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who always followed the work on both topics 
of this symposium with great interest, and has 

contributed with own investigations of everlasting 
value. When he passed away, 3rd February 1967, 

he was still Honorary President of SSG 1 6  
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Preface 

The idea for the Vienna Symposium of March of this year, the Proceedings of which are 
presented herewith to the professional world, dates back almost three years. It has been 
proposed by the Secretary General of the IAG Dr. J. J. Levallois at the Prague Conference 
in October 1964; and the original notion was that of a meeting where the problem of the 
reference body for all branches of geodesy and the question of the normal spheroid of the 
earth should thoroughly  be discussed. As this idea was enthusiastically welcome by 
Dr. E. Tengstrom, the President of Section V (Physical Geodesy), I was able to invite the 
scientists assembled in Prague on behalf of the Autrian Geodetic Commission to come to 
Vienna in autumn 1965. Realization of this plan, however, was delayed again and again by 
various events, till  at last owing to the energy of Mr. Tengstrom it assumed the form of IAG
Conferences on "The Normal Spheroid and the Figure of the Earth" (SSG 16), and on 
"Recent Research on Atmospheric Refraction for Geodetic Purposes" (SSG 23). Thanks to 
generous pecunia'fy help by the Federal M inistry of Constructions and Technique and to the 
financial assistance of the IAG, credit for which goes to Secretary General Levallois, the 
Austrian Geodetic Commission finally was able to invite specialists to come to Vienna in 
Mairch 1967. Though many prominent scientists unfortunately had to decline their participation 
because of obligations during the University term, I nevertheless dare say that the Symposium 
"Figure of the Earth and Refraction'', as I have shortly named the meeting, has met great 
interest which last not least is stated by the fact that besides the Secretary General three 
presidents and two secretaries of different sections were present. I feel free to assert that the 
Symposium was a complete success not only with regard to our science but also from a social 
point of view. The friendly words of thanks expressed by so many participants on their 
departure confirmed me of the fact that everybody had a really nice time owing to the 
unique atmosphere of the town, to the considerate attendance by the Organization Committee, 
and last but not least to the wonderful program managed by my trustworthy colleague 
Prof. Dr. F. Hauer. Highlights of the social events we'fe the reception in the Marble-Hall of 
the Governmental Building given by the Federal Minister Dr. V. Kotzina, and the reception 
in the Heraldic Rooms of the Town Hall by the Mayor of Vienna Mr. B. Marek. An evening 
in Deutsch-Wagram, and a final trip to the Wachau combined with an inspection of the 
Danube-Power Plant "Ybbs-Persenbeug" provided opportunity for closer personal contacts. 

Following an international scientific custom, I thought about publication of the Proceed
ings already months before the Symposium. My application for financial support directed to 
the Geodesy, Intel ligence and Mapping Research and Development Agency (GIMRADA), 
U. S. Army, by way of the European Research Institute was kindly granted thanks to the efforts 
of Prof. Dr. A. Bjerhammar and Mr. B. Bodnar. Similarly successful were the efforts of 
Mr. Tengstrom to secure a subsidy for the Proceedings from the Air Force Cambridge 
Research Laboratories (AFCRL), for which in the first place I have to thank Mr. Owen W. 
Williams. Being in the possession of both these generous grants, I thought the printing 
secured. However, the very rich scientific harvest, being pleasing in itself, taught me the 
better. My colleague Dr. Tengstrom fully appreciated this difficult situation and contributed 
a considerable amount out of the funds of his Institute, which example I followed with 
a similar amount. Finally, the Federal Board of Education guaranteed the printing by 
donating a considerable sum, which the Austrian Geodetic Commission is very grateful for. 

To many the combination of the figure of the earth und refraction in the topic of a 
special symposium may seem somewhat constructed. But in the age of a'ftificial satellites this 
is by no means the case. We need only think about the classic non-hypothetical solution of the 
problem of the earth figure by means, of Bruns polyhedron, which solution then seemed almost 



impossible just because of the refraction. But we also may think about the possibility to 
determine strictly geocentric coordinates of points of the earth surface provided by artificial 
satellites by which the problem of a uniform, physically well-founded surface of reference 
again gains increased significance. The solution of the boundary value problem of geodesy, 
be it for the geoid or be it in the meaning of Molodenskij for the surface of the earth, only 
then is fully satisfying if the elements, i. e. the gravity anomalies, are pure effects of the mass 
anomalies in the earth body. This again shows the necessity of a harmonious connexion of 
geometry and physics, whereby finally geodesy may become what it ought to be: an impor
tant, even fundamental discipline of the comprehensive geophysics. 

I dare say that the Vienna Symposium showed a pleasing tendency in that direction. The 
results now can thoroughly be studied in the publication at hand. The struggle of the spirit 
and the pros and contras of the opinions were vividly expressed in the interesting discussions 
of the short reports. But unfortunately only a very few of the participants have given their 
contributions in the discussion in writing so that the publication of the discussions had to be 
renounced. However, a comprehensive representation of the progress of the meeting by the 
President of the Section could be put at the end of the Proceedings, for w hich we express our 
thanks to Mr. Tengstrom. 

On account of the abundance of contributions, and because of lack of time not every 
author could read his paper; these papers are ranged here in their proper place. Some authors 
also were hindered to come to Vienna in the very last minute. Partly, their contributions only 
now can be taken notice of by the orther participants. Finally, some have preferred to 
withdraw their report, obviously in order to present it to the General Assembly in Lucerne 

The Austrian Geodetic Commission would have been glad to be able to submit the 
Proceedings already in Lucerne. But because of the great extent of material, and last not least 
because of vacations this intention proved to be impossible. But the delay is not se'fious and 
after Lucerne, with regard to the increased possibilities of comparison, the study of the 
collection at hand, so I hope, will  even be more productive. 

Last not least I wish to express my sincere thanks to my colleague Prof. Dr. H. Rohrer 
for his valuable assistance in the edition of the Proceedings. 

Vienna, October 1967 

Karl Ledersteger 



Symposium Report 

by F. Hauer 

The Austrian Geodetic Commission (6.KIE) and Section V (Physical Geodesy) of the Inter
national Association of Geodesy held a Symposium in Vienna from March 1 3  to March 1 7, 1 967. 
The first part of the meeting dealt with problems concerning the "Figure of the Earth" while the 
subject of the second meeting was "Recent Research on Atmospherical Refraction for Geodetic 
Purposes." 

It was my responsibility to plan and organize the Symposium so that the participants would have 
suitable accommodations and would enjoy their stay in Vienna. Thanks to the assistance of the staff 
of the Institute of General Geodesy of the Technical University, we were ready to welcome the almost 
1 00  scientists who came to Vienna from eighteen countries, among them North and South America 
and Australia, to take part in this Symposium. A part of our Institute served as the reception area 
and acted as a meeting place and information center. 

For the evening of March 1 3  an informal welcome in the Vienna Rathauskeller was arranged to 
give our guests a glimpse of genuine "Viennese atmosphere" before the hard work of the Symposium 
itself began. The opening of the Symposium was held on Tuesday, March 14, in the Festive Hall of the 
Technical University in Vienna, and its President Magnificenz Dr. R. Stix welcomed the honoured 
guests. Among those present were Sektionschef Dr. H. Schipper who represented the Federal Minister 
for Construction and Technology, Dr. Vinzenz Kotzina, Ministerialrat �r. W. Hafner representing 
the Federal Minister of Education; and Dr. h. · c. Dr. E. Schmid, President of the Austrian Academy 
of Science. Addresses were given by Prof. Dr. J. J. Levallois, General Secretary of the JAG, Paris; 
Leet. Dr. E. Tengstrom, President of Section V of IAG and SSG 1 6  and 23, Uppsala; and Prof. 
Dr. K. Ledersteger, President of the 6KIE, Vienna. At the end of this impressive ceremony the 
Symposium was officially declared as opened by Dr. Schipper. 

After the opening, the participants who had come for the first meeting retreated into Lecture 
Hall XI of the Technical University and the lectures and discussions began. The organization of the 
meeting "Figure of the Earth" was under the supervision of Prof. Dr. Ledersteger. After the conclusion 
of the first meeting, the chairmanship and the lecture hall was handed over to the President of Section 
V of JAG, Dr. E. Tengstrom, who was in charge of the second meeting "Recent Research on Atmo
spherical Refraction for Geodetic Purposes."  

While t�e lectures and discussions were going on, the relatively small group of ladies were kept 
busy with activities expecially organized for them. The ladies program included a sight seeing bus tour 
of Vienna and visits to St. Stephans Cathedral, the Vienna Spring Fair, the Belvedere Palace and 
Museum, and other points of interest in Vienna. We hope that the rich pastries in the Viennese 
"Kaffeehaus", which was also part of the program, did not do too much damage to the "Figure of the 
Ladies." 

But the men also had chances to take their minds off their work, for the conference was inter
sperced with several social activities. On the evening of March 14, the delegation leaders from all of 
the participating countries were invited to a reception given by Federal Minister Dr. Kotzina in the 
Marble Hall of the governmental building. On the evening of March 1 6, Bruno Marek, Mayor of 
Vienna, gave a reception for all of the participants of the Symposium in the Heraldic Rooms of the 
Town Hall. The impressive surroundings and delicious food were enjoyed by all. 

As is generally true of meetings of this kind, time was too short for the enormous scope of the 
problems being handled, and to the regret of many, the Symposium ended on the afternoon of Friday, 
March 17, with a summary presented by the chairman and a last worp of farewell and thanks by the 
President of the OKIE, Dr. Ledersteger. However, a few hours later everyone met again in March
felderhof in Deutsch Wagram for a delicious Viennese-type dinner. There, over a 'glass of "heurigen" 
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wine many of the problems which had been discussed during the week were brought up again but 
perhaps were not taken quite as seriously. On Saturday, a small group of participants still remaining 
in Vienna made a day long bus tour through the Wachau. 

Program of the Symposium 

Figure of the Earth and Refraction 

arranged by the Austrian Commission of International Geodesy and by Section V (Physical Geodesy) 
of the International Association of Geodesy. 

Place of the conference: Technical University, Karlsplatz 1 3, Vienna 4. 

Monday, March 13 ,  1 967 

from 19h 

Tuesday, March 14  

from 8h  

lOh 

14h-1 7h30 

1 8h 

Informal welcoming at the "Rathauskeller". 

Registration and reception of informational material and invitations at the 
Reception Office located in the Seminar Room of the Institute of General 
Geodesy, 2nd floor, main staircase. 
Opening of the meeting by Dr. Vinzenz Kotzina, Federal Minister of Constructions 
and Technique ; at the Festive Hall of the Technical University. 
Addresses will be given by : 
Magn. Prof. Dr. R. Stix, Rector of the Technical University Vienna 
Prof. Dr. J. J. Levallois, Paris, Secretary General of the IAG 
Dr. E. Tengstrom, Uppsala, President of Section V of IAG and President of 
SSG 16 and 23 
Prof. Dr. K. Ledersteger, President of the Austrian Geodetic Commission 
First Working Session "Figure of the Earth'' ,  
Chairman Prof. Dr. U .  Uotila, Columbus, Ohio 
Reception given by Dr. Vinzenz Kotzina, Federal Minister of Constructions and 
Technique ; at the Marble Hall of the Governmental Building (on special in
vitation) 

Wednesday, March 1 5  

9h - 1 2h : Second Working Session "Figure of the Earth' ', 
Chairman Prof. Dr. H.  Moritz 

14h - 1 7h30 : Third Working Session "Figure of the Earth", 
Chairman Dr. M.  Bursa, Secretary of Section V 

Thursday, March 1 6  

9h - 12h : First Working Session "Refraction", Chairman Prof. L. Asplund, President · of 
Section I of IAG 

1 3h30 - 1 7h 

1 8h30 : 

Second Working Session "Refraction", 
Chairman Brig. E. W. Denison, President of SSG 19  
Reception given by  Bruno Marek, Mayor of the Federal Capital Vienna ; a t  the 
Heraldic Rooms of the Town Hall 

Friday, March 1 7  

9h - 1 3h : Third Working Session "Reftaction", 
Chairman Prof. P. L. Baetsle 

14h - 1 7h20 : Fourth Working Session "Refraction", 
Chairman Dr. E. Tengstrom 

1 7h20- 1 7h40 : Summary by Dr. E. Tengstrom ; Vote of thanks by Prof. Ledersteger 
1 9h :  Departure to an evening at the "Heurigen" 



Saturday, March 1 8  

Day-long tour t o  the Wachau with lunch i n  Diirnstein. 
Ladies Program: a) Visit of the Vienna Spring Fair 

Ackerl F .  
Angus-Leppan P. V. 
Asplund L. 
Baarda W.  
Baetsle P. L. 
Barvir A. 
Bell J. F .  
Biro Peter 
Bocchio Franco 
Bodnar B. J. 
Bohm Josef 
Bragard L. 
Bretterbauer K .  
Bruins G .  J. 
Bursa Milan 
Chan Bohumil 
Cubranic Nikola 
Culley Frank L. 

Denison E. W. 
Draheim H. 
Dufour H .  M. 
Eidherr F. 
Embacher W. 
Eordogh w. 
Fischer I .  
Fischer W. 
Gale L. A. 
Gerke K. 
Glennie E. A. 
Harmala s. 
Hafner W. 
Hauer F. 
Heinrich G. 
Herbsthofer W. 
Hirsch 0. 
Hofbauer P. 
Homorodi L. 
Hradilek L.  
Inzinger R. 
Jeske H. 
Jobst H .  
Kaspar Jan 
Killian K. 
Klak Stjepan 
Kling R.  

b)  Visit at the Belvedere 
c) Visit of a Viennese Coffee-House 

List of Participants 

Wien 1 9, Peter Jordanstr. 82 
U niversity of N. S. W. Kensington, New South Wales, Australia 
Fack, Vallingby 1 ,  Schweden 
Onderafd. d. Geod., Kanaalweg 4, Delft, Holland 
1 49 Boulvard Brand Whitlock, Bruxelles 4, Belgique 
Wien 4, Techn.  Hochschule - Karlsplatz 1 3  
Elmwood Avenue, Feltham, Middlesex, England 
Budapest 1 1 ,  Miiegyetem rkp. 3, Ungarn 
Universita di Trieste, Via del l'Universita 7, Triest 
Gimrada, Research Institute, Fort Belvoir, Virginia, USA 
Praha 1 ,  Husova 5 
Namur, 5 Rue Ernotte, Belgique 
Wien 8, Friedrich Schmidtplatz 3 
Delft, Kanaalweg 4, Niederlande 
Politickych veznu 1 2, Praha 1 ,  CSSR 
Praha 4, Bocni II . ,  CSSR 
Zagreb, Drziceva 71 a 
Dept. of Geod ., Army Map Service, 6500 Brooks Lane, 
Washington, D. C. 203 1 5, USA 
Elmwood Avenue, Feltham, Middlesex, England 
D-75 Karlsruhe, Englerstr. 7, Deutschland 
2 Avenue Pasteur, 94 Saint-Mantle, France 
Wien 1 6, Landsteinerg. 5 
Wien 4, Karlsplatz 1 3 , TH 
Wien 1 ,  Ebendorfer Str. 4 
6500 Brookslane, Washington, DC. 203 1 5, USA 
ETH Zi.irich 
1 953  Bromley Rd., Ottawa 1 3 . ,  Canada 
Braunschweig TH., Pockelsstr. 4, Deutschland 
Seaton House, Shrublands Road, Berkhamsted Herts, England 
Hameentie 3 1 ,  Helsinki 50, Finnland 
Bundesministerium filr Unterricht, Wien 1 ,  Minoritenplatz 5 
TH Wien 4, Karlsplatz 1 3  
TH Wien 4, Karlsplatz 1 3  
Wien 8, Krotenthaller G. 3 
D-1 Berl in 1 3, Heilmannring 24 b 
2340 Modling, J. Thomasstr. 1 4/IIl/7 
Budapest XL, Miiegyetem rkp. 3 ,  Ungarn 
Albertov 6, Praha 2, CSSR 
1 238 Mauer, Jaschkag. 22 
D-2 Hamburg 1 3 . ,  Von-Melle-Park 6, Deutschland 
Wien 1 2, Schwenkgasse 1 0/ 1 7  
Praha 4 - Sporilov 
Wien 1 4, Hadikg. 40 
Zagreb Radicevo, Setaliste 7, Jugoslavija 
Wien 4, Gul3hausstr. 26/ 10  

• 
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1 0  

Kobold F .  
Kohler G .  
Korschinek E .  
Kotzina V .  
Kresser W.  
Kruspe G.  
Krynski St. 
Kukkamaki T. J. 
Lambeck K. 
Lang M. 
Ledersteger K. 
Lego K. 
Lehr C. 
Levallois I. I. 
Lichte H.  
Lippold H .  R.  
Loschner F.  
Losert W.  
Malzer H.  
Manzoni G.  
Markowits Wm. 
Meissl P. 
Meixner E. 
Mierlo J. 
Mikesi A. 
Mitter J. 
Mittermayer E. 
Morelli C. 
Moritz H. 
Mueller I .  
Munck J .  C .  
Nagy D.  
Nagy St. 
Neumaier K. 
Otepka G. 
Ottersbock F. 
Orban A. 
Owens J . C.  

