique quantity and this is the reason why 
(3) has infinitely many solutions for the density p. 

The general solution of the inhomogeneous 
equation (2) is obtained as the sum of the un
iquely defined harmonic density PH· which satisfy 
Laplace's.equation 8.pH = 0, and the set of zero
potential densities p0, cf. [4] , 

P = PH+ Po· (4) 
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The set of zero-potential densities p0 com
prises all density distributions within the surface 
S which produces zero external potential 

N�=�=O. � 
The result of (5) is nonunique. Thus the ambi

guity of the general solution (4) is expressed by 
the set of possible zero-potential densities p0. 
The condition of zero external potential is the ab
sence of gravitational attraction outside the body 
and this wil l  only be satisfied if the total mass of 
the body is zero. Therefore the densities p0 
must be alternatively positive and negative. But 
physically there are no negative densities, so 
the "densities" p0 represent density anomalies 
and the potentials V0 are the corresponding po
tential anomalies. 

In the following sections we shall examine 
special radially symmetric zero-potential densi
ties. We suppose that the boundary surface S 
of the body is a sphere. In many cases the 
sphere represents a sufficient approximation to 
the earth as far as potential anomalies are con
cerned. 

2. Radially Symmetrie Zero-Potential Densi
ties 

As a preparation for the approximation of more 
general zero-potential densities, let us expand a 
radial/y symmetric zero-potential density function 
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p0(f) into a normalized (division of f by R) polyno
mial which is restricted to even powers, cf. [2] , 

N ( - )2k 
Po (f) = I:ak � , k=O 

(6) 

where ak denote constant coefficients. Now the 
following question arises: What condition must 
the constant coefficients ak satisfy to produce 
zero-potential densities p0? The condition for 
zero-potential densities is that the total mass of 
the body becomes zero. Therefore the l inear de
pendence of the constant coefficients (a0, a1 , . . .  , 
aN) can be derived as follows. 

The total mass M of a sphere, cf. [4] , which 
has to be zero in this case, can be determined by 

R 

M = 4n f Po (f)f2 df = 0. 
r=O 

(7) 

Replacing p0(f) by the definition (6), the solu
tion of (7) gives the general condition of the con
stant coefficients (a0, a 1 ,  ... , aN) of po: 

N 
I:� - 0  
k=O 2k + 3 - ' 

to be satisfied by zero-potential densities (6) . 

(8) 

To determine an explicit solution for zero-po
tential densities, we extend the polynomial (6) to 
sixth-order, which means N = 3. Setting a0 = a, 
a1 = b, a2 = c and a3 = d, we obtain for the unit 
sphere (R = 1) by (6) 
p0(f) = a + bf2 + cf4 + df6 . (9) 

As we have seen above, the constant coeffi
cients (a, b, c, cf) must satisfy the necessary con
dition of zero-potential density (8). Besides we 
require that the function (9), together with its first 
derivative, must be zero at the boundary. In ad
dition we normalize a = 1. Taking all these condi
tions into account, we finally get one of the infi
n itely many zero-potential density distributions 
as 

Po(f) = 1 - 5f2 + 7f4 - 3f6. (10) 

o . e  

Fig. 1 :  A zero-potential density function p0(r) for one 
dimension 
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-R R 

Fig. 2: The zero-potential distribution V0(r)/G corre
sponding to Fig.1 

Figure 1 shows the zero-potential density dis
tribution (10), for one dimension. As we can see 
in this figure, the function p0(f) has positive and 
negative values and is continuous and differenti
able everywhere (also on the surface S). The next 
figure, Fig. 2, i l lustrates the corresponding zero
potential distribution (divided by the gravitational 
constant G). The potential inside the sphere is 
determined by the well-known Lauricella's sec
ond theorem, cf. [4] and [2] . 

3. Zero-Potential Splines 

Now we try to approximate arbitrary zero-po
tential density distributions p0 by a l inear combi
nation of zero-potential splines, in analogy to 
the approximation of potentials by discrete point 
masses. 

0 
,,;; ..>!: er 0 . 2  

Fig.3: The spline function s(f;, R) fortwo dimensions: R = 1 

Zero-potential splines are defined in the fol
lowing way, cf. [2]. Assume that there are N 
spheres of the same radius R = const., of centres 
M; (1 :s; i :s; N), and of radially symmetric zero-po
tential density distributions p0(f;, R) according to 
(10), see also Fig. 3, 

Po(f;, R) = 1-5 (�J2+7 (�f-3 (�J6 (11) 

where f; is the distance from the centre M; to 
point Q at which the density should be deter
mined. But also any multiple of this function 
gives a possible solution. Thus we introduce a 
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"weight factor'' l/.; which can be prescribed rather 
arbitrarily and gives us 

p0,;(f; ,  R) = CJ.; s(f;, R) = - 2 - 4 - 6  
= l/.; [1 -5 (�) +7 (�) -3 (�) ] .  (1 2) 

The function s(f;, R) is called zero-potential 
spline, since it has the character of a spline func
tion in the following sense. lt is a finite function 
which means that its support is finite. The sup
port of a function is the region in which the func
tion is d ifferent from zero. Obviously, in our case 
the support of the spline function is a sphere of 
radius R. 

Now we want to know the density p0 at an ar
bitrary point Q. For this purpose we approximate 
the unknown density p0 (Q) by a l inear combina
tion of the given spl ines: 

N 
Po (Q) = �:>; s(f;, R). 

i=1 
{1 3) 

The summation takes al l N spl ines s(f;, R) into 
account, but note: lf f; > R), the value of the 
spl ine is zero, which means no effect of the cor
respond ing spl ine exists. Only if 0 :'.S f; :'.S R) is sa
tisfied, the corresponding spline is used for the 
approximation of the unknown density p0 at the 
special point Q, but this depends on the geo
metric situation. In the following sections differ
ent simple models wi l l  be investigated in three
d imensional space, in order to get a first under
standing of the method. 

4. Models with 27 Spheres 

Let us put N spheres (centres Mijk• radius R) in 
a cube of length L. Place the centres M;ik of the 
spheres at the nodes of a cubical grid inside the 
cube. The mesh width of the grid is denoted by 
h, being the same in each direction of the axes. 
The configuration of the nodes Mijk of the cubical 
grid should be symmetric with respect to the ori
gin 0 (centre of the cube (L)). Symmetrie with re
spect to the orig in 0 means that each point M;ik 
has an opposite point in the direction of the ori
gin 0, which is the centre of the distance be
tween such a pair of points. Therefore the centre 
of the cubical grid must be the origin 0. Further 
the outer spheres should tauch the boundary of 
the cube (L), see also Figure 4 and 6. 

So the basic configuration has been fixed, but 
we can sti l l  choose the number of the spheres 
N = n3 (n = positive integer), the radius R which 
is the same for al l spheres, and the mesh width 
h of the centres M;ik of the spheres. Since the 
outer spheres should tauch the bouhdar)' of the 
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cube, the length L of the cube can be deter
mined by 

L = 2R + nh. (1 4) 
Remark: In this paper the name of a vector 

(small letter) and of a matrix (capital letter) is writ
ten in boldface, and a three-dimensional tensor 
is represented by an underlined boldface letter. 

Now let us consider an example for n = 3. I n  
this case we get N = 3 x 3 x 3 = 27 spheres of 
constant radi i  R. The distance h can be pre
scribed arbitrarily. Different distances h give dif
ferent lengths L of the cube (1 4). 

To get more symmetry, let the indices i (x
direction), j (y-direction), and k (z-direction) run 
from -1 to 1 .  Consider the following tensor M 
with ist centre-elements M;ik 

-

M =  

[ M_„_, , , M-1 ,0,1 

� "' ] Mo,-1 ,1 Mo,0,1 0,1 ,1 
M1,-1 ,1 M1 ,o,1 M1 , 1 ,1 [ M-, ,-, ,< M-1 ,0,0 

�-' ' "  l Mo-1 o Mo,o,o 0 , 1 ,0 
M1 :-1 :0 M1 ,o,o M1 , 1 ,o 

Mo,-1,-1 Mo,0,-1 Mo,1 ,-1 
[ M-1 ,-1 ,-1 M-1 ,0,-1 M-1 ,1 ,-1 ] 

M1,-1 ,-1 M1 ,o,-1 M1 ,1 ,-1 (1 5) 
Comparing (1 5) with Fig. 4, we see that the 

tensor reflects the geometrical situation of the 
centres M;ik· Index k is equivalent to the number 
of the corresponding plane. 

Now, at any centre there is a corresponding 
spl ine function s(f;ik• R). Since R is constant, we 
can write 

s(f;ik• R) = s(fijk) = s(M;ik•Q) = sijk(Q), (1 6) 
which is defined by analogy to (1 1 )  as 

sijk (Q) = R R R 1 1 -5 (�)2 + 7(�r -3(�r 

O on and outside S (1 7) 
where 

rijk = )r;<-x;}2 + (y-y/ + (l-tk)2 (1 8) 
denotes the distance from the centre M;ik = 
M (x;, Yi· tk) to an arbitrary point Q({<, y, z). Then 
the unknown zero-potential density p0 at point 
Q({<, y, z) is given by 

1 1 1 
Po(O) = L L L l/.ijk Sijk(Q), 

k=-1 i=-1 i=-1 
(1 9} 

a superposition of spl ine functions sijk with differ
ent scales l/.ijk• according to (1 3). 
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Original ly we have 27 rxiik• which can be cho
sen arbitrarily. On the other hand they can be de
termined by prescribing definite values of p0 at 
data points Oiik· We thus assume our zero-po
tential densities to be the result of the superposi
tion of spl ines given at special points Oiik· Then 
the following question arises: Which coefficients 
rx;ik produce the given values at O;ik? 

L 

L 

L 
Fig. 4: Positions of the centres M;ik of the spheres (R) 
inside the cube (L) 

Generally we need values at 27 points O;ik to 
determine the 27 unknown rx;ik· Let these values 
be summarized in vectors 1 and a [ Po(0-1 ,-1 ,-1) J Po(0-1 ,-1 ,0) 
1 = . 

Po(01 , 1 , 1 ) 

[ rx-1 ,-1 ,-1 J ('/.-1 ,-1 ,0 
a - . - . 

rJ.1 , 1 , 1 

Note that the indices of the points Oiik do not 
refer to the positions of these points, since O;ik 
can l ie almost everywhere inside the cube (L), 
but the indices refer to the centres M;ik of the 
spl ines in the sense that we need a value p0 at 
a point O;ik for each unknown rxiik of the corre
sponding sphere centered at M;ik· According to 
(1 9), we obtain 

(20) 
where the matrix B (27 x 27) consists of the 
spline elements siik (O;ik) · Note that the coeffi
cient vector a is constant whereas the spl ine 
function matrix B depends on the variable points 
O;ik(x, y, z), see (1 7) and (1 8). Thus the coeffi
cients rx;ik can be determined by inversion of ma
trix B 

(2 1 )  
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In order to understand a method, it is fre
quently useful to app/y it to a vety simple but 
vety extreme case. Therefore let us introduce 
some simpl ifications. Firstly, assume that the re
sult of the superposition is symmetric with re
spect to the orig in 0, and the data points O;ik 
should correspond to nodes of a cubical grid in 
the middle of the cube (L). The mesh width is de
noted by h (0 < h < L/2) being the same in each 
direction of the axes. 

Considering the 27-point cube of length 2h, 
we notice that the points can be divided into 
4 kinds (0,„„3) on the basis of the 4 different 
kinds of diagonals regarding the origin 0 (Fig. 5). 
Each point of one kind has the same distance to 
the origin 0 whereas points of different kinds be
lang to different kinds of diagonals regarding the 
origin 0. Taking one point of each kind, i .g .  

Öo = Oo o a(0,0,0) Ö2 = Oo 1  1 (0, h, h) 
Ö1 = oa :a : 1 {0,0,h) Q3 = 01 :1 : 1 (h, h, h) {22) 

we obtain 4 points Öm E O;ik (m = 0„„ ,3). 