Palfinger G. 
Pelikan M .  
Pelzer H. 
Peters K. 
Petkovic V. 
Pick M .  
Poder K. 
Pola I. 
Ramsayer K. 
Reibhorn V. 
Rinner K. 
Rohrer J. 
Sanchez R. N .  
Schmid H.  
Senftl E. 

TH 8006 Ziirich, Schweiz 
Wien 4, Karlsplatz 1 3  
T H  Wien 4, Karlsplatz 1 3  
Stubenring, Regierungsgebaude - Wien 
TH Wien 4, Karlsplatz 1 3  
D-2 Hamburg 1 3 ., Von-Melle-Platz 6, Deutschland 
lnstytut Geodezji, ul. Jasna 2/4, Warszawa, Polen 
Hamsentie 3 1 ,  Helsinki 50, Finnland 
University of Oxford, 62 Banbury Rd. ,  Oxford, England 
Wien 1 2, Schonbrunner Str. 238 
TH Wien 4, Karlsplatz 1 3  
Wien 1 3, Montecuccolipl. 1 2/5 
60 Garden Street, Cambridge, Mass. 021 38, USA 
1 9  rue Auber, Paris, France 
TH Karlsruhe, Englerstr. 7, Deutschland 
Rockvelle, Maryland, USA 
Wien 1 9, Vegagasse 7 
Wien 8, Friedrich-Schmidt-PI. 3 
TH Karlsruhe, Englerstr. 7, Deutschland 
Universita'di Trieste, Italia 
Marquette University, Milwaukee, Wisconsin 53233, USA 
TH Wien 4, Karlsplatz 1 3  
Wien 1 ,  Fichtegasse 2 a 
Onderafd. der Geodesic, Kanaalweg 4, Delft, Holland 
3390 Melk a/D., Schrattenbruck 1 9, Osterreich 
Wien 8, Friedrich-Schmidt-Platz 3 
Berlin 20, Lynarstr. 1 7, Deutschland 
Osservatorio Geofisico Trieste, Italia 
D-1 Berlin 1 2, Bleibtreustr. 1 9  
1 64 West 1 9th Ave, Columbus, Ohio, 43210, USA 
Onde afd. der Geodesie, Kanaalweg 4, Delft, Holland 
Dominion Observatory, Ottawa 3,  Canada 
Wen 2, Schiittelstr. 1 1  
THi Wien 4, Karlsplatz 1 3  
Wien 7, Seideng. 39/7 
TH Wien 4, Karlsplatz 1 3  
MTA Sopron, Lackner Krist6, U .  1 ,  Ungaro 
Section 4402.03, ESSA, U. S. Dept. of Commerce Boulder, 
Colorado 80302, USA 
TH Wien 4, Karlsplatz 1 3  
Husova 5, Praha I ,  CSSR 
D-33 Braunschweig, Pock.elstr. 4, Deutschland 
TH Wien 4, Karlsplatz 1 3  
Zagreb, Svearova 5, Jugoslavija 
Praha 4 - Sporilov, CSSR 
Norre Farimagsgade 1, Kobenhaun K, Danmark 
Praha 4 - Sporilov, CSSR 
TH Stuttgart, D-7 Stuttgart 1 ,  Postfach 560, Deutschland 
2340 Modling, Managehag. 18. 
TH Graz, Osterreich 
TH Wien 4, Karlsplatz 1 3  
Ayacucho 482, Tucuma'n, Argentina 
Wien 1 9, Hofstatteng. 7 - 9  
Wien 1 4, Penzingerstr. 1 08 



Slavoy D.  E .  
Sommer L .  
Sona A. 
Spickernagel H. 
Stange L. 
Steinhauser F. 
Stickler A. 
Stix R .  
Stolitzka G. 
Stulla-G otz J .  
Szabo Bela 
Szadeczky G. 
Szkalnitzky P. 
Szmielew B. 
Tatar J.  

22 Orel Court, San Francisco, USA 
Wien 8, Bundesamt 
Casella postale 3986 - M ilano, Italia 
Montanistische Hochschule - A-8700 Leoben 
Potsdam, Telegrafenberg, DDR 
Wien 1 9, Hohe Warte 38 
Wien 8, Krottenthaler G. 3 
TH Wien 4, Karlsplatz 1 3  
Wien 1 3, Hietzinger Hauptstr. 149 
Wien 1 8, Gentzg. 3 
AFCRL/CRJ, L. G. Hanscom F, Bedford, Mass., USA 
Sopron, Madach Gasse 5, Ungarn 
Wien 3 ,  Lowengasse 35/38 a 
ul. Jasna 2/4, Warszawa, Polen 
Budapest XI, Eotvos Inst . ,  Homonna U .  1, Ungarn 

Tarcy-Hornoch A. Sopron, Ungarn 
Tavenner M. S. AFCRL/CRJG, L. G. Hanscom Field, Mass. ,  USA 
Tengstrom E .  Hallby, Uppsala, Sweden 
Thompson M .  C . .  ESSA/ITSA Boulder, Colo., U SA 
Ulbrich K. Wien 8 . ,  Friedrich-Schmidt-Platz 3 
Uotila U. A. 164. W. Nineteenth Avenue, Columbus, Ohio 43210 
Veis G. 
Vyskocil V. 
Waldhausl P. 
Wil l iams Owen 
Wunderl ich W. 
Wunderlin N.  

Athens, 147 Greece, National Technical University 
Praha 4 - Sporilov, CSSR 
TH Wien 4., Kadsplatz 3 
AFCRL/CRJ, L. G.  Hanscom Field, Bedford, Mass., USA 
TH Wien 4., Karlsplatz 1 3  
ETH Ziirich, Schweiz 

Address of His magnificence , Prof. Dr. R .  Stix 

Meine Herren Vertreter der beiden Ministerien, 
meine Damen und Herren ! 

1 1  

Es ist wohl ein seltenes Ereignis, daB ein internationales Symposium in den Raumen unserer 
Hochschule abgehalten wird . Dies ist umso erfreulicher, weil es nicht nur die groBe Bedeutung der 
technischen Wissenschaften fiir die moderne Kultur u nterstreicht, sondern auch das Ansehen unserer 
hohen Schule hebt. Ich habe daher mit Freuden zugestimmt, die Eroff nung dieses Symposiums 
im Festsaal abzuhalten, als die Osterreichische Kommission fiir die Internationale Erdmessung, die ja 
am Istitut fiir Hohere Geodasie ihren Sitz hat, mit  diesem Gedanken an mich herantrat. Leider ist  der 
Herr M inister fiir Bauten und Technik, dem die Kommission untersteht, im letzten Augenblick 
verhindert, personlich zu erscheinen, was natiirlich die hohe Bedeutung dieses Symposiums und das 
Bestreben unserer Regierung, die Wissenschaft in unserem Lande nach besten Kraften zu fordern, 
besonders unterstrichen hatte. Ich freue mich ganz besonders, an erster Stell� den Vertreter des Herrn 
Ministers Dr. Kotzina, Herrn Sektions-Chef Dr. Schipper begrii13en zu konnen sowie den Vetreter 
des Unterrichtsministeriums, Herrn M inisterialrat Dr. Hafner. Ferner begruBe ich namentlich den 
Herrn 

·
Prasidenten der Osterreichischen Akademie der Wissenschaften, Herrn Univ.-Prof. Dr. 

DDr. h. c. E. Schmid, den Herrn Generalsekretar der Internationalen Assoziation fiir Geodasie, 
Dr. J. J. Levallois, Paris, den Prasidenten der Sektion V (Physikalische Geodasie) der IAG, Herrn 
Dozent Dr. E. Tengstrom, Uppsala, die zahlreichen prominenten Gaste aus dem Ausland, die 
teilweise mit ihren Damen erschienen sind, die M itgl ieder der Osterreichischen Kommission fiir die 
Internationale Erdmessung, sowie viele Angehorige und Freunde unserer Hochschule. 

Ich wfmsche dem Symposium einen vollen Erfolg und wiirde mich freuen, anlaBlich der Empfange 
im Regierungsgebaude und im Rathaus einige der hier anwesenden Kapazitaten etwas naher kennen 
zu lernen ! 
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Address of the General Secretary of IAG, J. J. Levallois ,  Paris 

Mes chers collegues, 

Ce m'est un agreable devoir de prendre la parole devant vous pour la seance d'ouverture de ce 
Symposium et, comme Secretaire de notre Association, de presenter a nos collegues Autric!iicns 
!'expression de notre amitie. 

Je desirerai d'abord, avant de le leur dire plus longuement, m'adresser a Monsieur le Ministre 
qui a bien voulu accorder son haut patronage a cette manifestation et honorer la seance inaugurate 
de sa presence. 

Nous savons tous combien est precieux le temps de ceux sur qui reposent la lourde charge de 
la marche et de la direction des affaires de l'Etat, et nous n'en ressentons que plus vivement l'honneur 
de la presence et de la participation d'une si haute personnalite. 

Qu'il me soit permis de lui adresser en votre nom et en celui de notre Association Internationale 
de Geodesie, l'expression de nos respects, de nos remerciements et de notre profonde gratitude. 

Je m'adresserai alors a Monsieur le Recteur qui a accueilli !'organisation du Symposium auquel 
nous all ons assister. 

Nous avons pu deja apprecier ii y a quelques instants la belle tenue et la charmante amabilite 
de la reception, mais sur un plan superieur nous comprenons mieux quel role une ecole aussi renommee 
et aussi bien equipee que la Technische Hochschule de Vienne peut jouer dans le developpement 
technique et intellectuel d'un pays. Nous nous rejouissons de faire plus ample connaissance avec ces 
eminents collegues dont nous avions souvent entendu parler, dont les predecesseurs ont eux aussi 
illustre notre Science et nous remercions Monsieur le Recteur de l'interc�t qu'en nous donnant 
l 'hospitalite, il montre une fois de plus pour la Geodesie. 

Qu'il veuille bien agreer notre reconnaissance deferente. 

Liebe Kollegen ! 

Zurn erstenmal habe ich die Ehre, ein Symposium in deutscher Sprache zu eroffnen. Daran bin 
ich ganz unschuldig;  Sie miiBten hierfiir Herrn Kollegen Prof. Ledersteger verantwortlich machen. 
Dieses kann ich leicht erklaren : als ich ihm namlich anlaBlich dieses Symposiums einmal deutsch 
geschrieben hatte, hat er mir versichert, daB er sich dariiber sehr gefreut habe. Lieber Kollege 
Ledersteger, bei der Vorbereitung der Tagung haben Sie wohl kaum Gelegenheit gehabt zu lachen. 
Ich mochte Sie aber dieser Moglichkeit nicht berauben ; denn heute werden Sie mich nicht lesen, 
sondern horen ! 

Liebe Kollegen! Wir freuen uns sehr, hier wieder einmal beisammen zu sein, vertraute Gesichter 
zu sehen und l ieben Freunden die Hande driicken zu konnen. Leider aber werden wir einige alte 
Gesichter nie mehr wiedersehen. Felix Vening-Meinesz und James de Graff-Hunter sind kiirzlich 
gestorben. Sie alle kennen die groBen Erfolge und Fortschritte, welche die Geodasie ihnen zu danken 
hat. Oft hatten wir die Ehre und das Vergniigen, mit ihnen zu sprechen und zu diskutieren. lhr Tod 
ist fiir uns alle ein groBer Kummer. In Anbetracht der Zuneigung, die wir fiir sie empfanden, sei 
dieses Symposium ihrer Erinnerung gewidmet ! Tatsachlich werden wir in den kommmenden Tagen 
oft Gelegenheit haben, von ihren Arbeiten und Ergebnissen zu sprechen. lst das nicht die beste Art, 
ihrer zu gedenken? 

Meine lieben Kollegen, wir haben uns hier fiir ein Symposium versammelt und es ware daher 
an der Zeit, an die Arbeit zu denken. Aber in der schonen osterreichischen Hauptstadt Wien, die 
voll von historischen und kiinstlerischen Erinnerungen ist, an der schonen blauen - Verzeihung -
gelben Donau wird uns dies nicht so leicht fallen wie es sollte. Doch haben wir neue Fragen zu 
studieren, neue Ergebnisse kennen zu lernen und neue Flachen zu betrachten. 

Lieber Ledersteger, es ware leicht,jetzt memen schlechten Scherz, den Sie wohl schon tausendmal 
gehort haben, zu wiederholen : in der Geodasie soil man viele Flachen betrachten, das Ellipsoid, 
das Spharoid, das Geoid und die Lederstegeroide . . .  Seien Sie bitte nicht bose! Dieser Scherz ist nur 
der humoristische Widerschein und der Beweis des Interesses und der Hochachtung, welche Ihre 
schonen und schwierigen Arbeiten gefunden haben, und es ware besser, Ihnen im Namen allen 
unserer Kollegen, die aus vielen Llindern hierher kamen, zu sagen, daB wir Ihnen fiir ilhre Bemiihun-
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gen dankbar sind, und daB wir nicht nur zur Arbeit nach Wien kommen, sondern auch, um mit 

den osterreichischen Geodaten besser bekannt zu werden und diese glanzende Wiener Schule der 
Geodasie naher kennen Zll lernen. 

Ich bin sicher, der allgemeinen Meinung Ausdruck geben zu konnen, wenn ich der Osterreichi
schen Geodatischen Kommission und ihrem verehrten Prasidenten sehr herzlich fiir die Organisation 
dieses Symposiums danke, dem ein voller Erfolg beschieden sein moge ! 

Lieber Freund! Vor wenigen Tagen hatten Sie mir gedrahtet, eine Fiinf-Minuten-Ansprache fiir 
die Eroffnung dieses Symposiums vorzubereiten. Ich hatte mit , ,einverstanden" geantwortet, aber 

ich fiirchte, es war nicht mit I nvardraht, denn ich glaube, daB ich die Zeit iiberschritten habe. Ver
zeihen Sie, aber es war nur, um das Vergniigen zu haben, es wiederholen zu diirfen und zwar dieses

mal ohne Hilfe meines W orterbuches : «A to us un tres grand merci» ! 

Address given by the President of Section V and President of 
SSG 16 and 23, Dr. E. Tengstrom 

Your Excellency, Dear Colleagues, Ladies und Gentlemen, 

We are together this time to discuss two different kinds of problems of utmost importance for 
Geodetic Science. 