Secondly, we assume that the values at the 
points of one kind Öm are the same. Then we ob
tain a result of zero-potential density distribution, 
which is completely symmetric with respect to 
the origin 0. But further this means that also the 
data aiik have to be symmetric with respect to 
the origin 0. 

x' 

z 

- -
h h 

h 

h 

Fig. 5: The symmetric configuration with respect to the 
origin 0 

In this sense we have only 4 different unknown 
coefficients (u0, u 1 , u2, u3) according to Fig. 5. 
The coefficient u0 occurs once, u 1 6 times, u2 
1 2  times and u3 8 times. For better understand
ing see the following symmetric tensor �: 
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[ ., ii2 ii3 l ii2 ii1 ii2 ii3 ii2 ii3 

[ �' 
ii1 ii2 l � = [aijk] = a.1 iio ii1 (23) 

ii2 ii1 ii2 

[ ., ii2 ii3 l ii2 ii1 ii2 
ii3 ii2 ii3 

Taking the symmetric situation into account, 
we also need only values summarized in vector 
T at one point of each kind to determine these 4 
different coefficients of vector ä 

By analogy to (20) we get 

F = äT ß_ 

E: a. 

Thus ä is obtained by inversion of B 
äT = F B-1 

(24) 

. (25) 

and the 4 coefficients (ii0, ii 1 , ii2, ii3) of ä can be 
substituted into (23). 

At the next stage we put the above assump
tions in concrete form. The 27 points O;ik should 
correspond to the 27 centres M;ik of the spline 
functions and all values at these points should 
be the same, namely 1 : 

Qijk = Mijk I = [ J (26) 

Thus we have the same situation as described 
above only with h = h. 

Models with d ifferent mesh widths h are inves
tigated in [2]. Using small mesh widths, a very 
surprising result appears which wil l be described 
now. 

For the following concrete calculation we in
troduce the unit sphere (R = 1). In order to i l lus
trate the zero-potential density distribution inside 
the cube (L) graphically we cut the cube by the 
plane z = 0. The point Q varies all over this plane 
inside the cube. Let the mesh width h be R/4. 
The geometrical situation is seen in Fig. 6. 
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L 

L y 

1 ' 
Fig. 6: Horizontal projectian: h = R/4 

We determine the coefficients rJ.;ik by inversion 
(25). Substituting the result into (23), our tensor 
A becomes 

1 A = [a„k] = - --- lj 
1 44 h6 

[ 
[ 
[ 

1 
-2 
1 

-2 
4 

-2 

1 
-2 
1 

-2 + l  4 
-2 

4 -1 i -8 (27) 
4 -2 

-2 + l  4 
-2 

In Fig. 7 we see the superposition of the corre-
sponding zero-potential spl ines. 

s ,; -!!: 
o.."' -2 

Fig. 7: Superposition (h = R/4) 

Now two interesting questions arise in an al
most miraculous way: 

Miracle 1 :  Why is the result in the middle area 
of Fig. 7 a large plane at a height of 1 ?  
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Miracle 2: Why are the coefficients (ii0, ii 1 ,  ii2 , ii3) of (27) multiples (-8, 4, -2 , 1 )  of the factor 
1 /(-1 44h6)? 

The configuration of the centres M;Jk in Fig. 6 
has an special property: Al l centres Mifk l ie in a 
region (intersection of volume), called "critical re
gion", where al l 27 spl ine functions S;Jk• restricted 
to their corresponding supports (spheres), are 
superimposed that is, they are polynomials $ 0. 
The plane at a height of 1 is bounded by this "cri
tical region". (The "critical reg ion" is the plateau 
in the central part of Fig. 7.) This special config
uration of the centres Mifk is always satisfied if 
the space diagonal of the grid (Mifk) is not greater 
than the radius R ot the spheres, which gives the 
condition 0 :s: h :s: R!2J3. Whenever h lies in 
this region, the two miracles described above 
occur. 

lt is miraculous indeed that the superposition 
of zero-potential splines, which are polynomials 
of higher order, should give an exact plane, 
which represents a l inear function. That the 
plane is really exact, can be shown by direct 
computation using (1 9). Equation (1 9) can also 
be written as 

(28) 

where the tensor B reflects the geometric situa
tion of its elementsifk determined by substituting 
(1 8) into (1 7), cf. also (1 5). The sign 0 in (28) is 
defined as the summation over all products of 
matrices (tensors) - elements with equivalent in
dices. 

Note once more the result is the constant va
lue 1 identically in the who/e "critica/ region " de
fined above, not only at the given data points 
Qijk! 

The fact that the zero-potential density func
tion corresponds to a plane throughout the "criti
cal region" ("Miracle 1 "), is so surprising that one 
is very eager to find an explanation. Perhaps 
Miracle 1 can be explained by Miracle 2? 

We know that the discretization of a d ifferential 
operator lead to matrices which are quite simi lar 
to the matrices occurring in (27). This will be con
sidered now. 

5. Difference Operators for Approximation of 
Differential Operators 

The approximation of partial derivatives by fi
n ite differences is discussed in ( 1 ) .  As a matter 
of fact, the derivative of a function with respect 
to x, y, or z can be approximated by a difference 
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of values of this function at discrete points. In 
this section only one spline function of a unit 
sphere (R = 1 )  whose centre corresponds to the 
origin 0 of the coordinate-axes is considered 
and can be denoted by s0(x, x, z) since 

s(r) = s(M, Q) = s(O, Q) = 

so,o,o(O) = s0(Q) = s0(x, y, z). (29) 

Substituting f which is the distance from the 
centre 0(0,0,0) to the variable point Q(x, y, z) 
r = ,) x2 + y2 + z2 (30) 

into (1 7) we obtain the spline function depending 
on the position (x, y, z) of point Q. 

Let us consider only the case if point Q lies in
side the range 0 :s: f :s: R. Assume that we intro
duce a symmetric cubical grid around point Q 
so that point Q(x, y, z) corresponds to the central 
node Do.o,o(x, y, z) of the grid. The point Q is not 
necessarily equal to the origin O! The mesh 
width denoted by h is the same in each direction 
of the axes. Now the 27 nodes of the grid D;1k 
(1 central node, 26 outer nodes) should be the 
discrete points for the approximation. Our aim is 
to use central d ifferences (differences between 
outer nodes and the central node) to approxi
mate derivatives of the spline function s0(x, y, z) 
at the central node Do,o,o(x, y, z) = Q(x, y, z). 

Now let us regard the mixed square derivative 
of a single spline function s0(x, y, z) (29) which 
gives 

( 
86 So 

) - - 1 44 (31 ) 
8x2 8y2 8z2 Q 

- ' 

identically for all points (x, y, z) in the reg ion 
O :s: f :s: R. At the next stage we replace the 
mixed square derivative (31 )  by a difference op
erator with O<h  :s: Rl2.j3 . Using the approxi
mate representation by finite differences, cf. (1 ] ,  
we obtain 

( 
86 s 

) ( 
86 s 

)
* 

8x2 8y2 ° 8z2 Q 
= 

8x2 8y2° 8z2 Q
= 

-
1 �* 0 B*) = -

1 
(-1 44h6) = -1 44 (32) h6 - h6 ' 

where the difference operator A* is equal to 
-1 44 h6 A of (27) and tensor B* retlects the geo
metric s ltuation of the elemerlfs s0(Difk) . By direct 
computation we see that tensor B* is identical to 
B of (28). The sign = means: "häs the discrete 
approximation" and ( )* denotes the difference 
expression. Equation (32) holds for a single 
zero-potential spline s0(x, y, z). Now a truly re
markable fact appears: The result (32) is inde
pendent of the mesh width h (gives a constant) 
and equals the result of the mixed square deriva
tive by the difference operator (31 ) .  
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Analyzing the results, our basic superposition 
(28) started from the assumption that the value 
of the zero-potential density p0 is generated by 
a superposition of 27 spline functions siik sum
marized in tensor B. Why is this superposition 
identically constant in the "critical region" 
(sec. 4)? 

L 

X 

1 
X 

6. Conclusions 

The spl ines (1 7) are our basic building blocks 
for a practical approximation of zero-potential 
densities. Given values at certain data points 
(e.g .  a cubical grid 3 x 3 x 3 points), our spline 
approximation furnishes the values of a zero-po-

tential density function at any 
other point in the region under 
consideration. 

The second problem attacked 
in this paper is of a purely theo
retical significance. In order to 
understand a method, it is fre
quently useful to test it in simple 
but extreme situations which 
may be completely unrealistic. 
(We torture, so to speak, the 
method in order to force it to 

Superposition 
Difference Operator for 

Approx. of Differential Operator 
show its real character . . .  ) Thus 
we have considered the cubical 
grid 3 x 3 x 3 and have assumed 
the data values equa/ to 1 at 
every point of the grid. This is 

Fig. 8: Superposition !;, Approximation by Difference Operator 

The reason is that our superposition is equiva
lent to an approximation of our operator by fin ite 
differences, cf. Fig. 8. This would not yet be 
spectacular if the result would essentially de
pend on h (not only as an inessential scale fac
tor). Since (32) is independent of h, the result of 
the difference operator is identical to the result 
of the corresponding differential operator since 
we may let h --> 0. 

Thus the reason why the superposition (28) 
gives a constant value is the fact that the differ
ential operator (31 )  naturally gives a constant va
lue (32). 

superposition (28) = 
difference operator result (32) = 

differential operator result (31 )  = 

const. 

The crucial point in this argument is that (32) is 
independent of h so that h --> 0 does not change 
anything. 

lt is proved that the result of a difference op
erator, which can be written as a three-dimen
sional tensor, can always be reproduced by 
superposition in the "critical region". 
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the "extreme situation" just mentioned and, i n  
fact, i t  gives the expected unusual behavior 
which, however, is very instructive: The zero-po
tential density is identically 1 not only at the data 
points, but throughout a certain region around 
them, called "critical region". The result graphi
cally resembles a perfectly smooth plane plateau 
bounded by wild precipices and jagged moun
tains. 
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Monitoring Earth Orientation Variations at the Center for 
Orbit Determination in Europe (CODE) 

Robert Weber, Vienna 

Abstract 

Since June 1 992 the CODE Analysis Center of the International GPS Service for Geodynamics (IGS) has con
tributed to the International Earth Rotation Service (IERS) series of polar motion parameters Xp, Yp as weil as length 
of day (LoD) estimates. The present accuracy of these LoD estimates amount to about 0.03 msec/day. Additionally 
and because of the special importance of global campaigns including different observation techniques (VLBI ,  GPS, 
SLR, LLR) the period of the CONT94-campaign was covered by CODE with a special LoD and polar motion data set 
of subdiurnal resolution. 

The parameters Xp, Yp locate the Celestial Ephemeris Pole (CEP) in the terrestrial reference frame, whereas the 
position of the CEP in lnertial Space is defined by the IAU 1 980 Theory of Nutation. Offsets relative to the CEP 
position as defined above have been detected by VLBI observations since 1 986. Since January 1 ,  1 994 we have 
determined at CODE the first derivative of these CEP offsets (i'>oc, i'>olj!) with an accuracy of 0.3 mas/day. This is a 
valuable contribution of the GPS to the monitoring of high frequency variations of the CEP. 

This paper discusses the time development of the CODE Xp, Yp series over an interval of about 3 years and puts 
special emphasis on GPS-derived earth rotation parameter variatiohs covering the CONT94 campaign. Finally first 
results of a spectral analysis of the i'>oc, t>olj! values are presented. 

Zusammenfassung 

Das CODE Analyse Zentrum des Internationalen GPS Dienstes für Geodynamik (IGS) ermittelt seit dem Juni 1 992 
täglich einen Satz von Erdrotationsparametern (ERP). Diese Serien von Polkoordinaten (a = ± 0.2 mas) und 
Schätzungen der Tageslänge (LoD, a = ± 0.03 m sec!Tag) werden in erster Linie dem Internationalen Erdrota
tionsdienst (I ERS) zur Verfügung gestellt. Daneben wird vorallem internationalen Kampagnen, welche den Vergleich 
der Ergebnisse verschiedener Beobachtungstechniken (VLBI ,  GPS, SLR, LLR) erlauben, eine starke Bedeutung 
zugemessen. Aus diesem Grund wurde für die Dauer der im Jänner 1 994 durchgeführten CONT94-Kampagne zu
sätzlich ein spezieller ERP-Datensatz erstellt. 

Die Polkoordinaten Xp, yP legen den Celestial Ephemeris Pole (CEP) im terrestrischen Referenzrahmen fest. Seine 
Lage im inertialen Raum wird durch die Nutationstheorie IAU 1 980 definiert. Abweichungen von dieser vordefinier
ten Lage können bereits seit 1 986 durch VLSI-Beobachtungen nachgewiesen werden. Seit 1 .  Jänner 1 994 wird nun 
am CODE-Analysezentrum die erste Ableitung dieser CEP-Abweichungen (i'>oc, ßolj!) mit einer Genauigkeit von 
0.3 mas!Tag geschätzt. Dies stellt einen bedeutenden Beitrag von GPS zur Überwachung hochfrequenter CEP
Bewegungen dar. 

Der vorliegende Artikel beschreibt die Entwicklung einer aus GPS-Beobachtungen abgeleiteten 3-jährigen Serie 
von Polkoordinaten und diskutiert anschließend ausführlich den für die CONT94-Kampagne erstellten Datensatz 
hochauflösender ERP-Schätzungen. Abschließend werden die vorläufigen Ergebnisse einer Spektralanalyse der 
bislang verfügbaren ßoc, ßolj! - Serien präsentiert. 

1 .  The International GPS Service for Geo
dynamics 

In June 1 992 a g lobal GPS test campaign was 
started in order to prove the concept for an Inter
national Global Positioning System Service for 
Geodynamics {IGS). The campaign lasted for 
three months and was immediately followed by 
a pilot service which continued until the end of 
1 993. On January 1 ,  1 994 the IGS took up its 
routine activities as an official Service of the In
ternational Association of Geodesy and later on 
as a member of the Federation of Astronomical 
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and Geophysical Data Analysis Services 
(FAGS). The primary objective of the IGS is to 
provide a service which supports geodetic and 
geophysical research activities through GPS 
data products [1 ] .  

These data products l ike satel l ite ephemeris, 
earth rotation parameters and station coordi
nates were based by the end of 1 992 on 28 per
manent GPS monitor stations (1 O]. Up to . now 
the network has grown substantially and con
sisted of more than 60 tracking sites in May 
1 995 (Fig. 1 ) .  This extension of the network 
goes together with an evolving importance of 
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GPS TRACKING NETWORK OF THE INTERNATIONAL GPS SERVICE FOR GEODVNAMICS 
OPERATIONAL AND PLANNED STATIONS 

Fig. 1: IGS network of permanent tracking sites 

the IGS as a provider of data sets useful for geo
physical or geodynamical interpretion. Thus, 
GPS data is for example used nowadays to ex
tract ionospheric information or to support the 
weather forecast with almost real-time tropo
spheric delays. 

Besides the tracking stations the IGS consists 
of a considerable number of data- and analysis 
centers which are responsible for data manag
ment and evaluation of the IGS products. Most 
of the results discussed in the subsequent chap
ters were obtained at the Center for Orbit Deter
mination in Europe (CODE, located at the Univer
sity of Berne), which acts as one (among seven) 
of these g lobal analysis centers. 

2. Earth Orientation Parameters 

Generally the term 'Earth Orientation Para
meter' (EOP) comprises a set of 5 parameters 
which describe the rotation of the ITRS (Interna
tional Terrestrial Reference System) in the ICRS 
(International Celestial Reference System) in 
conjunction with the conventional Precession
Nutation model. On the other hand, the so-called 
'Earth Rotation Parameters' (ERP) characterize a 
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3-parameter-subset of the EOP, namely the co
ordinates x and y of the CEP in the terrestrial re
ference frame (polar motion) and the d ifference 
UT1 -UTC (respectively UT1 -TAI ,  TAl=lnterna
tional Atomic Time) giving access to the direc
tion of the IERS Reference Meridian in the Geles-

POLAR MOTION "CODE" : 21 . JUNE 1 993 -
1 JANUARY 1 996 

- 0.3 ..---------------� 

Ci) - 0.2 1.1.96 1J c 
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Y - Coordinate [Are - Seconds] 

Fig. 2: Polar motion as produced by the CODE Analysis 
Center of the IGS 
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tial Reference Frame. For detailed information, 
see [2) , [1 3). 

The main components of polar motion are a 
free osci l lation with a period of 1 .2 years (Chand
ler wobble) and an oscillation which is forced by 
seasonal mass redistribution in the atmosphere 
and oceans. This variation is superimposed by a 
slow dritt towards the west. In figure 2 GPS
based polar motion series covering a period of 
more than 3 years are shown. The oldest esti
mates date back to the start of the IGS-testcam
paign in June 1 992. Since then we have recog
nized an obvious improvement in the accuracy 
of the estimates. Today the accuracy of the 
CODE pole coordinates is believed to be of the 
order of about 0.2-0.3 mas. 

We conclude that the GPS is very weil suited 
to determine polar motion, provided that the ter
restrial reference frame is weil defined by means 
of the coordinates of the tracking stations. 

The d ifference between the astronomically de
termined duration of the day and 864008 atomic 
time is called length of day (LoD). The difference 
AUT1 = UT1 - TAi can easily be obtained by 
adding up LoD estimates since a change in 
AUT1 is related to a change in LoD by integra
tion (see below). 

ALoD(t) / LoD0 = - d(UT1 - TAi) / dt (1 ) 

Unfortunately, the GPS is not capable of pro
viding absolute estimates of AUT1 . The reason 
is the correlation between AUT1 and the right 
ascension of the ascending node of the satellite 
orbits. On the other hand it should be possible 
to solve for a dritt in AUT1 by adopting a l inear 
model of the type 

AUT1 (t) = AUT1 (t0) + d(AUT1 ) / dt · (t-t0) (2) 

This demonstrates that the LoD may be esti
mated very weil with the GPS. Of course, the dritt 
parameter in (2) would be correlated again with 
the first derivative of the ascending node but un
der the assumption of a known force model, there 
is no need to solve for this derivative. 

Figure 3 shows the LoD estimates atter removal 
of the terms due to the fixed body tides with peri
ods up to 35 days. These series are furthermore 
subject to seasonal variations mainly due to at
mosph.eric circulation [4] . The IERS integrates 
the individual LoD-series (made avai lable by dif
ferent GPS-Analysis Centers) and produces a 
combined GPS-solution which finally effects the 
behaviour of the resulting IERS UT1 -UTC series, 
especially in the high frequency range (periods 
shorter than about 30 days). 

CODE Excess length of Day : 21 JUNE 1 992 - 1 JANUARY 1 996 
Effect of Zonal Tides with periods < 35 days el iminated 
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1 .0 .,_,__,_��������������������...,........... 
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present accuracy 0.03 msec 
Fig. 3: CODE LoD-estimates after removal of zonal tides 
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3. The CONT94 Campaign 

In August 1 991 the International Union of 
Geodesy and Geophysics recognized the im
portance of the determination of rapid Earth ro
tation variations and its impl ication for geody
namics through a union resolution. As a result, 
a major campaign, called SEARCH '92 (Study of 
Earth-Atmosphere Rapid Changes), for subdaily 
measurements of Earth rotation was held in 
summer 1 992. Measurements were performed 
by GPS, VLBI ,  SLR and LLR in order to analyze 
subsequently the results of the d ifferent tech
niques. Of course, we have to mention that high
frequency ERP-results based on GPS observa
tions dating from 1 992 suffered remarkably due 
to an incomplete status both of the space seg
ment and the tracking network. Nevertheless, 
the outcome was really promising and a de
tailed description can be found in [Dickey, 
Feissel, 1 994]. 

Another intensive VLBI observation campaign, 
lasting about 2 weeks, was performed in January 
1 994. This campaign was intended to serve as 
continuation of SEARCH'92 and was therefore 
called CONT94. CONT94 provided the scientific 
commun ity with hourly Earth orientation meas
urements and a set öf UT1 -variations deduced 

from them [5]. At the CODE Analyses Center the 
same period was covered with GPS-based esti
mates of LoD and polar motion coordinates with 
subdiurnal resolution. First of all we used the of
ficial IGS precise ephemeris as a priori i nforma
tion in order to compute and save a set of daily 
normal equations. Afterwards these normal 
equations were combined to overlapping 7-day 
arcs and UT1 (respectively LoD) was estimated 
every 2 hours. Finally the results obtained from 
the middle days of the various arcs (Are 1 - Are 
6) were concatenated to cover the whole period. 
Figure 4 shows the outcome of this procedure 
after the removal of lower frequencies. 

A closer look at figure 4 teils us that the time 
series are dominated by diurnal and semidiurnal 
terms. There is no doubt that the oceanic tidal 
angular momentum can be considered to be the 
primary cause for these variations in the earth's 
rotational rate. Since, in the absence of external 
torques, the angular momentum of the ocean
solid earth system is conserved, changes in the 
ocean tidal angular momentum must be accom
panied by changes in the angular momentum of 
the solid earth, thereby leading to changes· in 
the solid earth's rotation. Furthermore figure 4 
compares our L'.UT1 estimates with predictions 
obtained from two wel l-known tide models. The 
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CONT 94 - Campaign 
Prograde Diurnal and Semidiurnal x-pole Variations 
Raw CODE 2 - hour solutions compared to Gross-Model 
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Fig. 5: Estimated Xp - variations compared to model predictions 

first one (Gross model) is based on the resu lts of 
Seiler [1 1 ]  for the axial component of the ocean 
tidal angular momentum. This model can be 
characterized as theoretical approach, but 
nevertheless the evaluated series fit our esti
mates quite wei l .  The other one (Herring model) 
is based on 1 085 VLBI experiments carried out 
between January 1 984 and June 1 992 [7]. This 
model describes ampl itudes and phase angles 
of about 20 tidal constituents, particularly for 
the main tidal l ines in the diurnal (K1 , 01 , P1 , 
0 1 )  and the semidiurnal band (K2, S2, M2, N2). 
Recent investigations [3], dealing with predic
tions according to ocean tide models based on 
Topex/Poseidon observations, confirm the ex
cellent quality of the Herring model. Sometimes 
the amplitudes of the CODE-series seem to be 
overestimated by a factor of two, which could 
be explained by model l ing problems for particu
lar satellites. 

Due to the irregular geographic distribution of 
the world 's oceans, oceanic current and sea-le
vel height changes can also affect the non-axial 
components of the earth's rotation (polar mo
tion). Additionally, we had to keep in mind that 
the polar coordinates Xp, Yp specify the location 
of the celestial ephemeris pole (CEP) within the 
rotating , body-fixed terrestrial reference frame. 
Figure 5 outlines the estimated Xp - vari.ations in 

VGi 3/96 

relation to the corresponding numbers com
puted by means of the Gross model . There is a 
fairly good correspondence in the first week but 
the remarkable amplitude differences in the sec
ond week are subject to further investigations. 

Concerning figure 5 it must be emphasized 
that the retrograde diurnal polar motion was al
ready constrained to zero within the actual esti
mation process. A retrograde diurnal polar mo
tion (K1 ocean tide) is not observable, because 
it represents a constant offset of the CEP in 
space and. is therefore absorbed into the defini
tion of the CEP (Nutation). 

4. Nutation Offset determination by means of 
GPS 

The present theory of nutation adopted by the 
IAU is based on Kinoshita's rigid earth theory [8] 
and Wahr's non rigid theory [1 2] that uses the 
earth model 1 066A. Wahr's theory deduces the 
ratio of nutation ampl itudes for the non-rig id 
earth to that for a rigid model. Soon after the 
adoption of the IAU 1 980 Theory of Nutation 
VLBl-observations showed deficiencies in this 
theory at the level of several mi l l iarcseconds 
(mas). The motion - of the celestial pole relative 
to the IA� 1 980 Theory is expressed in the Ce-
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Spectrum of the deps drift - - - Jan 1, 1 994 - Apr 20, 1 995 
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Fig. 6: Frequency analysis of the drifts in ot.E as estimated by the CODE processing center 

lestial pole offset parameters ßE (Obliquity) and 
ßljl (Longitude), which complete in addition to 
the ERP the set of Earth Orientation Parameters 
(see chapter 2). Up to now VLBI was the only 
technique capable of measuring al l EOP compo
nents simultaneously and accurately. In case of 
looking on long-period nutation this statement 
is also valid in the future, s ince VLBI is the tech
nique with direct access to the Celestial Refer
ence Frame. On the other hand satel l ite techni
ques should, simi lar to the monitoring of h igh
frequency variations of universal time, be able 
to make valuable contributions in  the determina
tion of celestial pole offset parameters, espe
cially in the short period range. Therefore the 
CODE-Analysis center started (in February 
1 994) to derive celestial pole offset parameters 
based on GPS tracking data of the global IGS 
network. These estimates were thought to prove 
or reject the above mentioned idea that GPS, as 
a satellite technique, is able to locate the CEP in  
the celestial space fixed frame. 

In the meantime, after a renewed computation 
of the January 1 994 observation data, time ser
ies which cover more than 1 6  months, are avail-
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able. Simi lar to LoD, there are correlations be
tween the orbital elements (right ascension of 
the ascending node, inclination) and the nutation 
terms. Therefore only the first derivatives, the nu
tation offset rates in obliquity ME and longitude 
oßljl, are accessible to the GPS. The accuracy 
of these daily drifts is of the order of 0.3 mas/ 
day. ldeally we should see essentially the same 
frequencies as VLBI in the spectrum of our esti
mated drifts and furthermore get the same order 
of magnitude when estimating the relevant 
terms. Figure 6 reflects the results of a spectral 
analysis of the ßE - rates. 