The first type of problems belongs to the work of Special Study Group No. 16 of Sec. V. One 
of them deals with the determination of the Figure of the Earth and its Gravitational Potential, but 
carried out in such a manner, that the deviations from an accepted physical model of the Earth may 

be used for an immediate interpretation of the real physical properties of the Earth's interior. The 
inverse problem of potential theory has an infinite number of solutions. But there exist a lot of 
restrictions, defined by our present geophysical knowledge, which make it possible to use the unique 
solution of the geodetic boundary value problem - which I think is attainable with different, 
formally defined models, or without using a model at all - for constructing geophysically plausible 

and detailed pictures of the Earth's interior. 
The easiest and best starting-point would naturally be to use a model , which has clearly defined 

physical properties. The deviations from such a model, reflected in the solution of the Geodetic 
Boundary Value Problem as an external distribution of the s. c. distµrbing potential, will then more 
easily be utilized to formulate explanations of these deviations in correct physical terms. 

I admit, that the Pizetti-Somigliana ellipsoidal model is mathematically as good as any other by 
solving the external problem, if the model can be properly correlated to the gravity-measurements and 
geometrical measurements along the Earth's Surface, but the deviations from most of these models 
have no physical meaning. If the Earth was covered by oceans, I am sure, that Stokes' Solution gives 
the correct "size, shape" and external gravitational field of the real Earth, referred to the geocentric 
coordinate-system. However, introducing the topography, we have no longer an equipotential surface 
for the boundary-values, and it is not clear, that the conventional boundary values are, in fact, 
sufficient for a proper solution, if the topography and its mass-distribution is very irregular. For the 
maximum slopes of 1/10, we might perhaps be satisfied, either with the integral equation of Molo
denskij or with some reduction-principle, which may be appropriate. For an Earth with very steep 
topographical contours and irregular topographical masses, the model, used for computing the 

deviations, is no longer so easy to define. Fortunately, the irregularities in the shape of the surface 
of the Earth and in its subsurface density distribution are usually more or less local, and therefore 
perhaps make our normal heights, surface gravity, and geometrical measurements sufficient for ob

taining a result, which at least satisfies. the accuracy of Stokes everywhere. 
The introduction of models with reasonable correct physical properties, has been suggested by 

many scientists, who are trying to help geophysicists to understand the meaning of the geodetic result, 
when looked upon from the geophysical point of view. 

Dr. John O'Keefe, whom we had expected to be among us to day, presenting his opinion to us, 
sent a telegram from London, that he had to return home because of death in his family. We are very 

sorry because of his personal loss, and naturally also extremly unhappy, that he could not join us and 
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explain his opinion. O'Keefe has suggested, that we keep the actual moment of inertia around the 
rotation-axis fixed for the physical model, and that we compute the flattening of this model so that 
the resulting figure - with the present value of the speed of rotation - will be in complete hydro
·statical equilibrium. 

· Professor Karl Ledersteger, who has been working during some years on possible solutions of 
equilibrium and non-equilibrium figures, defined by the constants of Stokes, that is, normal spheroids 
in Helmert's Sense, will here present a possibility of defining a suitable model from a special type of 
regularization, involving horizontal displacements of matter. 

This kind of questions will be dealt with during the first session on "Figure of the Earth", this 

afternoon. During the same session, Mrs. Irene Fischer is going to treat a question, which has close 
connection to the above-mentioned ones, namely, "the deviations of the actual Earth (Geoid) from 

an equilibrium figure". 
I sincerely hope, that we might be able to come to a clearer understanding of the aim of such 

studies, not at all being meant to neglect the importance of the work, having been done with the 
Somigliana-ellipsoid up till now, but carried out for the purpose of better physical understanding of 
the s. c. disturbing potential, coming out from most solutions of the Boundary Value Problem of 
Physical Geodesy - at the same time reflecting the possibilities of getting an easy way of delivering 
a geodetic contribution to the inverse problem of potential theory in Geophysics. 

The first session on Wednesday will mainly debate more direct questions of the solution of the 
Geodetic Boundary Value problem, and will contain some very interesting new investigations. 

The last session on "Figure of the Earth'', Wednesday afternoon, will deal with special questions, 

also belonging to the workingarea of SSG 1 6. 
I hope, that the schedules will give us many opportunities to discussions, which could help us 

still more to underst�nd the essel\tial questions - and give us their answers - with the help of clear 
information from various experts in presented fields of investigation. 

This symposium, which - in fact - was meant merely as a combination (for many reasons) 
of two working sessions, one for SSG 1 6  of Sec. V with the title "The Normal Spheroid and the Figure 
of the Earth", and one for SSG 23 of Sec. I "On recent research on atmospherical refraction for 
geodetic purposes" will be of great help, when mapping the activity of these study groups during the 
years since Berkeley 1 963 . As regards SSG 1 6  many working-sessions at different places (Paris and 
Prague 1 964, Uppsala 1 965, Prague 1966) have been reported. All this work and its results may give 
us a better background for the discussions in Lucerne, where we are obliged to contribute with care
fully contemplated recommendations for future work. 

The four meetings on refraction will deal with atmospherical influences on both dinstance-mea
surements and direction-measurements in Geodesy, and using both optical waves und radio waves. 
I think, that these problems are essential for the sections I, II, III, and to some extent also to Sec. V 
of IAG, but SSG 23 belongs formally to Sec. I .  It is a pleasure to be able to tell you, that the president 
of Sec. I will give you an introduction of the problem and its importance for Geodesy at the beginning 
of the first session on refraction, Thursday morning. 

The aim for combining the discussions on geodetic refraction, and for including these discussions 
in one meeting, dealing with different components of the gradient vector of refraction index, is clear. 
I am not in favour of splitting up the refraction problem into various groups of investigations, defined 
by different applications, but I'll try to convince people to deal with the whole question as one item. 

The theory of refraction, and all practical possibilities of determining grad n, are then applicable to 
any type of geodetic work, which needs information about the influence of the n-distribution in the 

atmosphere on our measurements. 
This point of view will be explained also in Prof. Moritz' contribution "Applications of the 

conformal theory of refraction'', which will be presented at the end of the last session on refraction, 

Friday afternoon. 
Our Symposium in Vienna can, of course, not solve all the problems, included in the titles of its 

working-sessions. But, I am sure, it will give us some new starting-points in our continued work to 
clear up these essential questions for the benefit of Geodetic Science. 

As president of SSG 1 6  and SSG 23, I like to express my sincere hope, that you will return home 
with n'ew ideas, which may positively influence your future work. I also hope, that you will feel 
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strongly, again, that the system of special study groups - typical for the activity of IAG - is still 
a good system, and that it functions efficiently to day, as it has always done in our association. 

I am glad, that professor Ledersteger and his collegues - I am especially thinking of professor 
Hauer - have been able to organize these meetings in such a nice way. And to have been in Vienna 

in spring in the famous atmosphere of Austrian friendship and hospitality is also a memory to take 
home as a gift. 

I also like to express - on behalf of my special study groups 1 : 23 and 5 :  16. and on l>ehalf of 
Sec. :s I and V - my sincere gratitude for what the Austrian Commission of International Geodesy, 

the Austrian Government, the General Secretary of IAG, the GIMRADA and AFCRL, and UNES
CO through IUGG, have done to make this symposium possible. 

I am feeling extremely sad, that we can not at this time profit on the help from Dr. de Graff
Hunter, who always followed our working meetings with great interest und valuable advice. Dr. de 
Graff-Hunter died 4 February in Australia, shortly after having finished an important paper dealing 

with the regularization of the Earth's topography for the purpose of .an easy" calculation of the 
disturbing potential. He was also initiator to the solution of various problems of refraction, and I 
think he was one of the first, who suggested the use of dispersion measurements for deriving actual 
refraction values. I suggest, that we send his wife a greeting from this symposium where we express 

our deep sorrow of the loss of a great scientist and an inspiring friend. I also suggest, that the printed 
results of this symposium will be dedicated to his wife to celebrate part of his important work. 

I am sure, that the enthusiasm and a clear interpretation of essential problems, which was typical 
for him, will also caracterize this meeting, in which he would have liked to participate, and the 

preparations of which he followed with great interest. 
Spring is the time of extensive changes in the nature around us. It is a period of violent evolution 

and the play of strong forces of growth. Let us be inspired of this demonstration of the nature itself 
and try to insert a little more of spring-feelings into our scientific discussions. Do not be afraid of 
telling us your opinion, if you have a clear one. Your contribution may help us to solve our pro,blems 
in a better way. This was always Graff-Hunters encouragement to young scientists. 

Everything must be renewed but of course without destroying the important and true fundaments 
of the past. 

Adress of the President of OKIE, Prof. Dr. K. Ledersteger 

Herr Sektions-Chef, Magni.fizenzen, Meine Damen und Herren! 

In wenigen Minuten werden Sie, hochverehrter Herr Sektions-Chef, in Vertretung des Herrn 
Bundesministers fiir Bauten und Technik, dem die Osterreichische Kommission fiir die Intemationale 
Erdmessung untersteht, unser Symposium feierlich eroffnen. Der Herr Bundesminister, der leider 
im letzten Augenblick verhindert war, personlich zu erscheinen, hat dennoch durch seine Bereit
willigkeit, selbst das Symposium zu eroffnen, das hohe Interesse unserer Regierung am Fortschritt 
der Wissenschaften, der auch unser Land einer schoneren und innerlich reicheren Zukunft entgegen
fiihren soll, bekundet, wofiir wir ihm zu tiefsten Damke verpflichtet sind. 

Aber auch Ihnen, Magnifizenz, sind wir zu groBem Danke verpflichtet, dafiir, daB Sie den Fest
saal unserer Hochschule freundlicherweise fiir die heutige Eroffnungsfeier zur Verfiigung gestellt 
haben! 

Unser Symposium, das ich kurz als der Erdfigur und der Refraktion gewidmet bezeichnen will, 
wurde bereits im Herbst 1964 vom Generalsekretar der Internationalen Assoziation filr Geodasie, 
Herrn Levallois, anlii.f3Jich einer ahnlichen Tagung in Prag geplant und vom Prasidenten der Sektion 
Physikalische Geodasie, Herrn Kollegen Tengstrom, lebhaft begriiBt. Er war es auch, der diesen 
Gedanken nie einschlafen lieB und, was die Frage der Erdfigur betrifft, in erster Linie an eine 
griindliche Diskussion des Problems des besten Bezugskorpers filr die gesamte Geodasie dachte. 
Da Herr Tengstrom gleichzeitig den beiden Spezial-Studiengruppen 16 und 23 prasidiert, lag der 
Gedanke eines Symposiums ,,Erdfi.gur und Refraktion" nahe. Diese Verbindung ist aber auch deshalb 

nicht abwegig, weil die Refraktion beim Aufbau des Brunsschen Polyeders mit Hilf e der kiinstlichen 
Satelliten eine wichtige Rolle spielt, wahrend andererseits die BahnstOrungen der Satelliten die 
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Kenntnis der wichtigsten Massefunktionen der Erde vermitteln, eine Kenntnis, die fiir die Wahl des 
Bezugskorpers von ausschlaggebender Bedeutung ist. 

Die Wichtigkeit unserer Tagung wird auch dadurch unterstrichen, daB nicht nur Herr Levallois
.
, 

sondern auch der Prasident der Sektion I, Herr Kollege Dr. Asplund, Stockholm, erschienen ist , 
wahrend heute nachmittags noch der Prasident der Sektion III, Herr Prof. Dr. Markowitz, eintrifft. 
Oberdies ist die Sektion V nicht nur <lurch ihren Prasidenten, sondern auch <lurch beide Sekretare 

Frau Fischer und Herrn Buda, vertreten. 
Ich habe nur mit wenigen Worten nicht nur die gesamte Situation gekennzeichnet, sondern auch 

kurz den Aufgabenkreis des Symposiums charakterisiert, zumal ja mein Freund Tengstrom dariiber 
schon wesentlich ausfiihrlicher in seiner Prasidialansprache die wichtigsten Mitteilungen gemacht hat. 
Ich habe Herrn Tengstrom iibrigens gebeten, diese Prasidialansprache bereits bei der Eroffnung zu 

halten, teils um damit nachmittags Zeit fiir die Vortrage und Diskussionen zu gewinnen, nicht 
zuletzt aber auch deshalb, damit sich die Damen vom Ernst unserer Arbeit iiberzeugen konnen, und 
uns dann abends, wenn wir miide und abgekampft von den Sitzungen kommen, umso lieber und 
herzlicher betreuen. 

Auf die finanziellen Probleme dieser Tagung will ich in dieser feierlichen Stunde nicht tiefer 
eingehen; Ich halte es aber fiir meine Pflicht, allen jenen Stellen herzlichst zu danken, welche das 
Symposium und die geplante Veroffentlichung der "Proceedings" ermoglicht haben. In erster Linie 
dankt die Osterreichische Kommission fiir die Internationale Erdmessung dem Herrn Vizekanzler 
und dem Herrn Bundesminister fiir Bauten und Technik fiir eine groBziigige Sonderdotation, die es 
uns ermoglicht hat, auch ein geselliges Beiprogramm zu gestalten und unseren Gasten die KongreB
stadt Wien von der schonsten Seite zu zeigen. Die Hohepunkte dieses Programms werden aber der 

Empfang im Marmorsaale des Regierungsgebaudes, den der Herr Minister heute abends fiir einen 
Teil der Gaste gibt, sowie der allgemeine Empfang durch den Herrn Biirgermeister im Rathaus sein, 
der am Donnerstag abends stattfindet. Zu danken habe ich aber auch Herrn Levallois fiir den Beitrag 
der Internationalen Assoziation fiir Geodasie, Herrn Bodnar als Repras�ntanten von GIMRADA, 
dem European Research Office und Mr. Williams als Reprasentanten der US Air Force. Alie diese 
Unterstiitzungen werden, so hoffe ich zuversichtlich, zumindest den GroBteil der Druckkosten der 
Proceedings decken, die als Sonderheft der Osterreichischen Zeitschrift fiir Vermessungswesen 
erscheinen sollen. SchlieBlich habe ich auch.der Union fiir Geodasie und Geophysik zu danken, die 
es iiber Bitte von Herrn Tengstrom ermoglicht hat, einer Reihe von Gasten, die sich aktiv an der 
Arbeit des Symposiums beteiligen, iiber ihre Devisenschwierigkeiten hinwegzuhelfen. 

Schon die Vorbereitung unserer Tagung hat m'annigfache Probleme gezeitigt, die unser schon 
mehrfach · bewahrter Organisationsleiter, Kollege Hauer, wieder, wie ich ho ff en mochte, zur vollsten 
Zufriedenheit gemeistert hat . Die Auf gabe war und ist noch schwierig, aber auch sehr beneidenswert. 
Schwierig ist die Aufgabe, weil sie viel Opfer an Zeit und Miihe erfordert, beneidenswert aber deshalb, 
weil es Kollegen Hauer damit leicht fallt, sich in die Herzen der Damen einzuschmuggeln ! Jedenfalls 
bitte ich alle Teinehmer und Gaste, sich in a:llen an sie herantretenden Fragen vertrauensvoll an die 
Rezeption zu wenden. 

Ich bin iiberzeugt, daB unsere wissenschaftliche Arbeit gut vorangehen und auch Friichte 
zeitigen wird, wiewohl leider einige besonders wichtige Referenten durch verschiedene Umstande 
verhindert waren, zu uns zu kommen. Die Geodasie als weltweite Wissenschaft hat durch die modernen 
Verkehrsmittel und besonders <lurch die kiinstlichen Satelliten viel an Bedeutung gewonnen und 
verlangt eine immer engere internationale Zusammenarbeit. Wohl ist unser Symposium in erster 
Linie streng theoretischen Fragen gewidmet. Aber es ist eine alte Erfahrungstatsache, daB die Losung 
rein theoretischer Probleme schon morgen eine oft ungeahnte praktische Bedeutung gewinnen kann. 
Oberdies liegt Wien im Schnittpunkt zweier Welten, so daB unsere ernste, friedliche und freund
schaftliche Arbeit auch einen hohen moralischen Gewinn zeitigen kann. 

Damit diirfte das Wesentlichste gesagt sein und ich mochte abschlieBend Sie, hochverehrter 

Herr Sektions-Chef bitten, nach der musikalischen Einlage einige Worte an uns zu richten und damit 
die Tagung zu eroff nen ! 
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Address of Sektions-Chef Dr. Hans Schipper 

Meine Damen und Herren! 