The oßE - spectrum shows the maxima roughly 
at the expected periods, in particular at 7 . 1  , 9 . 1  
and 1 3. 7 days. The corresponding curve for the 
nutation in longitude is somewhat less convin
cing, but wil l improve with a growing time base. 
Analizing the ME- and oßljl- series enables us 
to estimate amplitude corrections for some of 
the short period nutation terms (periods up to 
35 days) relative to the IAU 1 980 model. The 
author is therefore convinced that the GPS is 
able to give essential contributions in the high 
frequency range in  future. 
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The Austrian Gravity Base Net 1 995 

Diethard Ruess, Wolfgang Gold, Vienna 

Abstract 

The Austrian Gravity Network is one of the tasks of the Federal Office of Metrology and Surveying (BEV) in  
Vienna. A revision of the old existing network were started 1 981 . New stations were established and relative mea
surements were made with LCR gravimeters only. The neighboring networks were connected with the Austrian 
network. Since 1 987 the absolute gravity meter J ILAG-6 has been used for observations on 28 stations of the 0. 
order. Two different national network adjustments and an European adjustment were calculated. The results were 
compared and contrasted with the absolute observations. The maximum difference is less then 30 µGai, the aver
age difference is less than 1 .5 µGai. 

Repeated absolute measurements twice a year have been done on a station in the Central Alps of Austria to 
check the stability of the gravity values. The amplitude of these results is 8·1 o-s m/s2 (8 µGai). 

1 .  lntroduction 

The Federal Office of Metrology and Surveying 
in Vienna has a long tradition in determining the 
gravity. First observations were made 1 878 in 
Vienna with a Repsold Pendulum by Theodor R. 
v. Oppolzer of the k. k. Gradmessungsbüro. 
Further measurements were made by Robert D. 
v. Sterneck. The Vienna Gravity System was es-
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tablished and valid unti l 1 909 when the Potsdam 
Gravity System was decided by the IAG. In the 
501h and 601h relative measurements were possi
ble using the relative gravimeters N0rgaard and 
Worden. Therefore a base station network was 
establ ished and derived from the European Cali
bration Une which crossed Austria between Kuf
stein and Brenner. At the end of the 701h a lot of 
these base stations were lost. In 1 980 four new 
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absolute gravity stations were established in 
Austria, measured by 1 .  Marson with the rise 
and fall apparatus IMGC of ltaly [1 ] .  New relative 
gravimeters were avai lable and a lot of geophysi
cal projects demanded a new homogeneous and 
practical gravity base network. Since 1 987 the 
JILAG-6 free fall absolute gravimeter (figure 1 )  
has been used for several new absolute stations 
in Austria (7]. The results of these observations 
have been introduced in the gravity network. 

2. The Austrian Gravity Base Net (ÖSGN = 

Österreichisches Schwere-Grund-Netz) 

A lot of d ifferent tasks in geodesy, geophysics 
and technical applications effect the necessity 
of a homogeneous distribution of gravity base 
stations with high accuracy. The mountainous 
area of Austria causes the number of 236 main 
stations of the order 0.  - 2. The stations of the 
order Zero are defined as absolute stations. A 
primary network of further 20 stations (1 . order) 
was established in the area of important junc
tions in 1 981 - 1 985 [6]. At least in the 2 .  order 
a distribution of one station on each page of the 
Austrian Map 1 :50.000 (1 station/ � 520 km2) 
was aimed. The final distribution is shown in fi
gure 2.  One to three witness stations were es-

Fig. 1: The absolute gravitymeter JILAG-6 

tablished in the surrounding of each main station 
and somewhere points of 3 .  order complete the 
number of about 720 stations (table 1 ). 

The most of the relative measurements were 
observed by the La Coste & Romberg gravity 
meters D-9, D-51 , G-625. The ÖSGN is con
nected with the networks of the surrounding 
states (table 2). 

3. Network Adjustments 

A first homogeneous adjustment was pre
sented at the XX. IUGG Assembly 1 991 . Further 

ÖSGN 

order stations cr[µGal] determination instruments 

0 28 4-8 absolutely J ILAG-6 

1 1 39 5-1 0 relatively, directly and jointly 2-4 LCR 

2 446 5-1 5 relatively, jointly 1 -3 LCR 

3 1 06 8-20 relatively, directly 1 LCR 

0-3 7 1 9  4-20 summary 

Table 1: Station groups of the Austrian Gravity Base Network (June 1995) (cr [µGai}: adjusted error of the absolute g
value on a station) 

Connection to the time connections 
surrounding states 

ltaly 1 985 2 

Switzerland I Liechtenstein 1 982-85, 1 994 6 

Germany 1 982-85 1 9  

Czechia 1 991 , 1 995 34 

Slovakia 1 991 4 

Hungary 1 992 1 2  

Slovenia 1 995 1 1  

Table 2: Gravity network connections with surrounding countries 
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analyses were done and the main part of the 
Austrian gravity network is included in the new 
European Gravity Network. According to the ac
curacy of the absolute gravity values the mean 
error of the adjusted values is better than 
8 · 1 0-8 m/s2 (8 µGai). 

The solutions of the three different types of 
network adjustments are compared and pre
sented. 

3. 1. Iterative Solution of the Austrian Gravity
network (/SAG) 

At the same time when the measurements in 
the new gravity network were started the values 
of the base stations were needed for different 
other g ravity projects. Therefore it was neces
sary to make a first partially network adjustment. 
The distribution of the measured network con
nections was very inhomogeneous until 1 985. 
Therefore it was not possible to use modern ad-

iterative adjustment of the OESGN 

average g 
(weighted) table of stations 
OESGN 

calibration function 

Fig. 3: Data flow diagram of the iterative method 
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justment computing models using matrix algo
rithms. 

Therefore a method was developed which al
lows to calculate new station values for each 
measuring cycle beginning on weil known start
ing points. The Gaussian law of propagation of 
errors was used straight. The new values on 
each station were given by the weighted mean 
of the results of the certain cycles and then 
used for a new turn of calculation. This proce
dure is a modification of the technique of Aner 
and lichte "The adjustment of a trigonometric 
elevation network" [1 2]. The data flow diagram 
is shown in figure 3. 

The first step used was to calculate the g-va
lues by the daily observation cycles, beginning 
at the absolute stations. 

1) calculation of relative g-values using the cali
bration function of the certain instrument and 
correction of tidal and dritt effects =? g-values 
of each daily station + unknown offset 

2) calculation of the unknown offsets by using 
absolute stations and prel iminary values 

3) recalculation of the station - values 
4) computing the average value by using all re

sults of 3) 
5) back to 2) 

lntroduced data: 3826 relative observations 
1 07 absolute observations 

which give the datum 
27 foreign network values 

3.2. ANAG (ANalyse AusG/eich) 
This adjustment system is a modified version 

of the 30 network adjustment program system 
ANAG which is used in the BEV to adjust control 
points [1 3] .  The part of the adjustment of the 
heights was befitted for the gravity network ad
justment. 

The observation equation is given by: 

V;j = gdi - gd; + [(gj - Q;) - Llg ij] 
Llg;i observations 
9i.9i prel iminary g-values 
gdi, gd; unknowns 

Used data in the adjustment: 2439 Llg values 
769 stations 

The Llg values were computed by using the 
adjustments of the daily observations (dritt & 
tide corrected). lt is the same data set as in 
3.1 . 1 ). 

The absolute g-values are included by using 
the fixed g-values and a pseudo-difference of 
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zero to an identical relative station. The rectifica
tion's of these zero-differences corresponds to 
the rectification's of the absolute values. The ac
curacy of the absolute measurements are used 
for the wei9ht of the pseudo-difference 0. 

The errors of the prel iminary (daily) adjust
ments are used for the wei9ht of the 9-differ
ences by eliminatin9 the extremes (5 s cr s 30). 
An error proportional to the 9-differences (2 µGai 
/ 1 00 mGal) is used. 

Therefore the extremes of the errors are: 
1 .2 s cr s 8.5 

and the used wei9hts are: 0.001 3 s p s 0.069 
The error bars of the results of the adjustment 

are shown in fi9ure 4. 
The absolute stations in Austria measured in 

1 987 - 1 994 with the JILAG-6 9ive the datum of 
the adjustment, additionally the station Munich 
of the DSGN 80 was used. 

3.3. UEGN 

The Austrian observations of the 0. and 1 .  or
der observations and some important parts of 2. 
order measurements are included in the adjust
ment of the Unified European Gravity Network 
UEGN [1 ] . All the superior parts of the most wes
tern European countries are included. For this 
adjustment all the row - data of the field obser
vations were used. These data were evaluated 
usin9 a un ified al9orithm of dritt calculation and 
corrected with the newest earth tide model. 
Therefore inconsistencies due to different na
tional computin9 al9orithms were avoided. 

The dispositions of the rectification equations 
are: 

on absolute measurements: 

V; =  9i - 9; 

with 

v; residua/s of the observations 
9i estimated station value 
9; observed value (earth tide corrected) 
on relative measurements: 

V; = 9i + 01 + z/9 + tjdl + rj 
with 

V;, 9i as above 
o1 unknown offset of a measuring cyc/e 
zi observed value (reading) 
f9 calibration factor of the instrument 

· ti time of observation 
d1 linear dritt coefficient in a cyc/e 
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ri gravimeter reading # i, earth tide corrected, 
calibrated 

The datum of the adjustment corresponds to 
the 1 23 used absolute measurements. 

4. Comparisons with the absolute stations 

The results of the 3 different kinds of network 
adjustments were compared with the 9iven ab
solute values (table 3). The mean errors are very 
close to9ether. The hi9her mean value of the 
UEGN error - results is caused by a smaller 
number of used relative observations. Therefore 
the bi9 difference of 44 µGai in the UEGN at 
Mannswörth is declared by only a few week rela
tive connections to the other stations on one 
hand and by not usin9 the absolute value on the 
other hand. Also further 5 absolute values are 
not introduced in the UEGN. The avera9e resi
duals of the different adjustments lay between 
-1 . 7 (UEGN) and + 0.6 (ANAG). So a good a9ree
ment could be found in all three types of adjust
ments. 

5. Comparisons with further network stations 

The results of the different adjustment routines 
were compared on 4 7 si9nificant base stations 
and presented in table 4. The extremes in the 
discrepancies are -27 and + 32 and wi l l  be found 
in the row UEGN - ANAG. The maximum discre
pancies between ANAG and ISAG is -1 3 and 
+ 1 8. The reason of the smaller disa9reements is 
caused be the 9reater number of used observa
tions. 

The 9ravity niveau of the UEGN fits very good 
to the results of ISAG (- 0.5 µGai). The n iveau 
of ANAG seems to be hi9her by about 1 .5 µGai 
than the results of ISAG. 

6. Checks on stabil ity of absolute gravity ob
servations 

The long term stabil ity of 9ravity can only be 
checked by repeated absolute observations. In 
Austria this was possible only on few stations. 
The most frequented absolute stations are Ober-
9ur9I and Vienna. Repeated measurements are 
also planned in 9eodynamic sensitive zones. 