Nachdem im vorigen Friihjahr in der Wiener Hgfburg der neunte KongreJ3 des Committee on 
Space Research (Cospar) seinen glanzvollen Verlauf nahm, hat der Herr Minister gerne der Bitte 
stattgegeben, heute eine zwar kleinere, aber nicht minder wichtige Tagung zu eroffnen, welche die 
Osterreichische Kommission fiir die Internationale Erdmessung zusammen mit der Sektion Physi
kalische Geodasie der Internationalen Assoziation fiir Geodasie veranstaltet. Leider ist der Herr 
Minister verhindert, personlich zu erscheinen, und hat mich daher beauftragt, an seiner Stelle dieses 
Symposium zu eroffnen. Selbstverstandlich wiinsche ich Ihrer Tagung einen vollen wissenschaftlichen 
Erfolg, aber ebenso, dal3 diese Versammlung namhafter Gelehrter aus der ganzen Welt ihr Scherflein 
zur Volkerverstandigung beitragt, welche die Welt heute mehr denn je notig hat. 

Die Bundeshauptstadt Wien off net ihre Pforten jederzeit gerne fiir internationale Veranstaltun
gen, um so, entsprechend ihrer geographischen Lage zwischen Ost und West, ihre Tradition als 
Mittler zwischen den verschiedenen Weltanschauungen erfolgreich fortzusetzen, wozu uns unsere 
Neutralitat nicht nur berechtigt, sondern sogar verpflichtet. Dariiber hinaus aber wiinsche ich Ihnen 
einen recht angenehmen Aufenthalt in Wien und hoffe zuversichtlich, daB Ihre Zufriedenheit 
unserem Fremdenverkehr forderlich sein wird. Vielleicht findet der eine oder andere von Ihnen 
spater Gelegenheit, rein privat unser schones Land zu besuchen und sich, unbeschwert von der 
Wissenschaft, dem Studium einer traditionsreichen Kultur zu widmen, was Ihre-Damen bereits in 
dieser Woche versuchen konnen. 

Hoffentlich hat der Herr Minister heute abends Gelegenheit, die prominentesten Vertreter unter 
Ihnen im Regierungsgebaude begriil3en zu konnen. 

In diesem Sinne hoffe ich, dal3 Sie nach arbeitsreichen Tagen schone Abendstunden verbringen 
werden, und erklare hiermit das Symposium fiir eroffnet ! 

2 
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First Conference (SSG 16) 
The Normal Spheroid and the Figure of the Earth 

Part I :  

The Normal Spheroid and the Regularization of the Earth's Crust 

Equilibrium Figure of the Earth and the Scientific Reference Surface*) 

by John A. O'Keefe, Greenbelt, Maryland 

In his very exhaustive treatment, K. Ledersteger ( 1966) has demonstrated once more the fact 
that the hydrostatic equilibrium value of the flattening of the earth is determined to within a few 
tenths in its reciprocal by the earth's moment of inertial. This proposition is one which has gradually 
emerged with increasing certainty from researches going back over several centuries. Ledersteger 
has also made it clear that the satellite observations of the earth are irreconcilable with the hypo
thesis that the earth is, actually in hydrostatic equilibrium. In  fact, as my colleague, S. W. Henriksen 
( 1 960), pointed out, we can determine the hydrostatic value of the flattening of the earth by comb
ining satellite observations with those of the lunisolar precession. Ledersteger (1960) made a very 
similar calculation, which he did not take very seriously. The values obtained by Henriksen (1/299.8) 
and Ledersteger ( 1/299.54) fall quite close to the more rigorous determination by H. Jeffreys (1963) 
of 1 /298.67. 

It is clear that we should not attempt to use these values for the calculation of triangulation 
on the surface of the earth. They differ rather widely from the best-fitting ellipsoid, whose flattening 
is now well established as 1/298.25 or, with quite sufficient accuracy, 1/298.3 as employed by I. Fischer 
( 1 961 ). The use of the ellipsoid of fluid equilibrium for ordinary geodetic triangulation will lead 

to heights of the geoid above the ellipsoid sufficient to cause inconvenient discrepancies between 
various methods of reducing the geoid to the ellipsoid. 

On the other hand, it is my contention that it is our duty as geodesists to make it clear to other 
geophysicists that it is this flattening of 1/299.67 which should be used as the reference figure when
ever anything of a geophysical nature is to be deduced from the results of geodetic work. The reason 
is that there is a significant difference between the actual state of the earth and the state of hydro
static equilibrium, which must be attributable to stress differences in the interior in one way or 
another. The stress differences which are implied by the disagreement between the hydrostatic 
and the best-fitting value of the flattening of the earth are of approximately the same kind as those 
implied by higher harmonics in the earth's gravitational field. They are numerically  larger. It is 
therefore logical to seek the same explanation for these discrepancies as for the others. One could 
put the proposition in this form : The spectrum of harmonics which arises because of non-hydro
static distortions of the earth's density distribution include among others the second degree zonal 
harmonic. To exclude this harmonic in discussions of the mechanics of the earth's interior requires 
some special justification. 

A number of authors, including Hulley ( 1963) ; Girdler (1 963) ;  Runcorn ( 1964) ; Wang (1965), 
and several others have interpreted the harmonics of the earth's gravitational field from charts 

red trefero the best-fitting ellipsoid. The significance of these results is immediately open to question 

*) This paper was presented later because of the absence of the author. 
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since they have omitted the most significant feature of  the anomalous gravitational field of  the earth. 
It was pointed out (Kaula and O'Keefe, 1 963) that. if one is prepared to regard the discrepancy 

of the second zonal harmonic as the result of a lag in the adjustment of the earth to its changed 
velocity of rotation, then there is a physical reason for referring gravitational anomalies to the 
best-fitting ellipsoid. However, it has been shown by numerical calculations by MacDonald ( 1963) 

that the implied value of the viscosity of the earth is -about 1026 poises. That is, if the earth is less 
viscous than this then the actual figure of the earth will keep step with the changes in its velocity 
of rotation. Hence, we might say that those authors who employed anomalies or geoid heights 
referred to best-fitting figure were impliCity assuming this value of the viscosity. Even this attempt 
to rationalize the situation becomes ineffectual, however, when we find that some of these authors 
are discussing problems of mantle-wide convection. Such convection becomes meanigless if the 

viscosity is of the order of 1 026 poises because the hlrn-over time exceeds the generally accepted 
age of the earth. It is to be feared that at least some of the authors simply fell into the trap which 

we u nwittingly prepared for them and equated the irregularities of the gravitational field with those 
required to produce the discrepancies from the best-fitting ellipsoid. 

I don't think that we geodesists are being unduly vain in saying that our discipline is among 
tho most difficult for the outsider. Its ancient traditions, its antique language, the formidable 
precision which is required just to find the basis from which these discrepancies can be calculated -

all create a barrier to the full understanding of our subject by outsiders. It is not reasonable, as 
I see it, to say, in effect, that if you were a good geodesist, you would not misuse our data. 

It seems to me that it is our duty to warn possible users of �eodetic data of the pitfalls which 

lie in their path. It is our duty to warn anyone who might use a diagram of gravity anomalies based 

on the best-fitting ellipsoid that these anomalies represent only a part of the actual discrepancies 
from a hydrostatic ellipsoid. This applies in particular to the suggesti�ns brought forward by our 
host, Dr. Ledersteger, to the effect that we should take as a reference ellipsoid the figure of rotation 
which the earth would have if it rotated in fluid equilibrium in such a way that the hydrostatic 
second harmonic became the one which we actually now observe, i. e., with an angular velocity 

of w2 = 5.368273 x 1 0- 1 sec- 2. 

We should warn anyone using these data that they will require a special explanation for the ex
clusion of the second-zonal harmonic from their calculations. 

I think it would be even better if we could avoid permanently the drawing of world
wide ge0idal maps or gravity-anomaly maps which are referred to the best-fitting ellipsoid. These 
maps, which are so likely to be seized upon the geophysicists, should always be referred, in my 
opinion, to the flattening of the ellipsoid of fluid equilibrium. I would suggest that the flattening 
that we take for that should be the flattening calculated so carefully by Jeffreys (1 963), namely 
1 /299.67. 

In the U nited States, some medicines are plainly marked "For External Use Only." Let us 
mark all data coming from the best-fitting ellipsoid as "For Internal Use Only" in our professi�n. 
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The Equilibrium Figure of the Earth and the Normal Spheroid 

by K. Ledersteger, Vienna 

In the following a short summary of my 'Final Report : "Multi-parametric Theory of Spheroidal 
Equilibrium Figures and the Normal Spheroids of Earth and Moon", June 1966, may be given, 
concerning the normal spheroid of the earth, which is no equilibrium figure, but the best reference 

body of geodesy. We start with the homogeneous MacLaurin ellipsoids or the so called zero-parametric 
equilibrium figures. Each ellipsoid is for a certain rotational velocity such an equilibrium figure. 
Of course we restrict ourselves immediately to spheroidal figures, since the flattening of the earth 

e = 1 : 298,25 is a quantity of second order. But a second-order approximation does not suffice, for 
the earth is by far not homogeneous and the undulations of the geoid or the height anomalies after 
Molodensky are quantities of fourth order. Therefore we must begin with the equipotential spheroids 
of Helmert, which are based on the development 

(1) 

and on the formula for the theoretical gravity 

y = y 0 ( 1 + � sin2 cp - : �4 sin2 2 cp) . (2) 

In the Helmert-system, as I may call it, we have eight equations which combine 13 quantities, i. e .  
besides the mass E o f  the earth 

a) the geometrical quantities : equatorial axis a, flattening e and the first form-parameter /4 ; 
b) the constants of the gravity formula : the gravity y0 at the equator, the gravitational flattening � 

and the quantity �4 of fourth order ; 
c) the mass-quantities : the mean density Pm. the static flattening ]z = ( C - A) : E a2, where C and 

A are the polar and the equatorial moment of inertia, arid the mass-function 14 of fourth order ; 
d) three further physical quantities : the rotational velocity c.u, the potential value W0 of the surface 

or of any external equipotential and the ratio e = c.u2 a3/k2 E. 
Therefore five quantities must be given for a unique solution, totally independent of equilibrium, 

especially (E, c.u ,  a, ]z, 14). For the axis of the geoid we take the best value of Mrs. Fischer : a =  
= 6378. 165 km. But since the normal figure of the earth should be of the same volume as the real 
earth-body, we have to enlarge this axis by 234 m, the mean continental height following from the 

new Delft development : a =  6 378399 m. The flattening follows from the satellite value of Jz = 
= 108271 . 10- s to e = 1 :  298,25. The quantity k2E can be determined either from the third law 
of Kepler k2 E = n2 a3 or from the gravity y 0 as purely terrestrial determination : ( 3 15 ) k2 E =  (y0 a2 + c.u2 a3) : 1 + 2 12 - 8  ]4 . (3) 

From Kaula's value 

k2E = (398606,24 ± 5,06) . 10 1 s  cm3 sec- 2 (4) 
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we find E =  5976, 1 06 . 1 024 g, if we use k2 = 66,7 . 1 0 - 9  g- 1 cm3 sec- 2. The rotational velocity w is 
known very well : w 2 = 5,3 1 7496 . 1 0 - 9  sec- 2. With the static flattening '2 we get the mass-moment 
K2 = '2 a2 = 44048,95 . l 0 10 cm2 and the difference of the moments of inertia : K2 E = (C - A) = 
263,241 . 1 040 g cm2. Together with the dynamical flattening or mechanical eilipticity H = 327300 • 

1 o- s =  1 :  305,53 we find the principal moment of inertia C = 80428, 1 . 1 040 g cm2. 
At first we have to test whether it is possible to define the normal spheroid as a one -parametric 

equilibriu m  figure with the continuous density law 

For these figures we have a ninth equation 
4 6 5 

J 4 = - - e2 + - e e: - - e:2 
5 7 1 4  ' 

(5) 

(6) 

so that four quantities are sufficient for a unique determination, e. g. (E, w,a, /i). Now a linear series 
of  such figures exists, which have in common both the moments of inertia besides the data E, w and a, 
and we have to test whether the three figures (E, w, a, '2), (E, w, a, C) and (E, w, a, H) coincide or not. 
Some years ago I found with somewhat other initial data as given above for these three figures 
following solutions : 

l2 H c (C - A) e- 1 

with C : 107327 . 10-8 ; 324267 . 10-8 ; 80473 . 1040 ; 260,95 . 1040 ; 299,70 

with '2 : 108310 326065 80762 . 263,34 298,25 

with H :  108960 327236 80955 264,91 297,38 . 

These solutions must coincide, if the normal spheroid of the earth would be a one-parametric 
equilibrium figure. But this of course is not the case. In fact we have to distinguish some different 
parts in the earth's interior. The greatest density discontinuity occurs at the separating surface of shell 
(mantle) and core with about 3 - 4 units in a depth of 2900 km. Computing the two-parametric 
equilibrium figure or the Wiechert-model (E, w, a, ac, '2) with ac = a  - 2900 km, consisting of a 
homogeneous mantle and a homogeneous core we find C = 80663 . 1 040. The density discontinuity 
is 8,25. Of course the equilibrium figure of the earth must lie between this Wiechert-model and the 
one-parametric figure (£, w, a, '2), which means 80663< c::; 80762 or C ,_, 80720 . 1 040 g cm 2. Therefore 
the last figure has a C-value relatively too great by about 42 . 1 040, while the figure searched for has 
a C-value absolutely too great by about 247 . 1 040 g cm2, compare Report, p. 1 1 5 .  A six-parametric 
model (homogeneous ocean, heterogeneous mantle and heterogeneous core) as well as an eight
parametric model (homogeneous ocean, homogeneous crust, heterogeneous mantle and heterogeneous 
core) confirm the result. 

If we, on the other hand, start with the figure (E, w,a, C) and compute the correspondin& 
Wiechert-model (E, w ,a, ac, C), we find (Report p. 204) : 

one-par. fig. : e- 1 = 299,75 ; '2 = 1 07 1 95 . 1 0- s ; J4 = - 328,5 . 10- s 
Wiech.-mod. :  299,25 1 07550 - 291 ,9 

therefore always a too small static flattening. The deviation is about ( 108270 - 107270) = 1000 . 1 0- s, 
and we may conclude : no equilibrium figure exists, which has in common with the real earth the mass, 
the rotational velocity, the axis and both the moments of inertia. 

However, it is known that the angular velocity of the earth slightly decreases which causes a 
lengthening of the day by about l 5  in 1 20000 years. In  three or four milliards of years the day in
creased from about 8 - 1 2h to 24 hours. Therefore we compute the one-parametric figure (E, a, '2, C) 
which in fact has a somewhat greater angular velocity corresponding to a day shorter by 7m1 1 s 
(Report, pp. 205/6). But since the earth surely is not one-parametric we search for a better solution 
with the greater C' = (80428 + 42) = 80470 . 1 040 and find an w', corresponding to a day shorter 
by 6m10,5s (Report p. �06). Besides this solution (E, a, /i, C') = (E,w',a,Ji), again two more 
one-parametric figures exist : 
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Ji H c (C - A) e- 1 

(E, w', a, CJ : 108 1 30 . 10-8 ; 326875 . 10-8 ; 80428 . 1040 ; 262,90 . 1040 ; 297,15  

( E, w' , a ,  Ji) : 108271 327129 80470 263,24 296,96 
(E, w', a, HJ : 108366 327300 80498 263,47 296,84 

The deviations are much smaller, because we are nearer by the unique solution. 
A further discussion yields the rotational velocity w2 = 5,368273 . 10- 9 sec- 2, corresponding to 

a day shorter by 6m48,5s, or a further approximation to the unique solution, and finally an eight
parametric model with 14 = - 3 1 5,5 . 10- 8 Report, p. 21 1 ). Thus we have found the equilibrium figure 
of the earth with a surface-flattening of about 1 :  297. Of course it is only an accident that this figure 
almost coincides with the International Ellipsoid. It has the same density law as the real earth after 
regularization of the crust, naturally abstracting from the ocean. The lengthening of the day usually 
is explained by the tidal friction. But only if the earth would be totally rigid, the computed 4085 
would represent the tidal effect .  If the earth were an ideal fluid, it still would be in hydrostatic 
equilibrium despite decreasing angular velocity. The effect of the tidal friction wo uld consist only 
in a slight diminution of the flattening connected with a slight increase of the moment of inertia C. 
But since the earth is plastic, the total tidal effect of possibly 74000 seconds in 4 mil liards of years 
must be multiplied by a fraction n, which is zero in case of a fluid body and 1 for complete rigidity. 

The ocean, representing the geoid, therefore has the flattening 1 : 298,25, while the ocean bottom 
has the greater flattening of about 1 : 297 ,3. Thus we find the normal spheroid, if we combine the 
equilibrium figure with the present angular velocity or the normal spheroid has, besides the ocean, 
the same mass-configuration as the equilibrium figure. With other words : the normal spheroid 
results as a solution of the Helmert-system with the data (E, w, a, 12) of the real earth but with the 
mass-function 14 of the equilibrium figure. Given are : 

E =  5976, 1 06 . l 024 g ;  w2 = 5,31 7496 . 10- 9 sec- 2 ; 

a = 6,378399 . 108 cm ; J2 = 1 0827 1 . 10- s ; 14 = - 3 1 5,5 . 10- 8 ,  

wherefrom results : 

& = 346 1 75 . 1 0 - 8 ; e = 1 : 298,28 = 335260 . 10- 8 ; /4 = - 348 . 10- 8 ; 

a 
hmax = -14 = - 5,546 m ; Yo = 977,9704 gal ; � = 530461 . 10- 8 ; 

4 

�4 = 3383 . 1 0- 8 ; W0 = 62635,3 . 107 cm2 sec- 2 ; Pm = 5,5 1 64 . 

(7) 

(7a) 

This figure is an equilibrium configuration, disregarding the ocean, but it has a smaller angular 
velocity as the corresponding equilibrium figure. The advantage consists in the fact that the configu
ration is clearly defined. Therefore this normal spheroid represents the best reference body of geodesy : 
all deviations, gravity anomalies and undulations of the geoid are caused by the mass-irregularities 
in the earth's crust and have a correct physical meaning. 

Of course the gravity formula better is refered to the surface of the ocean (geoid). Appropriately 
we reduce Yo with the Prey-gradient 0,2224 mgalfm belonging to a water-plate of density 1 ,028 to the 
geoid : Yo = 978,0204 gal. If we wished to enlarge y0 by further 12 mgals, we had either to diminish the 
axis by 39 m or to put E = 5976, 1 79 . 1024 g. Probably this small difference is caused by the u ncertainty 
of k2 E. In that way we get the formula for the theoretical gravity 

y = 978,0 �� (1 + 0,0053046 sin2 <:p - 0,0000085 sin2 2 <:p) . (8) 



The Mass-Functions and the Equipotential Ellipsoid 

by K. Ledersteger, Vienna 

We compare the potential expansion of the real earth, restricted to zonal terms 

k2 E a n [ 
00 

] 
V = -

r
- I -n I; 

2

Jn (7) Pn (cos &) 

with the analogoues expansion of the normal spheroid 

k2 E a n [ 
00 ] U = -

r
- 1 -n I; /•* (7) Pn (cos &) 
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(1)  

(2) 

wherein all odd mass-functions vanish, while the even mass-functions decrease so rapidly that we are 
allowed to restrict the expansion to 

(2a) 

Thus the remainder function T = ( V - U) results in the form 

(3) 

There the mass-functions may be related to the level surface with the equatorial radius a =  6378, 1 6  km 
Their influence decreases with growing elevation ; e .g .  already in  a height of  1000 km (a/r)2=0,7473 
and (a/r)4,....,, 0,5585. 

If we neglect the flattening according to the Stokes' approximation, i. e .  if we substitute a by the 
mean spherical radius R, we get 

(4) 

and 

T, � -
k�E [ n i: 

2 

(Jn - Jn*l (�r I P, (cos &) ] (5) 

If e. g. h means the hight of an artificial satellite (r = R + h), the errors of the mass-functions deduced 
therefrom enter the potential function VR magnified by ( h )n t I 1 + 

R 

The expression 5) for the remainder function of course has to be extended by the longitudinal terms 
neglected in 1 ). If the normal spheroid has in common with the real earth both the moments of 
inertia C and A *  = (A + B)/2, then the difference (]z - ]z *) vanishes exactly. Further, if only the 
coordinate axes coincide with the principal axes of inertia of the terrestrial body, t he products of 
inertia 

S �'Y) dm = S 'Y)� dm = S �� dm = 0 (6) 

vanish together wit h  the three related spherical harmonics of 2nct order sp that the sectorial function 

C2,2 = - (B - A) : 4 ER2 (7) 
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remains, which is responsible for the so-called ellipticity of the terrestrial equator. 
For the normal spheroid being of equal volume with the real earth and representing no equilibrium 

figure but an equilibrium configuration, we obtained in [ l ,  p. 21 1 ]  on basis of the initial data 

E = 5976, 106 . 1024 g; cu2 = 5 ,3 1 7496 . 1 0- 9 sec-2 ;  
a * = 6,378390 . 108 cm ; J2 * = 1 08271 . 10- s ; J4* = - 3 1 5,5 . 10- s 

by means of Helmert's equation system 
f; * = 3461 75 ,4 . 10- s ; e* = 335260,4 . 10- s = 1 :  298,28 ; 

a* 
/4* = - 347,8 . 10- s ; h*max = - J = - 5,546 m ;  y0* = 977,9704 gal ; 

4 
� *  = 530460,7 . 10- s ; �4* = 3382,9 . 10- s ; W0 = 62635,3 1 5 . 1 07 cm2 sec- 2 

(8) 

Pm = 5 ,5 1 64 (8a) 
In the assumed value of the axis the average height of the continents of 225 m according to Prey's 
development of the heights and depths of the earth has been considered. Thus for the transition to 
the geoid (a = 6378, 1 65 km) y0 has to be reduced by means of Prey's gradient of 0,2224 mgal/m, 
corresponding to a plate of water of density 1 ,028. Hence, y0 = 978,0204 gal which value might be 
too small by about 1 2 mgal. This small discrepancy is due to the empirical inaccuracy of the significant 
quantity k2 E. 

The following analysis is based on Kozai's [2] values for the mass-functions '3 to J6 as derived 
from artificial satellites 

'3 = - 225 . 10- s ;  J5 = - 21 . 1 0- s 
J4 = - 1 65 . 1 0- s ; J6 = + 65 . 1 0- s 

(9) 

First with R = 637 1 ,2 km the potential value k2E/R = 62563,8 . 107 cm2 sec- 2 results. Then with 
y = k2E/r2 the theorem of Bruns according to 5) gives the contributions in undulation of the indivi
dual terms 

(
R
)
n- 1 

!::. Nnn = (!::. Tn/Y)r = - R (Jn - ln*) 7 Pn • ( 10) 

For J4 the difference (J4 - J4 *) = ( - 165 + 3 1 6) = + 1 5 1 . 10- s results, hence at the surface (r = R) 

and in a height of h = 1000 km analogous 
!::. T4 = - 0,0456 . 107 P4 cm2 sec- 2 ;  !::. N4 = - 6,21 P4 m. 

For an exact approximation of fourth order we proceed from the normal spheroid 8) and find from 
the data (E, cu, Wo, C - A , J4) in successive approximation 

a = 6378 386,4 1 m ; e = 335354,7 . 10- s = 1 : 298, 19 . (1 1 ) 
This level surface of the same potential value, though being of equal volume with the normal spheroid 
shows depressions at the pole and at the equator characterized by (c - c*) = - 9,59 m and (a - a*)  
= - 3,59 m. In contrast to that we have now /4 = + 3 1 2 . 10- s and thus hmax = + 4,975 m. At the 
same time the difference ot the radii-vectors of the corresponding ellipsoids at the latitude of 450 i s 
(s - s* )  = - 6,58 m so that the new spheroid in that latitude is 3,94 m above the normal spheroid . 
If we compare these results with the above approximation !::. N4 = - 9,62 P 4 m, we obtain for the pole, 
for the equator.and for q:> = 450 one after the other - 9,62 m, - 3,61 m and + 3,9 1 m, and we can see 
that the deviations are only 3 cm. Thus the quality of the approximation 10) has been proved in a 
purely empirical way. 

For the mass-function J 3 equation 5) gives !!. T 3 � + 0, 1 59 5 . 10 7 ( �r P 3 cm' sec - ' and 1 O) : 

!!. N, � + 1 6,25 ( �)' P 3 m. Hence for r � R we get at both the poles of the surf ace the undulations 
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± I 6,25 m.  which result is well known under the misleading slogan of the "pearshaped earth". 
Now we extend the analysis to all four of the above mass-functions, whereat we only have to consider 
that for the normal spheroid h* and ls * vanish, while 16* = + 1 unit of the eight decimal place. Thus 
we get at the surface expressed in meters : 

11 N = + 1 6,25 P3 - 9,62 P4 + 1 ,34 P5 - 4,08 P6 

and analogously for the heights h = 1 000 km and for r = 2R, 3R and 4R 

11 N = + 1 2, 1 40 P3 - 6,2 1 2  P4 + 0,748 P5 - 1 ,968 P6 
11 N = + 4,062 P3 - 1 ,202 P4 + 0,084 P5 - 0, 1 28 P6 
11 N  = + 1 ,806 P3 - 0,356 P4 + 0,0 1 7  P5 - 0,0 1 7  P6 
11 N = + 1 ,01 5 P3 - 0, 1 50 P4 + 0,005 P5 - 0,004 P6 

The following small table results : 

hkm + 90° + 45 ° o o  - 45° 

r = R + 3,89 + 1 , 15  - 2,33 + 7,89 

r = R + 1 000 + 4,71 + 0,39 - 1 ,71 + 5,24 

r = 2 R  + 2,82 - 0,24 - 0,41 + 1 ,26 

r = 3 R + 1 ,45 - 0, 1 8  - 0, 1 3  + 0,47 
r = 4 R  + 0,87 - 0,12 - 0,06 + 0,24 

( 12) 

- 90° 

- 31 ,29 
- 21,07 

5,48 
2,20 
1 , 17  

The undulations undoubtedly have to decrease with increasing elevation for any possible 
perturbing potential, and have to vanish sufficiently in a particular height. This applies to each of the 
four terms separatly. Because of the restriction to the four zonal spherical harmonics h- 16 the above 
results permit no convincing conclusion as to the magnitude of the undulations and their decrease 
with height. For both the mass-functions '3 and ls alone we would get the undulations ± 1 7  ,59 m for 
both the poles ; these values diminish to ± 1 ,02 m for r = 4R, while at the equator always N = 0. On 
the other hand, in case of rotational and equatorial symmetry (h = 15 = 0) at both the poles 
11 N  = - 1 3,70 m and at the equator - 2,33 m, which values diminish to - 0, 1 5  m and - 0,06 m for 
r = 4  R. The above table, however, discloses a contradiction which can clearly be recognized by the 
incipient increase of the undulation above the northern pole and the impossible change of sign 
for <p = + 450. The reason for this contradiction l ies in the incommensurability of the mass-functions 
'3 and (J4 - 14 *), as can be proved by restriction to the first two terms of 1 2). 

In order to study this problem in more detail we reason as follows. The mass-function '3 = 
= - 255 . 10- s offers no foothold. An asymmetry between the northern and the southern hemisphere, 
effecting a deviation of ± 1 6  m in the polar radii, is within the empirical magnitude of the undulations. 
However, it is very dubious that the ratio ofthe mass-function l4 =  - 1 65 . 10- s and l4*  = - 3 1 5,5 . 1 0- s 
should be almost 1 :  2. We go back to the normal spheroid 8) and find for its mass-moment of fourth 
order K4 * = 14 * E a4 = - 31 ,2077 . l QS 6 g cm4. The homogeneous water cover may have the density 
1 ,028 and a depth of 2601 m at the equator. The equilibrium figure of the earth shows further that 
the ocean bottom has the somewhat greater flattening of about e' = 1 : 297 ,3 = 336360 . 10- s. Hence we 
find for the volumes of the total earth V and of the solid earth V', further for the mass of the ocean 0 
and for the mass E' of the solid earth 

V = 1 083,336 . 1 024 cm3 ; V' = 1082,000 . 1 024 cm3 ; O = 1 ,374 . 1 024 g 

E' = 5974,732 . 1024 g .  

The proportion of the mass-moment K4 due to the ocean becomes 

1 2  

( 1 3) 

11 K4 = - - 1 ,028 [(e2 - e3) Va4 - (e'2 - e'3) V'a'4] = + 0,0260 . 1 056 g cm4, (14) 
35 

so that for the solid earth with the equatorial radius a' = 6375,789 km holds 

K4 = - 3 1 ,2077 - 0,0260 = - 3 1 ,2337 . lOS6 g cm4. (14a) 
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In  analogy we get for a homogeneous crust of density 2,80 and a magnitude of 33 km (a" = 
= 6345,390 km) 

V" = 1 066,6 1 1 . 1024 cm3 ; Cr = 43,088 . 1024 g ; E" = 593 1 ,644 . 1024 g 

and for the remaining earth down to the surface of the mantle 

K4 = - 3 1 ,2337 + 0,7862 = - 30,4475 . 1 QS6 g cm4 = J"4 E"a"4, 

hence J"4 = - 3 1 6,6 . 10- 8, 

but referred to the surface of the normal spheroid : 

)1 14 = - 310, 1 . 1 0- 8 

( 1 5) 

( 1 5a) 

The removal of the ocean and of the whole crust results only in a variation of 1114 = + 5,4 . 10- 8. We 
conclude that the mass-irregularities in the crust can have only an almost vanishing effect. 

Putting 

€ = x e + . . . ; /4 = - x e2 ; J 4 = - � e2 ( 1 6) 

we get for the normal spheroid x = 1 ,03256, x = + 0,30943, � = + 0,28070, while the observed value 
J4 = - 1 65 . 1o- 8 leads to � = + 0, 14680 which in turns gives by means of the equation generally 

valid - ){ + 4,374 � = 3,5 - 2,5 x ( 1 7) 

the values x = - 0,27635 or /4 = + 3 10 . 1 o- 8. In  the (x, x)-diagram [ l ,  p. 66] the new figure thus lies 
far below the normal spheroid and even far below the external equipotential of the same data (E, 
cu, a, Ji) of the corresponding MacLaurin ellipsoid (14 = - 25 1 ,3 . 10- 8 ;  /4 = - 67, 1 . 10- 8). Series 
of figures with the data (E, cu, a, ]i) are not .strictly vertical as with ]4 also e and thus x vary slightly. 
It may be demonstrated by means of two characteristic examples that the homogeneous ellipsoid or 
one of its equipotentials never can be part of a physically sound series of equipotential spheroids . 
It may be noted that in general we have not equilibrium figures in mind, even if these equipotential 
spheroids coincide with the surfaces of mass-configurations. 