In Obergur9I (Ötztal in Tyrol) repeated absolute 
observations have been made twice a year since 
1 987 every spring and autumn with the J ILAG-6 
instrument [1 1 ] . The 9oal of these measurements . 
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Comparison between 3 different adjustments of the Austrian Gravity Base Net 
ÖSGN Name ABS ± ISAG ± ANAG ± UEGN ± ISAG- ANAG- UEGN-
UEGN ABS ABS ABS 

0-021 -00 Altenburg-0 867386 6 867383 5 867381 4.3 867371 5 -3 -5 -1 5 
1 764 

0-021 -01 Altenburg-W 868930 5 868935 5 868929 4.9 868927 9 5 -1 -3 
1 85 1 *  

0-050-00 Kremsmünster 741 249 1 5  741 259 5 741 273 4.5 741 260 5 1 0  24 1 1  
1 769 

0-059-00 Wien 849543 2 549544 5 849544 3.9 849542 3 1 0 -1 
1 772 

0-059-1 0  Mannswörth 837769 7 837760 5 837756 5.9 837725 1 2  -9 -1 3 -44 
1 863* 

0-071 -00 Göstl ing 681 846 6 681 845 5 681 852 4.4 681 841 5 -1 6 -5 
1 775 

0-076-00 Hirtenberg 81 3033 3 81 3033 5 81 3034 5.6 81 3036 6 0 1 3 
1 778 

0-076-01 Tattendorf 81 0686 3 81 0686 5 81 0688 6.4 81 0694 9 0 2 8 
1 854* 

0-077-00 Seibersdorf 829677 5 829675 5 829675 5.5 829675 5 -2 -2 -2 
1 780 

0-077-01 Unterwalters 822607 4 822607 5 822604 6.4 822603 7 0 -3 -4 
1 857* 

0-077-02 Ebreichsdorf 81 801 4 4 8 1 8015  5 8 1 8019  5.5 81 8024 8 1 5 1 0  
1 859* 

0-078-00 Kaisereiche 795426 4 795430 5 795435 5.8 795429 7 4 9 3 
1 784 

0-082-1 0 Bregenz 650100 7 650104 5 650 1 03 6.4 6501 1 1  7 4 3 1 1  
1 785 

0-1 01 -00 Hochkar 484653 4 484652 5 484657 6.5 484646 8 -1 4 -7 
1 789 

0-1 01 -50 Präbichl 51 3094 9 51 3096 6 51 3097 6.3 51 3095 6 2 3 1 
1 790 

0-1 1 1 -1 0  Koblach 61 2425 6 6 1 241 8 5 61 241 4 6.4 61 2396 1 5  -7 -1 1 -29 
1 861 * 

0-1 1 8-00 Innsbruck 546559 6 546570 5 546568 5.7 564580 7 1 1  9 21  
1 796 

0-1 32- 1 0  Trofaiach 61 6484 8 61 6483 5 61 6482 7.5 61 6482 8 -1 -2 -2 
1 800 

0-1 33-1 0 Leoben 648195 8 648 1 90 5 648191  3 .9  648203 6 -5 -4 8 
1 802 

0-1 40-00 Tisis 588321 7 588331 1 1  588335 6.4 588323 7 1 0  1 4  2 
1 805 

0-1 64-00 Graz 71 551 4 4 71 551 1 5 71 4513  4. 1 7 1 45 1 2  8 -3 -1 -2 
1 81 3  

0-1 73-00 Obergurgl 1 239926 4 239923 5 239922 4.5 239922 5 -3 -4 -4 
1 81 4  

0-1 73-01 Obergurgl 2 239890 2 239891 5 239892 3.9 239892 3 1 2 2 
1 81 5  

0-1 81 -00 Penk 467787 8 467780 5 467782 5.5 467796 6 -7 -5 9 
1 81 9  

0-202-00 Klagenfurt 620236 9 620229 6 620234 6.0 620227 9 -7 -2 -9 
1 822 

001 8/0 München 723 1 37 7 723 1 09 9 723 1 24 7.3 723131  4 -28 -1 3 -6 
1 243 

DU KOESZ Köszeg 784708 5 784706 5 - - 784705 1 5  -2 -3 
1 837 

mean values 5.8 5.4 5.5 7.2 -1 . 1  0 ,6  -1 .7  
1 851 *  absolute value not used in UEGN 

Table 3: Comparisons of 27 used absolute stations and the different adjustment results 
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Results of adjustments (main stations) 980 „ . . . .  [r1Gal] differences 

ÖSGN Number ISAG (J ANAG (J UEGN (J ANAG- UEGN- UEGN-
ISAG ISAG ANAG 

1 -01 6-00 776.237 5 776.243 7 776.232 8 5 -5 -1 1 

1 -025-00 882.229 5 882.236 5 882.221 8 7 -8 -1 5 

1 -047-00 740.1 1 0  5 740. 1 1 8  6 740. 1 1 8  7 8 8 0 

1 -050-02 740.394 5 740.402 6 740.406 7 8 1 2  4 

1 -054-00 855.361 5 855.374 6 855.365 7 1 3  4 -9 

1 -055-01 861 .61 8 5 861 .625 8 861 .61 5 9 7 -3 -1 0 

1 -059-00 849.546 5 849.550 4 849.539 5 4 -7 -1 1 

1 -059- 1 0  837.662 7 837.665 6 837.641 1 2  3 -21 -24 

1 -061 -00 851 .691 5 851 .700 5 851 .686 8 9 -5 -1 4 

1 -071 -00 683.1 47 5 683 . 1 54 4 683.1 42 5 7 -5 -1 2 

1 -074-00 71 1 .440 5 71 1 .449 1 0  71 1 .425 8 9 -1 5 -24 

1 -076-00 81 2.6 18  5 81 2.620 5 81 2 .625 6 2 7 5 

1 -076-01 81 0.347 5 81 0.350 5 81 0.352 7 3 5 2 

1 -077-00 829.4 10  5 829.41 3 8 829.41 4 7 3 4 1 

1 -077-1 0 837.967 5 837.976 5 837.970 7 9 3 -6 

1 -082-1 0 650. 1 90 5 650. 1 86 7 650. 1 83 1 3  -4 -7 -3 
1 -093-00 670.597 5 670.603 6 670.609 6 6 1 2  6 

1 -097-00 570.794 5 570.797 7 570.808 9 3 1 4  1 1  

1 -1 01 - 1 0  641 .992 5 642 .01 0 6 642.007 9 1 8  1 5  -3 

1 - 1 0 1 -30 484.808 5 484.81 8 7 484.81 3  1 2  1 0  5 -5 

1 -1 1 1 -1 0  61 2.404 5 61 2 .398 7 61 2.381 1 3  -6 -23 -1 7 

1 -1 1 8-00 546.254 5 546.249 6 546.265 7 -5 1 1  1 6  

1 -1 20-00 608.969 5 608.972 7 608.968 8 3 -1 -4 

1 -1 23-00 523.939 5 523.945 7 523.944 9 6 5 -1 

1 -1 32-1 0 61 6.462 1 0  61 6.463 9 61 6.436 7 1 -26 -27 

1 - 1 33-1 0 647.553 5 647.556 4 647.560 8 3 7 4 

1 -1 36-00 71 1 .940 5 71 1 .937 8 71 1 .936 8 -3 -4 -1 

1 -1 40-00 588. 1 84 5 588. 1 76 7 588. 1 72 6 -8 -1 2 -4 

1 -1 41 -00 489.751 5 489.738 1 0  489.760 8 -1 3 9 22 

1 -1 44-00 476.672 5 476.667 8 476.685 6 -5 1 3  1 8  

1 -1 57-00 466.1 56 5 466.1 67 7 466.1 71 1 0  1 1  1 5  4 

1 - 1 6 1 -00 581 .868 5 581 .868 8 581 .875 8 0 7 7 

1 -1 73-00 239.91 4 5 239.91 6 5 239.91 0 6 2 -4 -6 

1 -1 79-00 522.487 5 522.483 7 522.490 1 1  -4 3 7 

1 -1 90-08 707.1 32 8 707.1 42 8 707 . 1 24 1 2  -1 2 -8 -1 8 

1 -202-01 622.405 5 622.403 6 622.404 1 0  -2 -1 1 

2-001 -00 825.997 5 825.987 2 825.978 9 -1 0 -1 9 -9 

2-005-00 81 8.525 5 81 8.520 9 81 8.503 1 7  -5 -22 -1 7 

2-1 00-00 643.555 5 643.569 5 643.560 8 1 4  5 -9 

2-1 07-00 776.278 5 776.276 7 776.276 1 0  -2 -2 0 

2-1 1 1 -00 623.737 5 623.734 7 623.740 9 -3 3 6 

2-1 1 6-1 0 562.679 5 562.676 6 "562.693 1 1  -3 1 4  1 7  

2-1 45-00 5 1 6.21 0 5 51 6.203 8 51 6.235 6 -7 25 32 

2-1 46-00 490.001 5 489.992 8 490.007 7 -9 6 1 5  

2-1 73-00 344.982 5 344.974 9 344.970 8 -8 -1 2 -4 

2-201 -00 577.692 5 577.685 9 577.693 6 -7 1 8 

2-205-00 647.433 5 647.434 7 647.440 1 2  1 7 6 

mean values 5 7 9 1 ,3 0 ,4 -1 , 1  

Table 4:  Comparisons on a sample of  47 main base stations of the ÖSGN 
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is the investigation in slow changing gravity in 
the area of the Central Alps. Possible reasons 
are the changing of the air pressure in wide sur
roundings and the seasonal changing in the hy
drological equi l ibrium. This effects wi l l  also 
cause d ifferent loading of the earthcrust and its 
response in deformations (1 4]. The graph of the 
observation - series is shown in figure 5. An evi
dence of a correlation to the effects mentioned 
above is not yet produced. Also the upl ift of the 
Alps (1 mm/y) calculated with levell ing data [3] 
does not expect increasing of the gravity. Possi
ble explanations may be found in changing of 
the water budget in this area. Further i nvestiga
tions will be done. 
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Fig. 5: Repeated absolute gravity measurements in the 
Central Alps. 

7. Conclusion 

lt was shown that three different methods of 
adjustments of the Austrian Gravity Base Net
work (ÖSGN) give the same results within the ac
curacy of the adjusted values. The accuracy of 
gravity at the Stations is better than 8· 1 0-8 m/s2 

(8 µGai). Therefore a high precision base network 
is available in Austria for all tasks in Gravity. 
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Abstract 

Calibration of Digital Levelling 
Systems 

A. Reithafer, B. Hochhauser, F.K. Brunner, Graz 

Since the introduction of the first digital level by Leica in 1 990, this type of equipment is rapidly gaining accep
tance in high precision levell ing. A digital levelling system consists of the following main components: coded invar 
staff, i l lumination of staff, atmospheric propagation path, optics of the level, automatic compensator and electro
optical linear array. Therefore the complete system needs to be calibrated in order to assess its accuracy perfor
mance over a wide range of conditions. 

A new vertical comparator has been developed for the calibration of digital levelling systems. The coded invar 
staff can be positioned vertically to better than 2 µm using a laser interferometer. The digital level can be positioned 
anywhere between 5 to 30 m from the staff. The true errors of the height d ifferences can be determined as a 
function of distance from the difference between the vertical comparator and the digital level readings. 

The performance of two digital levelling systems has been investigated in great detail. In the Leica NA 3000/3 
results a clear periodic effect was discovered. The periods of this effect are distance dependent and range between 
1 and 3 mm with amplitudes of up to 0.2 mm. The periodic nature of this effect raises the question of the correct 
choice of the sampling interval of the vertical comparator which is addressed. The specified RMS of double run 
levelling can be confirmed for the NA 3003, however, the accuracy of single height measurements is affected by the 
periodic effect. The results of the calibration of the Zeiss DiNi 1 0  equipment do not exhibit any periodic effect. In 
conclusion, the calibration of digital levelling systems is recommended as part of the required quality control .  

Zusammenfassung 

Das Digitalnivellier und die dazugehörigen lnvarcodelatten bilden jeweils das zu prüfende Meßsystem. Dazu 
wurde ein neuer Vertikalkomparator entwickelt, mit dem die lotrecht gestellten Codelatten um beliebige Intervalle 
mit Hi lfe des Laserinterferometers automatisch positioniert werden können. Das Digitalnivellier ist meßgerecht in 
einer frei wählbaren Entfernung zwischen 5 m und 30 m aufgestellt. Die Beleuchtung der Latten wurde durch die 
Messung der Spektralverteilung optimiert. 

Die Genauigkeiten der Digitalnivelliere LEICA NA3000/3 und ZEISS DiNi 1 0  wurden unter Meßlaborbedingungen 
bei konstantem Klima untersucht. Bei den Typen NA3000/3 wurde eine Grundschwingung der Abweichungen von 
den Sollwerten, deren entfernungsabhängige Perioden zwischen 1 und 3 mm liegen, festgestellt. Die korrekte Wahl 
der Abtastung der Höhenablesung für die Kalibrierung bei Vorliegen eines periodischen Effektes wird geklärt. Bei 
einer Zielweite von 1 4,97 m tritt ein Maximum eines Überlagerungseffektes auf, der die Amplituden bis 0,5 mm 
vergrößert. An der Reduktion dieses Effektes wird bereits intensiv gearbeitet. Es sind bei Zielweiten zwischen 20 
und 25 m maximale Ampl ituden von 0,2 mm der Abweichungen vorhanden, sodaß unter Berücksichtigung einer 
annähernden Gleichverteilung der mittlere Kilometerfehler eines Doppelnivellements - nach Herstellerangaben von 
0,4 mm/km - eingehalten werden kann. Die Spezifikation des mittleren Fehlers einer Einzelmessung von ± 0.03 mm 
kann nicht bestätigt werden. Die ersten Untersuchungen des Digitalnivell iers Zeiss DiN i 10  ergaben eine sehr hohe 
Genauigkeit unabhängig von der Distanz und es sind keinerlei periodische Effekte erkennbar. Diese Unter
suchungen werden fortgeführt. 

Schließlich wurde festgestellt, daß es zwischen den einzelnen Typen der Nivelliersysteme erhebliche Genauig
keitsunterschiede gibt, sodaß eine Kalibrierung jedes Meßsystems im Sinne einer Qualitätskontrolle der Meßmittel 
zu empfehlen ist. 

1 .  lntroduction 

Since the introduction of the first dig ital level 
by Leica in 1 990, [1 ] ,  [2], this type of equipment 
is rapidly gaining acceptance in high precision 
level l ing.  A digital level l ing system consists of a 
coded invar staff and an automatic level with an 
electronic eye piece in order to achieve an auto
matic horizontal height reading of the statt. 
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A new cal ibration facility has been developed 
for dig ital level l ing systems using a vertical com
parator in the measurement laboratory of the TU 
Graz. The performance of two digital levell ing 
systems (Leica and Zeiss) has been investigated 
in great detail using this new vertical compara
tor. The results of these calibration tests are pre
sented as functions of the sight length and the 
height reading on the staff. 
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2. Measurement System 

The complete measurement system of a dig ital 
level consists of several basic elements (Fig . 1 ). 
The first basic element is the staff with a known 
code of the sequence of black and white fields. 
Naturally, the staff has to be i l luminated. Next, 
the coded information propagates through the 
atmosphere which causes refraction and scinti l
lation of the staff image. Then the staff image 
passes through the optics and the automatic 
compensator of the level. A beam spl itter directs 
the staff image on a l inear CCD array. Finally the 
staff reading can be computed using the image 
and known code information. This process de
pends on the design of the level l ing system. In 
the case of the Leica level the correlation be
tween the staff image and the known staff code 
is calculated which will depend on the distance 
and on the height reading. 

Stoff 
Illumination 

/// 

T emperoture 
Effect 

Fig. 1: Measurement system of a digital level 

lt would be a formidable task to cal ibrate each 
of these basic elements. Therefore it is of advan
tage to calibrate the measurement system as a 
whole, varying the height of the staff and the dis
tance of the staff to the level. Since this cal ibra
tion yields relative height information only, the 
standard level test continues to be mandatory 
for field work. 

3. Vertical Comparator 

The TU Graz is the owner of a temperature 
controlled (20°C ± 0,5°C) measurement labora
tory [3] with a range of cal ibration faci l ities. Dur
ing the past two years a vertical comparator for 

Fig. 2: Vertical comparator and laser interferometer 

(Fig. 2). A special shaft was bui lt in order to 
move the staff up und down by ± 3 m using 
3 m long standard invar staffs. The staff is at
tached to a vertical rail system on which the statt 
can be moved vertically. The motion is controlled 
by the laser interferometer. The vertical com
parator design adheres to the Abbe principle 
(Fig. 3). Using a feed-back control system it is 
possible to position the statt with an accuracy 
of 2 µm. 

i : Code-Stoff - , 1 : 
Digital Level ! 1 � 

- - - - - - � = = = = = = = ====== = = = E  : 

d ig ital level l ing systems has been developed Fig. 3: System configuration of the vertical comparator 
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The digital level can be positioned in distance 
up to 30 m from the statt. Special care has been 
taken to i l luminate the statt. Four lamps are 
used with a broad spectral range which was op
timised to match the spectral requirements of 
the dig ital levelling equipment. The development 
of the vertical comparator has not been fully 
completed and some improvements are planned 
already. 

In the next chapter results of the first investi
gations using this new vertical comparator are 
presented. 

4. Digital levels tested 

Two different types of digital levels have been 
tested: the Zeiss DiNi1 0 and the Leica NA3000 
and NA3003. Technical detai ls of the two digital 
levels are summarised in Table 1 ,  and further 
technical details can be found in the publ ications 
[4], [5) and [6]. 

ZEISS LEICA 
DiNi1 0 NA3003 

Code field 0,3 m 20 

Measuring 1 ,5 - 1 00 m 1 ,8 - 60 m 
range 

Setting 
accuracy of 0,2" 0,3" 
Compensator 

RMS of 
1 km double 0,3 mm 0,4 mm 
run level l ing 

RMS of single 5 m : <  0,01 mm 
pointing, good 1 0  m :  0,01 mm 
atmospheric 20 m :  0,03 mm 
conditions 30 m :  0,05 mm 

Table 1:  Specifications of the digital levels tested 

There are several important differences be
tween the two level l ing systems which were 
tested. The code field measured by the Zeiss le
vel is 30 cm independent of the distance, whi lst 
the Leica level uses an angle of two degrees. 
For the fine measurements the Zeiss level uses 
1 5  black and white intervals, however, the Leica 
level uses for this purpose a correlation function. 
This correlation function depends on two vari
ables: the distance to determine the scale of the 
staff image and the statt reading for obtaining 
the required codeshift. Another important differ
ence is that the basic interval of the Zeiss code 
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is 20 mm, with some coded elements in it, whi lst 
the basic chip length of the Leica code is 2 .025 
mm. 

5.  Results 

The final result of a calibration test is the varia
tion of height deviations which are calculated as 
the differences between the vertical comparator 
readings and the digital level results. These de
viations can be considered true measurement 
errors of the digital levelling system. 

The Zeiss DiNi1 0 was analysed with a 2 m 
statt, and distances between 1 0  and 25 m were 
used. Fig. 4 shows the true deviations of these 
test runs. The range of the true deviations is 
less than 0.1 mm with a very uniform pattern at 
al l  d istances used. The statt readings were 
sampled with an interval of 1 0  cm. The RMS is 
calculated for each of the distances and the 
overall RMS is about 0.02 mm. 

,.. " 
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z 0 � 0 
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Fig. 4: Deviations of DiNi10 level readings 
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Fig. 5: Deviations of DiNi10 results at a distance of 20 m 
and sampling interval of 1 O mm 
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lt is of some concern that the staff readings 
were sampled at the rather arbitrary interval of 
1 0  cm, and therefore !arger but undetected de
viations could still be hidden inside the 1 0  cm in
tervals. Thus the measurements were repeated 
with a 1 0  mm interval (Fig. 5). Additionally an in
terval of 0.5 mm was used which means that 
the statt is shifted after every measurement by 
0.5 mm. This result shows a range of 0.06 mm 
for the true measurement errors and there is no 
pattern apparent in these results. In summary, 
the calibration tests fully confirmed the specifi
cation of the Zeiss DiNi1 0. 

The Leica levels NA3000 and NA3003 were 
tested using a 3 m invar statt and again a dis
tance range from 1 0  to 25 m at certain intervals. 
The results (Fig. 6) show a rather large deviation 
at a distance of 1 4 .97 m. This effect was already 
discussed in a previous publication [7]. The rea
son for this effect is that at the d istance of 1 5  m 
the picture of the code chip length of 2 .025 mm 
is very close to the pixel length of 25 µm of the 
linear array. Therefore a problem occurs at that 
particular distance. The "sharpness" of this ef
fect is of practical interest and therefore tests 
were carried out at several d istances between 
1 4.9 and 1 5. 1  m. The effect disappears rather ra
pidly by moving away from the 1 4.97 m distance 
value. This is shown as the rather "flat area" be
fore the " 1 5  m effect" in Fig. 6. Larger deviations 
also occurred at a statt height of 2 m whose ori
gin could not be clarified at the time of writing 
this paper. 

The results shown above were sampled using 
a 1 0  cm interval, which used to be the "standard 
sampling rate" at the time of these tests. How
ever, as already mentioned above, it has been 
decided to sample at much shorter intervals be
cause the 1 0  cm sampling interval may not re
veal the ful l  "picture''. The fundamental Shan
non's sampling theorem states that the ful l  i nfor
mation of a signal can only be obtained if the 
signal is sampled faster than twice the highest 
frequency of the signal. Fig. 7 shows the result 
of the 2 mm s�mpling of the height deviations 
at the distance of 1 9  m. An enlargement of this 
figure revealed a clear periodic oscillation. Of 
course the sampl ing rate of 2 mm might sti l l  not 
be the correct value, because there could be an 
aliasing effect present. Therefore it was decided 
to sample at intervals of 0.7 mm and 0.25 mm. 
Fig. 8 shows the results of both measurements 
which demonstrate clearly that the results are in
dependent of these two sampling rates. There
fore the smallest period of this periodic oscilla
tion of the true deviations was found to be 
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Fig. 6: Deviations of NA3000/3 readings 
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Fig. 7: Deviations of NA3000/3 resu/ts at a distance of 
19 m and sampling interval of 2 mm 

2.5 mm with an amplitude of 0 . 1 5 mm. The 
power spectrum shows (Fig. 9) a definite peak 
for this particular measurement result. 

Fig. 1 0  summarises the power spectra mea
sured at different distances which show signifi
cant periods of 1 mm to 3 mm. The amplitudes 
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Fig. 8: Deviations of NA3000/3 resu/ts at a distance of 
19 m and sampling interval of 0. 7 mm and 0.25 mm 
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Fig. 10: Summary of power spectra for the NA3000/3 
results 

mises the effect. In order to test this explanation 
an experiment was carried out in the open air. 
The results of this experiment (Fig . 1 1 )  show that 
the periodic pattern which was detected in the 
measurement laboratory also occurred using an 
open air propagation path. 

6. Discussion 

For the sight length of 20 m and a staff length 
of 2 m the calibration results under laboratory 
conditions yielded a RMS of ± 0.01 7 mm for 
the Zeiss DiNi1 0 level l ing system and a RMS of 
± 0.032 mm for the Leica NA3000 levell ing sys
tem. These values are to be considered prelimin
ary results as ·only one (Zeiss) and two (Leica) in
struments have been tested so far. 

A periodic oscillation of the true deviations of 
NA3000/3 level l ing system was d iscovered. The 
amplitudes and periods of this periodic effect 
are distance dependent. Fig . 1 0 shows maximum 
values of 0.2 mm for the amplitudes of this peri
odic effect if the values at the distance of 1 4.97 
m are excluded. In view of this resu lt, it appears 
necessary to explain the RMS of double run le
vellings as quoted in Table 1 .  Considering the 
periodic nature of the deviations, the RMS in a 
single staff reading, cr;, needs to be calculated 
using an uniform probabil ity density distribution. 
Using an amplitude of 0.2 mm, cr; is calculated 
as cr; = 0.2/ J12 = 0.06 mm. For an average sight 
length of 25 m, the RMS of 1 km double run le
vel l ing is calculated as 0.06� = 0.27 mm. This 

1.1 .---------.-------.------.--------,----, 
of these periodic oscilla
tions are below 0.2 mm ex
cept at a distance of 1 5  m.  

The important question is 
what causes such periodic 
osci l lations in the results. 
There is a certain agree
ment of the 2.025 mm 
code chip length and the 
pixel size of the l inear array. 
Therefore by forming the 
correlation function of the 
image and the code a new 
periodic function might be 
created. lt has been sug
gested (H . l ngensand, per
sonal communications) 
that by working in the 
open air this effect disap
pears because atmo
spheric turbulence rando-

288 

' ' ' 
" ,, 1 ,, 

, ,  ,, / \  
'·' 1 

, 1 I 1 I I 1 , 1 I \ 
1 I 1 I 1 I 1 I 1 I 1 I , 1 I 1 1 I 1 I 1 I 1 I I 1 I 1 I 1 : 1 , 1 I 1 I 1 I 1 I 1 1 1 1 I , I , , , 1 , 1 , I , , , , 1 , 

'·' 

, ..... 
,„..... '·, / 

\ / 
\ .--

� /  

-1.5 

-1.1 131.5 11?.0 11?.5 '"·' St<it Hei\1'11 lcml 1"·5 

"'" " 29.18 m "" n  NA3003, 22.06.95 
Ttmpe.n.lurt: 18 'C 

Fig. 1 1: Results with the NA3003 level in an open air environment 
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result is in agreement with the appropriate speci
fication of line level l ing as shown in Table 1 for 
the NA3003, which have been fully confirmed 
by all known practical measurements, e.g. (2]. 
However, the specifications for individual statt 
readings (fable 1 )  could not be confirmed by 
the calibration tests due to the periodic effect 
present in the true deviations of the NA3000/3 
results. These results are summarised in Fig. 1 0. 
Therefore the accurate measurement of small 
height changes as frequently required in i ndus
trial appl ications would be affected by this peri
odic effect. 