At first we turn our attention to the series of external equipotentials of so-called one-parametric 
mass-configurations which are characterized either by the continuous density law 

( 1 8) 

or by the property that at their surface the variation of the form parameter /4 in outer space is  
ad/4/da = A  = 0. The curve A = 0 represents a parabola with its vertex in the point (x = 2/5, x = 
= - 1 /4) ; Pc stands for the density at the center of gravity. For v = 0 the ell ipsoid of MacLaurin 
results, and for 0 � v < 1 the series of one-parametric equil ibrium figures up to the one-parametric 
spheroid of greatest mass-concentration for which v is just below unit. Below the ellipsoid, i. e .  
within the region of positive form-parameters, v becomes negative, which means that the density 
increases continuously from the center of gravity to the surface, a physically absurd case. The 
constancy of Ji and thus of the mass-moment K2 is responsible for the fact that we have to deal with 
external equipotentials of figures of the series (w, K2) with constant principal moment of inertia C. 
Hence, beyond the ellipsoid the mass-concentration is compensated by an expansion of the figures 
(increasing equatorial radius of the surface a' < a), while below the ellipsoid the equatorial radius a' 
decreases with simultaneous condensation toward the surface. Thus our series starts with a one-para
metric equilibrium figure (a' = a, 14 = - 332,4 . 10- 8). Descending in the series at first the external 
equipotentials of one-parametric equilibrium 1 figures follow down to the MacLaurin-ellipsoid 
(a' = 581 1 ,99 km, e' = 326539 . l0- 8) with J4 = - 2? 1 ,2 . I 0- 8. The parabola F= I 14 j : '22 = 1 ,8080 
passes through the vertex of the p�rabola A = 0, from which follows 14 = - 212 . 10- 8 for the external 
level surface.The pertinent figure itself is characterized by the data : a' = 4773,93 km, e'= 362853 . 10-8 , 
J'2 = 1 93277 . 1 0-8, J '4 = - 677, 1 . 10-8 . Beyond the vertex of the parabola, i .  e. for x < 0,4, Fdecreases 
only slightly (x = 1)5, F= 1 ,7857) and then increases again to 1 ,8 for x =  0. For x <  0,05, however, 
the flattening e' increases so rapidly that Helmert's equation system soon becomes inapplicable. 



As a seco nd example we consider the binary-shell models. Because of 

5 
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( 1 9) 

to every /4 a particular. pair of values e and J4 belongs, since with the given data (E, w,a,J2) e = 
= w2 a3/k2 E also is determined. Because of the constancy of '2, e can vary only within very narrow 
limits. With x and x always a definite point of the (x, x)-diagram is determined, which generally 
within a certain region an infinite number of two-layer models belong to, whose surfaces are equi
potentials save that equilibrium follows therefrom. If we choose e. g.  a partial mass £1 = E - E2 for a 
"mantle-figure", then we have ( 1 ,  p. 1 1 4/5] except for quantities of 61h or 5th order, in 

1 1 
Ji = - (2 e - e2) (E1 : E) + - (2ec - ec2) (ac : a)2 (E2 : E) 

5 5 
(20) 

1 2  1 2  
J4 = - - (e2 - e3) (£1 : E) - - (ec2 - ec3) (ac : a)4 (E2 : E) 

35 35  

two equations with both the unknowns ac and ec, i .  e. axis and flattening of the core. 
Our series starts with the model ac = 0, or more general, with ec =0 as a homogeneous sphere 

irrespective of its radius contributes nothing to the mass-functions. Together with 1 9) the equations 

5 Ji = (2 e - e2) (E 1 : E) ; 
35 

- - J4 = (e2 - e3) (£1 : E) 
1 2  

(21 )  

furnish a rigorously unique solution for the four unknowns e, J4, E1 and /4, i .  e. the Wiechert-model 
with the core's radius being equal to �ero which lies in the straight line (x + 35 �/8) = 1 ,5 :  

e = 335263,4 . 10- s ; J4 = - 3 1 0,7 . 1 0- s ;  £1 : E = 0,8087 ; 

f4 = - 326,7 . 1 0- s  : x = + 0,2907 . 
(2l a) 

Every lower point (Ji, J4) or every (x, x) with smaller I J4 j and x represents an infinite number of 
binary-shell models. For the determination of these models we transform equations 20). Putting for 
short (£1 : E) = z and (ac : a)2 = y we find 

[5 J2 - (2 e - e2) z] = (2 ec - ec2) y (l - z) 

- [�� J4 + (e2 - e3) z] = Cec2 - ec3) y2 ( 1  - z) . 

Now (2ec - ec2)2,.._,4(ec2 - ec3). Thus, if we square the first equation and subtract 
multiplied by 4 ( 1  - z), we get 

or 

[5 J2 - (2 e - e2) z]2 + [3: J4 + 4 (e2 - el) z} l - z) � O  

z [ 1 0 J2 (2 e - e2) - 4 (e2 - e') + 
3: J4] - [(5 J,)2 + 

3: J4] � O 

For all these solutions 

(2 ec - ec2) (ac : a)2 = (5 J 2 - (2 e - e2) z] : (1 - z) 

(20a) 

the second one 

(22) 

(20b) 

E 1 or the density of the mantle are nearly constant. W ':. ;ecognize easily that the case z = 1 or E 1 = E, 
E2 = 0 is impossible ; otherwise we would deal with a homogeneous body whose surface is an equi 
potential. Thus the body itself had to be an equilibrium figure contrary to the well-known fact that in 
the vicinity of the sp�1ere the MacLaurin-ellipsoids are the only possible homogeneous equilibrium 
figures. In fact, beginning with the value 2 1 a) :  z = 0,8087 and proceeding downwards z decreases 
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continuously till in the parabola F = 1 5/7 or for J4 = - 251 ,2 . 10- s the value z = 0  is reached. In the 
whole region � 3 1 0,7 . 10-s<'4::S - 25 1 ,2 . 10-s to every point a Wiechert-model or a two-parametric 
equilibrium figure belongs inclusively the already fictitious boundary solution of the external equi
potential of a MacLaurin-ellipsoid : ac = 581 1 ,988 km, ec = 326538,5 . 10- s which results from (z =0) 

4 22 
(2 ec - ec2) (ac : a)2 = 5 '2 ; w2 ac3/k2 E = -ec + - ec2 . (23) 

5 3 5  

The last equation may b e  considered a n  equilibrium condition. All possible binary-shell models lie, 
as always, between the limits ec = e or ac, min and ec, min or ac, max. the latter boundary solution 
being defined by equal polar axes (cc = c) : a(l - e) = ac( l  - ec). 

If we fictitiously continue the series downwards, then negative z-values will result. i .e. the 
density of the mantle becomes negative and the mass of the core is greater than E. However, the 
absolute limit soon is reached. There applies : 

z - oo ; (2 ec - ec2) (ac : a)2 - (2 e - e2) . (20c) 

At the same time the factor z in 22) vanishes : 

35 
- - J4 = 1 0 J2 (2 e - e2) - 4 (e2 - e3) ,  

3 
(24) 

leading together with 1 9) to e = 335309,6 . 10- B, J4 = - 237, 1 . 10- s and /4 =  - 4,2 . 1 0- s .  But the 
solution ac- a and ec- e represents the equipotential ellipsoid corresponding to the given data (£, 
w,a,'2) for which equations 1 9) for /4 =0 render directly e = 3353 10,2 . 10- s and J4 = - 236,2 . 10- s. 
Thus the physical absurdity of the equipotential ellipsoid is revealed especially clearly. Besides, this 
figure is no exact ellipsoid at all, but certainly has higher form parameters. In the same fourth-order 
approximation this figure also represents the external equipotential of a small one-parametric mass
configuration with F =  2,01466, thus likewise belonging to the fictious region. 

Hence, this first solution is, strictly speaking, no equipotential ellipsoid at all, which should 
represent a mass-configuration whose surface coincides with the equipotential ellipsoid desired. But 
this is easily accomplished by mass-displacements in homogeneous confocal ellipsoidal shells which 
leave ,the external potential unaltered. The second solution stands in an interesting analogy to the 
equipotential ellipsoid of W. D. Lambert [3] ; the homogeneous ellipsoid has too great a mass 
(E2 = 7732,4 . 1 024 g) which is reduced by a fictitious areal coating of great negative density. A fourth 
solution represents the theory of Pizzetti and Somigliana. It is based on the following, mathematically 
sound fact. Given be a physically possible mass-configuration and a pertinent external equipotential. 
Then the given equipotential and the total external potential remain unaltered in case the total mass 
will be distributed homogeneously within the equipotential while all deviations from homogeneity can 
be mastered by an areal coating of partly positive, partly negative density with the mass-sum zero. 
But if, vice versa, the equipotential is arbitrarily prescribed then generally a fictitious solution results. 
As a fifth solution we finany get in fourth-order approximation the so-caned third normal form of 
Helmert for which per definitionem/4 ·= 0. Thus with (E, w,a, e) or (E, w, a,'2) the second equation 1 9) 
gives directly J4 as before. If in this case we want to obtain a physicany sound solution we have to 
neglect together with/4 an remaining fourth-order quantities, which means a retreat to the second-order 
approximation in which an equipotential spheroids are ellipsoids ; the second-order approximation, 
however, does not suffice for the problem of the figure of the earth as· is well-known. 

Hence, all these equipotential ellipsoids regardless whether they are exact ellipsoids or mere 
fourth-order approximations, are of fictitious nature. But in [ l ,  p. 1 63 ]  we succeeded in showing in
dependently of the character of the mass-configuration that for the x-value of the earth (x.-- 1 ,032) 
an equipotential ellipsoid still is conceivable in eight-order approximation which, however, is 
erroneous already in the fourth-order quantities. For if we put (compare 1 6) 

J s = - � e4 ; /4 = - x e2 , 16 = - A e3 , Is = - µ. e4 . . .  . ,  

then applies generally (compare 1 7) 

(25) 
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B = - J.. + BO Y) = (3,3 - 2,75 x) + x (l ,2 - 0,5 x) ; 

C = - µ  + - � = - (1 43 - 1 30 x) + - (64 - 40 x) + 
( 1 287 ) 1 x 
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The straight line � =0 = F intersects the x-axis at point x = 1 ,4 herewith defining the absolute upper 
limit. The curves B =Const are the equilateral hyperbolas 

(x - 2,4) (x + 5,5) = - (2 B + 6,6) , (27) 

wherefrom x = 1 ,2 results for the curve B = 0  and as intersection with the x-axis. Since the curves 
B < 0 follow in the direction of increasing x-values and since for the latter J.. > 2 3 1  YJ/80 must be 
positive together with YJ, equipotential ellipsoids in sixth-order approximation are possible only for 
x = 1 ,2 .  Further conclusions follow analogously. For x = J.. = 0 and the curve C = 0 we obtain the 
intersection point x = 1 , 1 ,  and equipotential ellipsoids in eight-order approximation are possible 
only in the region x < 1 ,  1 .  Continuing this mode of reasoning we learn easily that the exact equipotent
ial ellipsoid coincides with the MacLaurin-ellipsoid. 
Thus we arrived at the result that the equipotential ellipsoid pertinent to the empirical data (E, w,a, J2) 
of the real earth can only be thought of as approximation and only for a fictitious mass-configuration. 
The arbitrary assumption /4 = 0 also leads to a different mass-function J4 = - 236,2 . 1 0- 8 and to a 
theoretical gravity formula which must not be designated as "normal". Neither the gravity anomalies 
derived therefrom nor the resulting geoid undulations have any clear physical meaning. Of course, 
the splitting into a theoretical field and the pertinent corrections is an arbitrary act within certain 
l imits. But it is certainly desirable to proceed from a model physically possible, which has both the 
principal moments of inertia in common with the real earth so that the mass-function '2 is identical 
while the mass-function J4 deviates only slightly from its true value. Then the gravity anomalies and 
the undulations are the clear effects of the mass-anomalies. 

The curve defined by the data (E, w, a, J2) of the (x, x)-diagram almost coincides with a vertical 
line x = Const. Both the boundary cases discussed : continuous density law and binary-shell model, 
have shown that below the parabola F = 1 5/7 only fictitious mass-configurations result extended for 
the continuous density law down to J4 = - 209,5 . 10- 8 and for the binary-shell model to the equi
potential ellipsoid J4 = - 236,2 . 10- 8. The "empirical" value J4 = - 1 65 . 1 0- 8 is not reached at all. 
Beyond that it becomes obvious that the normal spheroid as well as the corresponding equipotential 
spheroid of the real earth-body must lie between both the boundary cases of the one-parametric 
equlilibrium figure with the continuous density law 1 8) and the binary-shell model with depth of the 
core 2900 km. The first one renders J4 = - 332,4 . 1 0- 8, whi le for the binary-shell models J4 lies 
between the limits - 3 1 0,7 . 1 0- 8-.::::.J4< - 288,8 . 10- 8. These values, of course, suffer a small variation 
as they have been calculated in [ 1 ,  p. 1 82] with somewhat different initial data. One could rightfully 
object the definition of the upper limit by the one-parametric equilibrium figure as we have to abstract 
totally from the equilibrium. In fact we could proceed from the binary-shell model to the N-shell 
model whereby with the transition to the limit N - oo any continuous density law may be approxi
mated. In that general case the limit possibly is \ 14 \ > 332,4 . 1 0- 8. 

With all these arguments the value J4 = - 1 65 . 1 0- 8 appears at least very problematic. Equally 
problematic also is the empirical result that the higher even mass-functions are approximately of the 
same order of magnitude. In contrast to that the general expansion of the equipotential spheroids to 
eight-order [1,  pp. 87 -97] gives : 

4 4 8 
J 4 = - - e2 + - e € + -/4 · 

5 7 35  ' 
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8 20 96 80 40 
J6 = - e3 - - e2 e  - - ef4 - -f6 + - ef4 · 7 2 1  2 3 1  23 1  23 1  ' 

J8 = -
1
- (- 2288 e4 + 1 024 e2/4 + l024 ef6 + 896/s -1 287 

(28) 

True, there the mass-functions and the form-parameters can not be separated uniquely ; they are 
correlated by the equations 26). Thus we evaluate these formulas for the data 8a) for e and e of the 
fictitious equipotential ellipsoid (/4 = /6 = /s = 0) and find : 

J4 = - 236,0 . 10- s ; J6 = + 0,6 . 10- s ; J8 = - 0,002 . 1 0- s ,  (29) 

i. e. J4 = - 393 16 and 16 = - 286 18 ! Hence, the absolute values of the mass-functions decrease 
approximately with the powers of the flattening. For the normal spheroid 8), when /6 is neglected 
which enters only with one third of its value, we get 16 = + 0,88 . lo- s, thus J4 = - 396 16• The 
empirical value 9) would result for /6 = - 1 85,2 . 10- s or for A. =  + 49, 1 which is extremely improbable. 

Finally we combine the empirical values 14 = - 1 65 . 1 0- s  and J6 = + 65 . 10- s. We find from 
l 9) and 28) 

hence 

e = 335354,8 . 10- s ; /4 = + 3 1 2,033 . 10- s ; /6 = - 1 86,664 . 10- s ,  

A. =  + 49,5 ( !) , 

(30) 

which is nearly the same impossible result. Neither 14 nor 16 are authentic : 114 I is only about .one half 
of the plausible value and 16 is much too great ; it exceeds the correct value by about the 70-fold 
quantity. 