The periodic effect of the NA3000/3 equip
ment which was discovered by the present in
vestigation raises also the fundamental question 
about the choice of the proper sampling interval 
for the cal ibration of a digital level l ing system. 
Shannon's sampling theorem requires the sam
pling period to be shorter than half the shortest 
period of the signal which is represented by the 
true deviations of the height reading in the pre
sent case. Fig. 1 0  also al lows to determine the 
required sampling· period using the appropriate 
periods of the periodic effect as a function of 
distance. 
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Austrian Geoid 2000 

Erhard Erker, Vienna; 
Bernhard Hofmann-Wellenhof, 
Helmut Moritz, Hans Sünkel, Graz 

By the impact of the relative GPS accuracy of 1 ppm to 0.1 ppm (for langer baselines), the Austrian geoid with its 
present mean accuracy of about 1 ppm is no langer considered to be sufficiently consistent. For this reason, a new 
computation of the Austrian geoid was initiated with the objective to obtain a relative accuracy of at least 0.5 ppm 
throughout the country. The project is denoted as Austrian Geoid 2000 to indicate that the resulting product is in
tended to survive the turn of the century. 

The new computation of the Austrian geoid will be performed by three approaches, (1 ) the conventional least 
squares collocation method, (2) the fast collocation method which implies gridded input data and a symmetrlc 
block Toeplitz matrix for the covariance function, and (3) the gravimetric solution by the Fast Fourier Transform 
based on either a planar app

.
roximation or a spherical approach for the kernel functions. 

As far as Austria is concerned, the data input consists of a 50 x 50 m digital terrain model, some 30.000 gravity 
data, about 700 deflections of the vertical, and GPS derived points. From the neighboring countries, gravity and 
height information is available in different quality and density. 

1 .  Least squares collocation today 

Slightly more than a quarter of a century ago, the 
estimation of l inear functionals of the anomalous 
potential based on heterogeneous and noisy grav-
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ity data, one of the key problems in physical geo
desy, was not yet solved. The mathematical solu
tion of this problem was given by (6] and exten

. sively elaborated by [8] and other scientists and is 
known as "least squares collocation" (LSC). · 
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The theoretical beauty of LSC has one practi
cal drawback: the processing quickly exceeds 
the computational capacity of the computer be
cause the solution time increases with the third 
power of the size of the data set. Therefore, nu
merous efforts have been made in tuning LSC 
to manage large data sets. 

Among the various methods, the following 
techniques have been applied frequently and 
are capable of reducing the LSC computational 
effort: 

a) The LSC patchwork method. The area under 
consideration is subdivided into a number of 
overlapping subareas. For each subarea, the 
LSC solution is performed. The solution for 
the whole area is obtained by "glueing" to
gether (in a mathematical sense) the subarea 
solutions. 

b) LSC with finite covariance functions. The cor
relation of data decreases with the separation 
of the data points. Data with a large spatial 
separation are almost uncorrelated. There
fore, using a covariance function with finite 
support produces a band-structured covar
iance matrix which significantly reduces the 
computational effort for LSC processing of 
large areas. 

c) Local LSC solutions. Data interpolation and 
differentiation are mainly affected by the local 
data environment; the effect of remote data 
is often negligible. Based on this principle, lo
cal LSC solutions with only a small data set 
can be obtained very efficiently by updating 
the inverse covariance matrix and the solution 
vector when the prediction point is moved 
over the prediction area. 

d) Fast Fourier Transform (FFT) solution. For pla
nar gridded homogeneous data sets with 
homogeneous noise and a covariance func
tion depending on the planar distance, the 
covariance matrix is a block Toeplitz matrix 
consisting of symmetric Toeplitz blocks. This 
specific situation offers the transformation of 
the LSC solution into the frequency domain 
by means of the FFT algorithms, cf. Eren [2] . 
However, errors due to edge effects caused 
by the finite grid must be carefully considered. 

e) Fast collocation. For homogeneous data with 
homogeneous data noise on a geographical 
grid and a covariance function depending on 
the spherical distance, the covariance matrix, 
due to the convergence of meridians, has no 
longer the block Toeplitz structure of sym
metric Toeplitz blocks. The symmetric Toeplitz 
structure of each block is preserved, but the 
block Toeplitz structure is lost. This fact can 
be overcome as outlined below (Sect. 2 .2). 
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2. The Austrian Geoid 2000 

Due to the steadily increasing accuracy re
quirements, a new effort wil l  be made to recom
pute the Austrian geoid. For reasons of compari
son, three groups will compute independently 
three different methods: (1 ) the conventional 
least squares collocation, (2) the fast collocation, 
and (3) a gravimetric solution by using the FFT. 
Some brief explanations of the typical character
istics of these methods are given. 

2. 1. Conventional least squares collocation 

The main i nput source for the geoid used so 
far in Austria are deflections of the vertical. The 
new solution will use heterogeneous data, i .e„ 
gravity data and deflections of the vertical. In ad
dition, GPS data wil l  be used to account for the 
datum problem. 

Details on the solution as realized in the 
GRAVSOFT program package are given by [1 4] .  
This program uses stepwise least squares collo
cation. The method requires data sets with 
known standard deviations and, in addition, iso
tropic covariance functions being specified by a 
set of empirical anomaly degree-variances. For 
the input of observations, the GRAVSOFT pro
gram package allows potential coefficients, 
mean or point gravity anomalies, height anoma
lies, deflections of the vertical , gravity gradients, 
and density contrasts. 

2.2 Fast collocation 

Among the previously described methods, the 
favorite candidate is fast collocation because it 
is both extremely efficient and provides at the 
same time an exact solution on the sphere (in 
contrast to the planar FFT approach). The idea 
of fast col location is simple: for a small area on 
the sphere, a planar grid may be used as a 
good approximation for a geographical grid. As 
a consequence, the block Toeplitz structure of 
the covariance matrix for the planar case may 
be used as a good approximation for the non
block Toeplitz structure of the covariance matrix 
for the geographical case. 

Following [1 ] ,  the covariance matrix C may be 
split into 

C = C + bC (1 ) 

where C represents the block Toeplitz matrix of 
symmetric Toeplitz blocks, and the matrix bC ac
counts for the deviation of the spherical from the 
planar case. The diagonal elements of each 
block correspond to the covariances between 
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data on the same meridian. Therefore, öC has 
zeroes on each block diagonal. The size of the 
oft-diagonal elements in each block depends on 
the grid size and can reach about 1 0% of the di
agonal elements of C for solutions such as the 
one considered here. 

This small deviation suggests the application 
of an iterative solution with C as the zero-order 
approximation of the covariance matrix. Denot
ing the data vector by y and the solution vector 
by x, the iterative solution is accomplished by 

C Xn+1 = y - öCXn. (2) 

lt is important to note that the product öCxn 
can be computed very rapidly if advantage of the 
structure of öC is taken: by properly arranging 
the elements of öC in a vector, the product öC Xn 
can be transformed into a circulant convolution 
of two vectors which can be computed very effi
ciently by the Fast Hartley Transform (FHT) by 
taking into account the convolution theorem. 

The convergence rate of Eq. (2) can be im
proved dramatically by a skillful preconditioning. 
Two conflicting requirements must be fulfilled 
by a precond itioner: first, it should be as simple 
as possible, and, second, it should be as close 
as possible to the inverse of the operator. The 
second requirement is certainly achieved by c-1 
as preconditioner. Therefore, the proposed col
location solution for the Austrian geoid project 
will focus on a preconditioned conjugate gradi
ent method with incorporated FHT. 

The proposed LSC solution will be supple
mented by the usual data reduction due to resi
dual terrain and a high resolution geopotential 
model. Gridded residual gravity data for Austria 
and all neighboring countries, at least 1 00 km 
beyond the Austrian border, will be used. 

According to feasibil ity studies which have 
been conducted recently, a relative geoid accu
racy of about 0.2 - 0.3 ppm may be expected 
for the entire country. 

2.3. Gravimetrie geoid by FFT techniques 
The classical formula to determine the geoid 

from gravity data is the Stokes formula 

N = 4�'Y J L'ig S(l/J) da (3) 
where N denotes the geoidal undulation, R is the 
radius of a sphere, r is a mean value of gravity, a 
indicates the unit sphere, t:..g are the gravity 
anomalies, and S(!/J) is the Stokes function. The 
gravity anomalies !::..g refer to the geoid. Thus, 
measured surface gravity data must be reduced 
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to the geoid by a terrain reduction using height 
data (digital terrain model) and further reduced 
by the g lobal geopotential model. The reduced 
data is used to generate the residual part of the 
geoid by means of (3). The final geoidal undula
tion results from the residual part, the reference 
undulation computed by the geopotential model , 
and the indirect effect (which may be derived 
from the height data). 

The solution of the gravimetric method may be 
carried out conventionally (e.g . ,  by numerical in
tegration) or by the FFT technique. Several ap
proaches for the FFT were developed: the planar 
approximation, see [1 O], the spherical approach, 
see [1 1 ] ,  and other methods. 

The principle of the planar approximation is 
expressed by the following equation 

N(x ) - 2._ J f /::..g(x, y) dx d 141 
P• YP - 2"( ) E J(xp - X)2+ (yp - y)2 Y l"I 

where the geoidal height at Xp, yP is computed 
from t:..g in an area E. This approximation is now 
a two-dimensional convolution integral. The ap
plication of a two-dimensional FFT is straightfor
ward . The error inherent in the planar approxima
tion will grow with the integration area. 

The drawback of the planar approximation 
may be circumvented by the spherical approach 
where the Stokes integral is transformed to a 
two-dimensional convolution integral by a modi
fication of the Stokes function. The evaluation is 
performed on the sphere which causes the 
superiority compared to the planar approxima
tion. However, (1 1 ]  introduces also an approxi
mation by using a mean latitude for each grid 
mesh. The geoid undulations for all grid points 
can simultaneously be computed by applying a 
two-dimensional FFT accordingly. 

The Stokes function may also be expressed as 
a convolution in east-west direction (along a par
allel), because the Stokes function is constant 
for all computation points on one parallel, cf. [7]. 
Applying a one-dimensional FFT, the simulta
neous computation of geoid undulations on a 
parallel is possible without approximation as far 
as the Stokes function is concerned. This ap
proach was proposed by [5]. 

Detailed formulas of these and other ap
proaches may be found e.g. in [7] and in [9]. 

2.4. Availab/e data sets 
Gravity data 

For Austria, some 32.400 gravity data is avail
able at the Section of Physical Geodesy of the 
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T echnical University Graz. This data was pro
vided from several institutions: Institute of Me
teorology and Geophysics of the University 
Vienna, Institute of Geophysics of the University 
Leoben, Austrian Petroleum lndustry, Institute of 
Geophysics of the Technical University 
Clausthal, and the Federal Office of Metrology 
and Surveying. The data refer to the Austrian 
gravity network which is compatible with the in
ternational system IGSN71 . The position para
meters referring to the gravity data are related 
to the datum of the former Mi l i tary Geographical 
Institute (MGI), i .e„ a local datum associated 
with the Sessel el l ipsoid.  Using a grid with a 
mesh size of 2 x 2 km, the gravity data set may 
be reduced to 1 4.255 data for Austria. 

Deflections of the vertical 

At 683 homogeneously distributed points in 
Austria, deflections of the vertical are available. 
The data refers to the same local datum as the 
gravity data (datum of MGI associated with the 
Sessel el l ipsoid). This data was the primary 
source of the previously computed Austrian as
trogeodetic geoids, cf. [3), [4), [1 2] , [1 3). 

GPS data 

From several campaigns, GPS data is ready to 
be used all over Austria. The main purpose of the 
introduction of GPS data is the possibility of an 
accurate datum relation. The GPS data refers to 
a geocentric system, e.g„ the World Geodetic 
System 1 984 (WGS-84). The most important 
Austrian campaigns since 1 990 are the "Austrian 
Geodynamic Reference" campaigns AGREF90, 
AGREF92, and AGREF94. Some 75 GPS points 
established by these campaigns are located on 
Austrian territory. 

Digital terrain model 

The Federal Office of Metrology and Surveying 
provides a high resolution 50 x 50 m digital ter
rain model for Austria. The positions of the grid 
points are expressed in geographical coordi
nates <p ,  },. The heights refer to the official Aus
trian height system consisting of normalortho
metric heights associated with the datum point 
Molo Sartorio in Trieste, ltaly. 