In any case, we are permitted to state that the theory of the general equipotential spheroids 
represents a very effective mean for the critical discussion of the mass-functions hitherto derived from 
artificial satellites. Above we have found lower limits for the fictitious solutions namely for the 
equipotential ellipsoid (14 = - 236,2 . 10- B) on the one hand, and for the continuous density law 1 8) 
(14 = - 209,5 . 10- 8) bound to the condition A =0 on the other. Here, however, the question arises 
whether it is possible at all to find mass-configurations, being physically sound or not, for the 
spheroids which lie in the curve defined by (£, w, a. ]z) below the solution mentioned above : -
- 209,5 . 10- 8<]4<0. 
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The Horizontal Isostasy 

by K. Ledersteger, Vienna 

According to the new Delft-expansion of the heights and depths of the earth in spherical harmonics 
up to the 32nd order inclusively, the average depth of the lithosphere is Lo = - 2367 m, that of the 
hydrosphere Ho = - 2601 m and therefore the average height of the continents for the whole surface 
of the earth + 234 m. If we postulate for the normal spheroid equality of volume with the real earth
body we get a =  (6378, 1 65 + 0,234) = 6378,399 km. When using the flattening 1 :  298,28 the volume 
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of the earth-body results to V = 1083,341 . 1024 cm 3 and the volume of the "solid earth" to 
V' = 1 082,01 6  . 1 024 cm3,  hence the mass of the ocean waters (Pw = 1 ,028) to Pw ( V - V') = 1 ,362 . 1 024 g. 
Since the mass of the earth is E = 5976, 106 . 1024 g, that of the solid earth is E' = 5974,744 . 1 024 g and 
the mean density Pm = 5,52 1 8 . The crust consists of the sial-stratum (granite) of density 2,67 and the 
basalt-like sima of density 2,87 . In addition we shall neglect the flattening, and therefore we substitute 
the mean lithosphere by the sphere of equal volume with the radius R = 6368,665 km. The Moho
rovicic-surface, running in variable depth, represents the separating surface between crust and mantle, 
and which after regularization l ies in a depth of about 33 km of the normal spheroid. If we hold the 
assumption for the density of the mantle at its surface to be PNio = 3,32, a density discontinuity of 
0,45 occurs there. Finally we suppose the separating surface of sial and sima, the so-called Conrad
discontinuity, to be in a depth of 20 km and to represent a density discontinuity of 0,20. With the 
normal spheroid the surface of the ocean is 234 m above the geoid, and the ocean-bottom, the 
idealized lithosphere, l ies in a depth of 2367 m .  This latter surface we designate as the upper reference 
level, and, contrary to the usual definition, we consider as topography all deviations of the real earth
crust from the. normal spheroid . 

In  the following calculation of the mass-differences with respect to the normal spheroid, the 
convergency of the spherical radii must be considered . The comparison column of the normal 
spheroid with a cross-section of 1 m 2 in the assumed basis contains the mass : 

2W l �0 1 

1 ,028 Jo + z/R)2_ dz · 1 ,0281

·

( 1 + 2 z/R) dz = 1 ,028 . 2601 ( I + 2,601 /R) = 2674,920 t/m2 . ( 1 ) 
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On the continents we have to distinguish two cases according to the elevation above sea level being 
h � 234 m. In the first case the mass difference (Fig. 1 )  with p = 2,67 results to 

2367 + h 260 1 

tl q1 = (p - 1 ,028) Jo + 2 z/R) dz - l ,028J(1 + 2 z/R) dz = 
0 2367 + 

( 
2 367 + h

k 
) ( 4 968 + h 

) = (p - 1 ,028) (2367 + h) 1 + 
' 

R 

m 
- 1 ,028 (234 - h) . 1 + 

' 

R 

km 
• 

For the second case (h > 234 m) we find in  analogy : 

( 
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) ( 
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km
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and it can easily be proved that both expressions not only agree for h = 234 m, but are altogether 
identical. In fact, it would not at all be necessary to distinguish these two cases, but it seems better so 
with respect to the following pressure equations. By collecting the terms independent of h the conti
nental final value results : 

with 

( 4,734 + h) qc = A +  h 1 + R 

A = 2367,880 p - 2674,920 . 

(2) 

(2a) 

In the oceanic case t stands for the ocean-depth thought of as being positive. Here we need not 
even consider both cases t � 2367 m separately since the distinction refers only to the sign of the 
difference (2367 - t). We find ( 4 734 + 0 234) ( 2 367 -t ) 

A q0 = - 1 ,028 . 234 1 + ' R 
' + (p - 1 ,028) (2367 - t) 1 + ' 

R 
km . 

The terms independent of t are identical with A so that ( 4, 734 - /km) Aq0 = A  - (p - 1 ,028) t 1 + R 
. (3) 

If, according to Vening-Meinesz [ 1 ] the ocean water is condensed to crust density but u nder 
neglection of the convergency of the plumblines, we obtain the defintion of a new litosphere 

- ( 1 ,028 ) 
L =  L - --H .  

p 

On the continent H = 0 and L = L = h, and on the ocean L = H = - t so that because of 

p L = p h and p L = - (p - 1 ,028) t 

(4) 

(5) 
both the formulas 2) and 3) formally can be combined if the ocean depth t is introduced as a negative 
height (t = - h) :  

Aq - A + L .1 + , _ - ( 4,734 + hkm) 
R (6) 

without detriment to the neglection done in the definition of L. The mean value of L is : 

L0 = (Lo - 1 '�28 H0) = (- 2367 + 
1 '�28 2601) (7) 

- ( 1 ,028) 
L0 = 1 - -P- h0 • (7a) 

With the sial-density 2,67 results L0 = - 1365,566 m and h0 = - 2220,500 m, further A =  3647,320 t/m2 
·and thus for L0 

q0 = (3647,320 - 3647,500) = - 0,1 80 1/m 2 .  (8) 
It is obvious that the small difference is caused only by the approximations in the preceding formulas 
and that therefore the topographical mass-differences A q vanish when summarized over the whole 
earth. In fact, because of 6) and 7a) ( 2673 ,828)' 
A q0 = 2367,880 p - 2674,920 + 1 ,0003947 p - 2367 + p 

= - 0,054 p - 0,037 -- o  (9a 

and we see that Aq0 = 0 must always hold almost independently of p. Hence the sial-density mus 
be given. 

The column of the real earth corresponding to the value L0 is "equivalent" to a column of the 
normal spheroid provided both contain equal masses. According to 3) and because of (p _:_ 1 ,028) = 



1 ,642 from ( 4,734 + h0) q0 = 3647,320 + 1 ,642 h0 1 + 
R 

= 0 
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(9b) 

results easily h0 = - 2220,390 m. Due to the consideration of the convergency of the radii the absolute 
value is somewhat smaller than the approximation h0 = 2220,500 m resulting from 7a). Namely, 
because of its larger cross-section the water stratum of the depth 234 m, removed from above the geoid, 
has to supplement to crust-density at the basis a water stratum of the slightly greater depth of 146,61 0 m .  

I n  the hitherto non-isostatic case the removal o f  the topography or the regularization b y  mass
displacements in direction from the continents to the oceans, runs principally in a horizontal way and in 
the level of the mean lithosphere. But since the real earth-body, too, is close to a hydrostatic equilibrium 
configuration, the continental excess pressure on the one hand, and the pressure deficit of the deep 
oceans on the other hand require negative, resp. positive compensating masses as resulting e. g. from 
Airy's hypothesis of floating equilibrium. According to this pyhothesis the continental shells with 
their "roots" immerse the deeper into the ultra-sima below the idealized Moho-surface the 
greater their magnitude, while below the deeper oceans ultra-sima ascends into the "anti-root" of the 
crust. The basis of the mightiest sial-shell may be considered to represent the compensating surface 
of pressure. In the continental case and for oceans of depth t < 2220 m the density discontinuity f:l. p at the surface of the mantle characterizes the negative compensating masses, for oceans of depth 
t > 2220 m the positive ones. If T > 0 stands for the magnitude of the root and T < 0 for that of the 
anti-root, the topographic mass-differences !:l.q1 are combined with the isostatic mass-differences 

- M' 

f:l. q; = - f:l. p J (1 + 2 z/ R) dz = - f:l. p . r( 1 -

2 M� + T) , 
- (M' + T) 

( 10) 

with M' = (M - 2,367) km being the depth of the idealized Moho-surface below our level of reference. 
Because of the opposite sign of the compensation in every vertical column the sum of topography 

and isostatic compensation !:l.q  = (f:l.q1 + !:l.q;) is considerably smaller in its absolute value than the 
purely topographical mass-difference !:l.q1, but does not vanish. However, for the conservation of the 
total mass the sum of the isostatic compensating masses over the whole earth as well as the sum of the 
topographic mass-differences must vanish. We may interpret this fact in that way that parts of the 
ultra-simatic masses of quantity 1 0) are displaced in the roots and reappear as additional (positive) 
masses in the anti-roots. Then the regularization produces a horizontal flux of ultra-simatic masses in  
opposite direction, i .  e .  from the oceans to the continents. Hence, we only have to  deal with horizontal 
mass-displacements, namely with those of topographic masses along the mean lithosphere and those ol 
ultra-simatic masses along the mean Moho-surface in opposite direction. The usual, vertical inter
pretation according to the floating equilibrium is not much more evident. For it is not true that the root 
of a mountain is that deeply immersed in the ultra-sima that the weight of the displaced ultra-sima 
equals the total weight of column. On the contrary, the vertical column rests upon the idealized surface 
of the mantle, as in the normal spheroid, and only the positive topographic masses produce an excess 
pressure which is compensated by the displacement of parts of the ultra-sima in the root. Because of 
the downward gravity increase not all of the topographic mass is needed for replacing the density 
deficit in the root. Thus the purely "local" isostasy, i. e. only a vertical displacement of masses, is 
insufficient. Mass-compensation and pressure-compensation in  a vertical way only are not compatible, 
and again the vertical mass-displacements are accompanied by horizontal displacements in direction 
from the continents to the oceans. Actually, for greater ocean depths the mass-surplusses in the anti
root would have to be used for replacing the mass-deficit of the oceans of a depth less than 2220 m 
which, however, reduces the pressure and reestablishment of equilibrium requires additional masses. 
True, the integrals of !:l.qt. !:l.q; and !:l.q  vanish when extended over the whole surface. But the sum of 
the negative (positive) compensating masses is smaller than the sum of the positive (negative) topo
graphic masses. 

The magnitudes of roots and anti-roots are determined by rigorous pressure equations. To !hat 
purpose we use for every column the gravity g 0 in the mean lithosphere as comparative value, and thus 
have to determine the gravity in the centers of Bouguer-plates of the densities 1 ,028, (p - 1 ,028) and 

3 
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p in various combinations. These centers have the heights /with respect to the reference level and the 
free-air reduction is 2g0f/ R. The reduction for the plate of density .& and thickness d reads in Helmert's 
form : 3& g0/2pm R. 

We investigate the first continental case h < 234 m. The pressure equatiou reads obviously 

- 1 ,028 (234 - h) g 1  + (p - 1 ,028) (2367 + h) g2 = !:l. p Tg3 . 

The center of the missing water layer l ies by /1 = 2367 + (234 + h)/2 above the reference level, and 
Prey's reduction gives with sufficient approximation (p/pm ,._.,, I /2) 

gl  = go 1 - · 
( 2,367 + 0,468 - hkm) 

2 R  

The center of the positive topography is by fz = (2367 + h)/2 above the reference level and the effect 
of this plate (d = 2/z) of density p vanishes in its center, so that 

gz = go 1 - . 
( 2,367 + hkm) 

4 R  

For the center of the root h = M' + T/2. In consideration of other neglections we need not worry 
about the density difference of sial and sima ; for sial p/pm = 0,4835 and for sima 0,5 1 98 so that we are 
permitted to use the mean value 0,5 .  Thus 

and the pressure equation reads : 

( (2 M '  + T)km) 
g3 = go 1 + -----

4 R  

( 2 835 - h) 
- (1 ,028) (234 - h) 1 - ' 

2 R  
(p - 1 ,028) (2367 + h) . 

. 1 - = !:l. p T l +  . ( 2,367 + h) ( 2 M' + T) 
4 R  4 R  

For the second continental case (h > 234 m) results in analogy : ( 2,601) ( 4,968 + h) ( 2 M' + T) 
(p - 1 ,028) 2601 1 -

4 R  
+ p (h - 234) 1 -

4 R  
= !:l. p T  1 +  

4 R  
· 

( 1 1 )  

( 1 2) 

Both equations 1 1 ) and 1 2) coincide for h = 234 m,  as it should be. Yet they are not identical. On the 
contrary, the difference 1 1 ) - 12) = + 3 . 1 ,028 (234 - h)2/4 R, and the maximum amount for h =0 i s  
0,0066 t/m2. Neglecting this small difference, 1 2) may be considered the general pressure equation of  the 
continental case. We transcribe it into the form : ( 4 734 + h) ( 2 M' + T) 

p h  1 - ' 
4 R  

+ (2366,780 p - 2673,555) = T 1 + 
4 R  

. ' 1 3 1  

Now we turn our attention to the oceanic pressure equation, and start with the case t < 2367 m.  
Again using p = Pm/2 = 2, 761  in the correction terms, we find : ( 4,968 3 2,367 - t 3 1 ,028 t ) 

- 1 ,028 . 234 1 - R + Z R 
+ z- 2,761 R + (p ·- 1 ,028) . 

. (2367 - 1) 
(

1 -
2

•
3:7

R
- ') � t. p r(1 + 

2�; T) . 

Simple transformation gives 

- (1 ,028) t 1 - ' + (2366,780 p - 2673,548) + 226,48 1 - = !:l. p  T 1 + . ( 4 734 - t) t ( 2 M' + T) 
4 R  R 4 R  

If we bring the first continental pressure equation 1 1 ) into the analogous form 

(14) 

( 14a) 



p h 1 - ' + (2366, 780 p - 2673,548) - 360,828 - + ( 4 734 + h) h 
4 R  R 

+ l ,028 h - = !l. p T  1 + , 
3 h  ( 2 M' + T) 
4 R  4 R  

(l la) 

both the last equations are identical for h = t =0, as it should be. If we further suppress in 1 l a) the sum 
of the two last terms, since their maximum value for h = 234 m only amounts to 0,020 t/m2, and 
similarly the last term of the left-hand member of 14a), which for t = 2220 m only amounts to 
0,079 t/m2, then 14a) also agrees sufficiently with 1 3) when, according to 5), the fictitious lithosphere 

L is introduced and t is substituted by - h :  

- ( 4 734 + h) ( 2 M' + T) 
p L 1 - ' 

4 R 
+ (2366, 780 p - 2673,552) = !l. p T 1 + 

4 R 
. (15) 

In this equation the continental and the first oceanic case are comprised namely for all h > -
- 2220 m. For equation 14a) is exactly valid only as long as a root exists, but which vanishes for a 
particular h0• With p = 2,67 we find ho from 

- ( 4,734 + h0) 
2,67 L0 1 -

4 R  
+ 3645,751 = 0 , ( 16) 

which together with 7a) gives Lo = - 1 365,585 m and h0 = - 2220,530 m. These values are almost 

identical with those of 7). An exact identity is impossible; because previoulsy L0 was derived from the 
assumption of an approximate mass-equality under neglection of the convergency of the spherical radii, 
but now from the requirement of pressure-equality. The transfer of the water-masses from above the 
geoid to the lithosphere produces an increase in pressure which can only be compensated by a dimin
ution of mass, i. e. by a greater ocean depth. Correspondingly the ocean depths of the equivalent 
columns must turn out differentiy. Above we found from 9b) with exact mass-equality h0= - 2220,390 m, 
from 7) with approximate mass-equality h0 = - 2220,500 m, and now with pressure equality 

h0 = - 2220,530 m. Apart from this, the fact that L0 is connected with T=O proves that the isostatic 
mass as well as the topographic mass vanish when summed up over the whole earth, as already has 
been stated above. In that way the simultaneous conservation of mass and pressure is obtained, a result 
hitherto impossible in the isostatic models with local and even with regional isostasy. 

As a consequence of the new definition of the topography not the column h =0, but the normal 

spheroid itself or the equivalent column L0 serves as a comparative column. Hence, for the ocean depth 
of 2221 � t < 2367 m the roots are already substituted by anti-roots with homogeneously distributed 
additional mass of density !l.p. The gravity value g 0 of the lithosphere contains the effect of such a plate 
of magnitude T' in form of the positive quantity 3 !l.p T'g0 : 2pm R. while the effect vanishes at the 
center of the anti-root by reasons of symmetry. Thus the value 

T' 
T'. 0,271 65 !l. p -g0 

R (17) 

is to be subtracted. But since the maximum mass at the lithosphere which is to be compensated, 
amounts only 

(p - 1 ,028) (2367 - 2221 )  = 240 t/m2 ,  

the magnitude of the anti-root is approximately T' = 240/!l.p, i .  e. for !l.p = 0,5 only 480 m so that 
1 7) renders 0,0049 t/m2 which value obviously may be neglected. 