Surface density model 

The two-dimensional surface density model, 
cf. (1 5], was derived from a geological map of 
Austria comprising . 40 regions and twelve d iffer
ent densities between 2000 and 2850 kg/m3. 
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Global earth model 

For the low to medium frequency part of the 
gravity field of the earth, a g lobal geopotential 
model (e.g„ OSU81 or the model being currently 
developed by OMA) will be used. 

Data of neighboring countries 

Gravity and DTM data of all neighboring coun
tries, i .e„ Germany (Bavaria and Baden-Würt
temberg), Czech Republic, Slovakia, Hungary, 
Slovenia, ltaly, Switzerland, are available. The 
gridding of the data is different. However, all 
data wil l  be transformed to mean values in a 
3' x 3' grid. The densification of data is per
formed by prediction and interpolation, thinning 
is achieved by averaging data. 

3. Conclusion 

The three approaches, (1 ) the conventional 
least squares collocation method, (2) the fast 
collocation method, and (3) the gravimetric solu
tion by the FFT wil l  be computed independently 
from three different groups. After a comparison 
of the results, the Austrian geoid 2000 will be es
tablished. lt is almost unnecessary to say that 
the fast col location method will yield this Aus
trian geoid 2000. The reasons are the computa
tional efficiency compared to the conventional 
least squares collocation method and the super
iority with respect to input data compared to the 
purely gravimetric solution. 
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The Austrian Geodynamic 
Reference Frame (AGREF) 
Motivation and Results 

Erhard Erker, Günter Stangl, Peter 
Pesec, Hans Sünkel, Vienna/Graz 

A summary of the works an AGREF is presented and a review of the accuracy of the results is given. Some 
prospects of future related activities are mentioned. 

Zusammenfassung 

Die Arbeiten an AGREF werden zusammengefaßt, die Resultate in Hinblick auf ihre Genauigkeit durchleuchtet 
und die Zukunftsaussichten betrachtet. 

1 .  Preliminary Remarks 

This contribution presents the complementary 
written summary to a poster presented at the 
IUGG XXI General Assembly, Boulder, July 2-
1 4, 1 995. A special monograph which wil l con
tain details of the AGREF activities, including 
the final coordinates and station documenta
tions, wil l  be publ ished in the course of 1 996. 

2. Objectives 

The objectives remained the same as men
tioned in (1 ) ,  namely to establish a 30 homoge
neous reference frame with a total r.m.s. of bet
ter than ± 1 .5 cm, to support the Austrian Geoid 
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at the cm-level, to monitor regional crustal 
movements, and to l ink national and interna
tional networks. 

In future AGREF may also be used for further 
objectives, l ike t<;J provide base stations for 
DGPS and other real time applications. 

3. Realization 

3. 1 Concept 

During the last years the accuracy of GPS-co
ordinates derived from continuous observation 
periods of some days could be improved in 
such a way that it competes with SLRNLBI 
methods, without however replacing them for 
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global control and special applications l ike de
termination of geocentric coordinates and polar 
motion. Cheap permanently observing GPS-sta
tions are under way to replace fundamental sta
tions, equipped with all kinds of measurement 
devices, at least for geodynamical applications. 
The installation of the International GPS Geody
namic Service (IGS) and of the Central Europe 
Geodynamic Reference Network (CEGRN) was 
a logical consequence. Austria, presently, contri
butes with two permanent AGREF GPS-stations 
(Graz, Hafelekar/lnnsbruck) to IGS and CEGRN 
and, temporarily, operates the AGREF stations 
Reisseck and Hutbigl for CEGRN. 

This development led to a revision of the in itial 
concept of AGREF to use only fundamental sta
tions for l inking AGREF to international and glo
bal networks by introducing a hierarchic struc
ture. A subset of seven AGREF points (including 
Graz and Innsbruck) is planned to operate per
manently, thus fulfi l l ing al l objectives of AGREF 
mentioned above. A further subset will be moni
tored periodically (about one week/year) mainly 
for geodynamic investigations. The remaining 
bulk of points should serve for national surveying 
objectives. lt is weil distributed over the whole 
national area with a spacing of about 50 km. Ex
cept for the improvement of accuracy of some 
"bad" points and the restitution of lost points no 
further activity is intended for the moment. 
Furthermore, a dense network (distances about 
20 km) has been installed in a special area of 
tectonic movements (Carinthia-Friu l i-Slovenia). 
There, measurements will be repeated periodi
cally. Figure 1 presents the state of the art distri
bution of all Austrian and associated AGREF 
points. 

3.2 Monumentation 

Based on the fact that most of the measure
ment errors are introduced by the definition of 
the reference point and eccentricity problems of 
the antennas special brass bolts were used as a 
cheap and reliable monumentation, which allows 
for a plain re-occupation without using tripods. 
All bolts were founded in bedrock, pi l lars or old 
bui ldings obeying the usual criteria for GPS-ob
servations. Only very few points had to be ob
served at eccenters. Presently the distribution is 
as follows: 

Austria: 81 points (bedrock 48, pi l lars 1 2, 
others 21 ) 

Croatia: 1 1  points (bedrock 2, pi l lars 6, others 3) 
ltaly: 1 7  points (bedrock 8, pi l lars 4, others 5) 
Slovenia: 20 points (bedrock 1 4, pil lars 4, others 2) 
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These numbers are temporarily changing due 
to the inclusion of of new areas of interest. 

3.3. Measurements 

During the years 1 990-1 995 99% of these 
points have been measured at least twice during 
several campaigns. Starting with Ashtech recei
vers, Trimble and Rogue receivers have been 
used during the last 3 years. The occupation 
t ime could be extended from six hours in 1 990 
to 24 hours in 1 994, mainly due to the upgrading 
of the GPS space segment. All data were stored 
at the Graz observatory. During the 1 992 cam
paign 25% of the Croatian and German receivers 
showed malfunctions in L2. Since, unfortunately, 
the bulk of points was observed during that 
campaign, this was a major setback for deter
mining an accurate solution of AGREF. 

4. Results 

4. 1 Adjustment 

The computations were carried out using the 
Bernese Software in its various versions (mainly 
3.4), adopting ITRF92 at epoch 1 988.0 as the re
ference frame. The results of the campaigns 
prior to 1 992 were transformed to this solution 
via identical points. The main compl ications 
were introduced by the 1 992 data, which had to 
be processed at least twice to get reasonable re
sults for most of the points. 

All sessions were computed independently. 
The final coordinates and their r.m.s errors were 
computed from those daily solutions. All impor
tant session products have been stored at the 
Graz observatory. 

4.2 Results 

During the last years the update of the satell ite 
constellation and the avai labil ity of precise orbits 
and clocks provided by IGS led to a consider
able increase of the accuracy of GPS-derived 
coordinates which is demonstrated by the fol
lowing statistics: 

46% of all points have an r.m.s. of below ± 1 cm; 
27% of al l points have an r.m.s. of between ± 1 

and ± 2  cm; 
27% of all points fai l the required accuracy re

quirements and need additional measure
ments. 

All points fai l ing the required accuracy were 
determined during 1 990 or 1 992. The main pro
blem concerns the height component, because 
69% of all points have horizontal r .m.s. of below 

VGi 3/96 



� 
� 
Ol 

1\) 9 

Austria 
Frame 

1 0  

O UMAS 

l l 

WEIT 0 

mic Re rence 

tien 

0 HUST O I O MOAH LEND 

0 
0 HUTBI 0 WAfJ.Z HAID 

1 OSWA 
O IAYB AGGS 0 

O 
HOLL 

OOBWG 

0 DAST 
OHOWZ 

O RADT 0 ZEDH 

0 GUBG 

TPLZ 

0 PLAN 

UNZ 1 0 0 0 WIEN OGDF 

HQPV 

O uKAA 
OjPOLK 

,BG 

0 OzlRK 
,ABL 

O TIRK 

O EilZK 
0 TEIA 

O KUL 

0 

0 
HZBG 

OGRMS O
FLAT GRAZ 

0 BZRG 0 
FDST 

RE1\/I 0 r�i:� e� ' 0 ft 1 ORAOO 

- PARA 

•

O KMNK 1 0 MRZL 

-ONA r.rmP r -, 1�,v KUCEJ -ZG�NEru t ZAGR 

0 0 NP T°\ 0 VE VEND 

(.__,; 
1 

1 2  

J.--7 ""'.;;:;- )-.�I /'l_ ORBN 

1 
1 

' �HO \ OMONT .L I _�" 
PULA 1 ) \ l i 

1 3  1 4  1 5  1 6  
� Fig. 1 : Distribution of AGREF points; status end of 1995. 

49 

48 

47 

46 

45 

1 7  



GRMS 

70 

50 

30 
1 MICR093 

I DOY 284-288 

D NORTH 
liJ EAST 
• UP 

" 
11 - n 1 1 ' �  .r--t 1:· 1 F j �. � J fl r . � In · �  1 f 1 - u I I  u 1· 'U � 1 � ' f--- ' ü 1 � � ' 

10 
(mm) 

-10 

-30 

1 EUREF94 1 -50 1 DOY 150- 1 54 1 
1 AGREF92 1 
1 DOY 244-259 1  

-70 

Fig. 2 : AGREF Session Differences (Bad Example) 

[mm] 

AGREF90 
DOY 3 14-3 1 9  

AGREF92 
DOY 244-259 

GOLL 

1 AGREF94 
1 DOY 269-279 

AGREF94 
DOY 269-279 

D NORTH 
EAST 

• UP  

Fig. 3 : AGREF Session Differences (Representative Example) 

± 1 cm and only 27% horizontal r.m.s. between 
± 1 cm and ± 2 cm, leaving 4 % with unsufficient 
horizontal accuracy. 

Figure 2 shows a bad example, the site G RMS. 
During 1 990 to 1 993 unstable horizontal compo
nents are joined by considerable height differ
ences. The earlier data did not allow for reason-
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able tropospheric zenith delay estimations, 
which proved fatal for this point with an altitude 
of 2300 meters. Since 1 994 the horizontal com
ponents remained stable, the height sti l l  showing 
some offshots of more than three centimeters. 
During 1 995 (not shown in the figure) the situa
tion improved to a resulting maximum height dif
ference of below two centimeters. 
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Figure 3 presents the normal case (except the 
abundance of sessions) at the site GOLL. The 
differences are much less, but sti l l ,  unti l 1 994, 
all components show an unstable behaviour. 

Figure 4 gives an overview of the accuracy of 
AGREF based on data up to end of 1 994. Gross 
errors have been omitted, where possible. Con
siderable improvements have been attained in 
some regions since that t ime. lt seems quite lo
gical that each forthcoming weil designed cam
paign may improve the values of some points. 

5. Conclusions 

The coordinates of AGREF are avai lable now, 
but yet still unpubl ished. The horizontal compo
nents show a repeatabil ity of below 1 0  mm with 
an r .m.s. of the mean tending weil below 5 mm. 
The height can now repeated within 20 mm, the 
r.m.s.  of the mean already remain ing below 
1 0  mm. Only points with occupations older than 
1 994 show worse accuracies. Therefore, the re
sults of AGREF can now be used for several ob
jectives. 

AGREF provides a pretty good national repre
sentation of the international reference frame. lt 
can be used for purposes of national surveying 
very weil. lt also can support geoid computa-

tions, but still an improvement in height determi
nation would be desirable. This is even more de
manding for geodynamic investigations. Having 
small tectonic movements in Austria the present 
accuracy will be the minimum for their fast and 
precise determination. 

The next targets should be the replacements 
of older results by more precise ones. Addition
ally, the combination of measured values of the 
troposphere with its conventional estimation 
should be investigated to improve the determi
nation of the height component. 
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6 .  S E R IE  C H I S CH E R  G EODÄT E N TAG 

V e r m e s s u n g  o h n e  G re n z e n  

Die 

Österreich ische Gesel lschaft 
fü r 

Vermessung und Geoinformation 
veranstaltet 

vom 4. bis 7. Jun i  1 997 

den 

6. Österreich ischen Geodätentag 1 997 in  Vi l lach. 

U nter dem Motto "Vermessung ohne G renzen" werden u . a.  Themen kre ise 
betreffend die technischen Möglichkeiten der grenzübergreifenden Meß
und I nformationstechnologie und d ie Öffn ung der politischen sowie wi rt
schaftl ichen G renzen nach Süden und Osten behandelt werden .  

Informationen: 
Örtlicher Vorbereitungsausschuß (ÖVA) 
Dipl. Ring. Andreas Kubec 
Aw9500 Villach1 Jakob Ghon Allee 4 
Tel. : (+43 4242) 04242 1 37 466 R 63 
Fax. : (+43 4242) 04242 1 37 466 R 73 
email: gt97. villach @online. edvg.co.at 
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