In the second oceanic case (t > 2367 m) the following applies : 

- 1 ,028 . 234 1 - -- + - -- -- - (p - 1 ,028) (t - 2367) . ( 4,968 3 1 ,028 2,367) 
R 2 2,761 R 

. (l t - 2,367 _ � 1 ,028 t - 2,367) 
= 

_ !l. T' (l 2 M' - T' _ � � T') · + 
R 4 2,761 R 

p + 
' 4 R 4 2,761 R 

( 18) 



36 

For t = 2367 m both the equations 1 4) and 1 8) agree ; their left-hand and right-hand members are 
equal, if in 1 4) the neglected term 1 7) is considered . But despite continous transition both the ex
pressions 14a) and ( 4,734 - t) 

- (p - 1 ,028) t 1 - + (2366,366 p - 2673,039) + 
\ 4 R  

(1 8a) 
I 
- (2889,499 p - 2970,405 - 0,75 p t + 0,771 t) = 
R 

- � p T  1 +  - - -- -I ( 2 M' - T' 3 � p T') 
4 R  4 2,76 1 R 

are not identical . Strictly spoken, we have to distinguish four cases, namely the continental case 
(h > 0), the first oceanic case with a root (0 < t < 2221 m) and an anti-root (2221 < t < 2367 m); and 
:finally the second oceanic case (t > 2367 m). The third case needs not to be separately dealt with 
because of its trifling deviation. 

At first we may analyse the case of the root (h > - 2220,5 m) uniformly. If we substract the 
pressure equation 1 5) reduced to zero from the total mass equation, i. e. from the sum of 6) and 10), we 
get 

- 5 4, 734 + h 5 2 M' + T 
� q = L - ( 1 , lOO p - 1 ,368) + - � p T  . 

4 R 4 R 
( 19) 

Expressing L and T in km and introducing, for the purpose of eliminating �p T and T, the first 
approximation of 1 5) which means a slight loss in accuracy 

we obtain 
� p T = p L  + (2,36678 p - 2,67355) = p L  + B ,  ( 1 5a) 

5000 
� q  = - [p L  (2 M + h + 2 B/� p) + (p L)2/� p + (C + 2 M' B + B2/� p)] , (20) 

4 R  

where M is the mean depth of the Moho-surface, M' = (M - 2,367) the mean thickness of the solid 
crust and C is an abbreviation for 

4 R  
C = 

5000 
( l , l OO p - 1 ,368) = 5,6044 p - 6,9699 . (20a) 

The third term of 20) represents the mass-increment of the column for h = L = 0  with respect to the 
normal spheroid. With the assumption of p = 2,67, �P = 0,5 and M' = 30,6 km this increment results 
from 20) to � q = 50,579 t/m2, while the more rigorous calculation with 1 9) and 1 5) gives : � q =  
= 50,434 t/m2. The error of the approximation thus amounts to 0, 145 t/m2 or 0,29 %. 

But now we have to distinguish the continental and the first oceanic case. In the continental case 

h = L and 20) proceeds to 

5000 
� q  = 

4 R  
[p L (2 M + 2 B/� p) + p L2 ( 1  + p/� p) + (C + 2 Af' B + B2/� p)] , (21 a) 

while in the oceanic case according to the second equation 5) with h = - t and p = 2,67 holds : 

h = 1 ,626066 L ;  hence 20) reads 

5000 - -
� q  = - [p L (2 M + 2 B/� p) + p L2 ( 1 ,626066 + p/� p) + (C + 2 M' B + B2/� p)] . (2 1b) 

4 R  

Thus we have to deal with two parabolas � q  = F(L), which merge continuously with a common 

tangent at point L =0. 
In the second oceanic case we have to subtract the pressure-equation 1 8a), reduced to zero, from 

the mass-equation. At first we transform the pressure-equation with T' = - T to 

p L 1 - ' + (2366,366 p - 2673,039) - - (4744,557 + 
- ( 4 734+h ) h 

4 R  R 

+ l ,23 1 5 h) - �pT 1 + + 0,271 65 � p - = 0 .  
( 2 M' + T T) 

4 R  R 

(1 8b) 



37 

There we have substituted - t by h and have introduced p = 2,67 into the small correction terms.  
In analogy to 2 1  b) we find the mass difference by subtraction of equation J 8b) from the sum of 6) and 
10) when using the first approximation of 1 8b) 

with : 

tl q = -- p L 2M + 2 B' / tl p + 0,43464 B' + 
' 

+ p L2 + 
5000 [ - ( 3 79565 ) - ( p 

4 R p - 1 ,028 p - 1 ,028 

+ - + 0,21 732 p + 
' 

+ (C' + 2 M' B' + B'2/tl p  + 0,21 732 B'2) 
p 0 98520 p ) ] tl p (p - 1 ,028)2 

B' = 2,36637 p - 2,67304 ; 
4 R  

C' = - ( 1 ,5 1 4  p - 1 ,881 )  = 7,71 373 p - 9,58357. 
5000 

(22) 

(22a) 

The oceanic parabola of the first case with anti-root, not expressively shown here, merges of course 
with 22) for h = - 2,367 km ; this also applies to 21  b) and 22). When neglecting the very small differ
ence (B' - B), we get � (tl q) = 0,085 t/m2 which almost entirely is caused by the neglections committed 
in the derivation of 21 b). 

p, tlp and M may be considered the free parameters of the problem. The mean sial-density 
p = 2,67 is the most secure value. That is why p stands only in the principal terms of the preceding 
developments, while for the numerical calculation of the additional terms the value 2,67 or even the 
mean crust-density Pm/2 = 2,7609 was used, as with the gravity values and in 1 7). In fact, for the 
regularization the horizontal mass-flux of the topography should be calculated with the sial-density, 
while for the counter-running flux of the isostatic compensation the density difference tlp between 
mantle and sima, being about tlp--(3,32 - 2,87) should be used almost exclusively. Only above the 
Conrad-discontinuity, i. e. in very great ocean depths the density difference mantle - sial is in 
question, too. But the Conrad-discontinuity is not at  all strongly marked over the whole earth. 
Further, for the most interesting case of maximum depth of the ocean, the anti-root rises far into the 
sial so that we better use the mean density of crust in this case : tlp ,_, (3 ,32 -2,76). 

The mass-difference is a minimum at the vertex of the second oceanic parabola, for which by 
differentiation of 22) under consideration of 5) easily the ocean depth t results : 

M + 1 ,68357 + 3,645 1 6/tl p 
t = km . v 

1 ,73344 + 1 ,642/tl p 

By computing the pertinent magnitude T' v of the anti-root from the principal terms of 1 8b) 

T'v = + 1 ,642 tv - 3,6452 1 6 , 

(23) 

(1 8c) 

we finally obtain the remaining magnitude of the crust Cv = (M - Iv - T' v). The quantities Iv, T' v and 
Cv may be tabulated for several equidistant values for the mean depth of the Moho-surface and for the 
density discontinuity tlp : 

M 29 3 1  3 3  3 5  3 7  km 

0,4 6,82 7,16 7,50 7,84 8,19 
1 8,87 20,28 21,68 23,09 24,50 

3,32 3,57 3,82 4,07 4,32 

0,5 7,57 7,97 8,37 8,76 9,16 
17,56 18,87 20,1 8  21 ,49 22,80 T' v 

3,87 4,16 4,45 4,74 5,04 

0,6 8,22 8,67 9,12 9,57 10,01 
16,43 17,65 1 8,88 20,10 21 ,33 

4,35 4,68 5,00 5 ,33  5,66 Cv 

0,7 8 ,80 9,29 9,78 10,27 10,76 
15 ,43 1 6,58 17,73 1 8,88 20,03 
4,77 5 , 13  5 ,49 5,85 6,21 
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Simultaneously, of course, Iv  defines the maximum ocean depth, since with the ocean depth increasing 
further the mass-deficit with respect to the normal spheroid can in no way decrease. But now the crust 
does not vanish altogether for the maximum ocean depth, while in the usual definition of the topo
graphy tmax at the vertex of the oceanic parabola was connected with Cv =0. Now it becomes 
obvious that the remaining crust magnitude Cv increases with increasing M and �p. 

The greatest ocean depth known has been measured to 1 0,8 km in the Philippine Graben. With 
maximum t equation 23) renders 

M - 1 7,03758 = 1 4, 08844/� p 

and we find the following pairs of values : 

M =  33 km : 
35 
37 

� p = 0,883 
0,784 
0,706 

M =  39 km ; 
41 
43 

� p  = 0,642 
0,588 
0,543 . 

(24) 

Hence, we had either to adopt a greater depth of the Moho-surface in contrast to the seismic finding 
or a greater density discontinuity, i. e. a greater surface density of the mantle. But actually we have 
to consider that the density of the crust is not at all constant and that therefore the assumption of 
�P as well as the calculation of the magnitude of roots and anti-roots are doubtful. Besides, the 
isostasy must not be overcharged ; already the above computation of the gravity values and of the 
pressure equation shows that our formulas can only be used for columns of considerable cross-section. 
Furthermore, just for maximum ocean depth the anti-root extends almost equally into sima and sial 
so that we better use the mean �p = 0,55. But for the plausible model M = 33 km and �p = 0,55 the 
maximum ocean depth results to 8,75 km and the remaining magnitude of the crust to 4,72 km, and 
we may consider these results to be very satisfactory. 
Finally the location of the center of gravity may be analyzed. In the non-isostatic case we find the 
displacement of the center caused by the topography from the first-order terms of the harmonica! 
expansion of the lithosphere and the hydrosphere. According to 4) 

L = L - 0,38502 H ;  q = 2,67 L. 

Proceeding from the Delft-expansion we have 

and 

L1 ,o = + 1 1 57 m ; 

L\�� = + 1 029 

L��)I = + 693 

H 1 ,o = + 1 026 m ; 

H��)l = + 9 1 1 

n\s)t = + 560 

L1 ,o = + 762 m ; 

L�c{ = + 678 

L\s)t = + 477 

q 1 ,0 = 2 103 , 1  t/m2 
(c) Q1 , 1  = 1 8 1 0,9 
(s) q l , I  = 1 274,6 

( "' ) . (c) ... (s) . 
Q1 cp, A = Q 1 ,o sm cp + q 1 , 1  cos cp cos A + q 1 , 1 cos cp sm 'A . 

The displacement is directed to the maximum of q1 : 

hence 

1 4 rr 1 v (c) (s) s = - q1 , max = - R3 q 1 , max = - Q1 o2 + Q 1 1 2 + Q 1 1 2 , 
P m  3 E  Pm  ' ' ' 

s = 553,08 m .  

(25) 

(26) 

(27) 

(27a) 

The entire topography is interpreted as areal coating onto the mean Iithospere (radius R) with the 
constant part A of 6) being neglected as it obviously creates' no displacement of the center of gravity. 
The direction of the translative vector is : 

(s) (c) , tg"Av = Q1 , 1 : Q 1 , 1  = 0,7039 ; 'Av = 350 09 . 

The vector approximately points to the center of the Black Sea. 

(28) 
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However, it would be more correct to condense the continental and the oceanic topography onto the 
sphere of radius (R + 2,367 + h/2), which means an increase, respectively decrease of surface (h :; 0) 
at the ratio [ 1  + (4,734 + h)/ R] so that i n  both cases pL represents the surface density of the topogra
phy. The compensating masses 10) must be condensed onto the center of the root, resp. the anti-root, 
i. e. onto the sphere of radius [R - M' + T/2)], thus causing an surface change at the ratio of [R 
- (2 M' + T)/ R]. Hence, l'.1p always means the areal density of the compensation and we recognize by 
1 5) and l 8a) that the areal density of the compensation is less than the areal density of the topogra
phy. 1 5) and 1 8a) can be combined in  good approximation to 

- ( 2 M + T + h) ( 2 M - 4,734 + T) L1 p T = pL 1 -
4 R 

+ 3645,454 1 -
4 R 

, (29) 

where the second term, being almost constant, may be neglected. Thus, in the isostatic case the dis
placement of the center of gravity results to : 

hence 

or finally 

4 7t [ - ( 4,734 + h)3 ( S; = 
3 E 

p L i ,  max R + 
2 

- R 

7 2 M + T + h  
s; = - s .  

4 R 
(30) 

For the model M = 33 km and l'.1p = 0,55, and with 27a) and the mean values h = - 2,367 km and 
T = - 0,240/0,55 = - 0,436 km we get 

S; = 9,604 m .  (30a) 

It is obvious that with the pressure compensation always a greater displacement of the center of 
gravity results than with the mass compensation. For the pressure reduction created by the vertical 
build-up of the continents must be compensa.ed again by a horizontal flux of masses. But i n  fact, 
of course, a displacement of the center of gravity is not possible at all. Its apparent existence therefore 
can only be understood by the imperfection of the isostatic concept, i. e. according to Vening-Meinesz 
by the fact that the variation of the potential caused by the mass-transport creates deformations of the 
surfaces of equal density i n  greater depths of the plastic earth, too. Actually always a displacement 
of the center of gravity must occur with the isostatic mass-transports if we consider the earth below 
the compensating surface of pressure, i. e. below the basis of the mightiest montain root, falsely as 
being rigid. 
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New Conception of the "Equilibrium-condition" of One-parametric 
Spheroid and the Normal Spheroid of the Earth 

by Z. Zqbek, Warszawa 

Two fundamental statements of new Ledersteger's theory [ 1 ]  concerning spheroidal equilibrium 
figures, i .  e .  the rigorous unequivocalness of density-law of these figures and  the principle of destra
fication, have been mathematically demonstrated [2] by development of the Wavre's theory on 
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stratification of inhomogeneous figures of equ il ibrium. On the contrary, the promulgated hypothesis 

of "equi librium-condition" of one-parametric spheroid in form of equation � = 0 has not been 
da 

strictly proved leaving this problem still opened. Nevertheless, two. formerly mentioned statements 
provide the possibility of further researches in the matter of equi l ibrium condition. 

In classical theory of equil ibrium figures the possibil ity of examination of inhomogeneous figures 
was given by the well known Clairaut's different ial equation relat ing the flattening-function of inner 
level surfaces with the density-funct ion. The formulae of densi ty-law had to be so chosen as to facilitate 
the integration of this linear different ial equat ion of second order. In this way the Clairaut's theory 
solved the problem with assumption of a defini te density-law and omission of small quantit ies of 
flattening of second order. 

A similar role is actually played by the principle of destrafication. Superiority of this method 
consists in the fact that by carrying on destraficat ion of any examined figure with a definite density
law until a suitable inner level surface has been atta ined, one can determine the flatten ing of this figure 
with a fair degree of accuracy while tak ing into consideration the potent ial theory of outer space. 

Nevertheless, when using this method for computation of any one-parametric figure of equil ibrium 
with accuracy to the square of flattening, yet the equil ibrium cond it ion of this figure must be known 
besides the equations system of level spheroid of fourth order. 1 3  parameters appear in Helmert's 
theory of level spheroid, viz. : besides the mass M three geometric elements - equatorial semi-axis a, 
geometric flattening ex and parameter /4 ; three elements of theoretical acceleration - equatorial 
acceleration y 0, gravity flattening � and coefficient �4 ; three mass-functions - mean density 
Pm, static flattening h and mass-function o or J4 ; moreover three physical quantit ies - rotation 
velocity w, relation of centrifugal force to gravity at equator e: = w2 ajy0 or parameter € =  w2a3/ x M  
and the value o f potential U which for a normal earth's spheroid must be equal t o the geoid potential 
Wa. 

8 equations made up by Helmert to relate those 1 3 quant i t ies are presented by Ledersteger as 
follows : 

1 )  

2) 

3) 

4) 

5) 

6) 

7) 

8) 

5 1 5 5 
ex + �  = _ € - cx2 - 3 ex € + - £2 - - J4 

2 4 4 

J2 = - = 2 ex - € - 2 cx2 + 2 ex €  - - J4 
Ki 1 

( 
5 ) a2 3 4 

U = xM 
( 1 + !._ ex + !._ € - ·� cx2 + !_ ex €  - ?_ J4 ) 

a 3 3 3 3 1 2  

105 
�4 = - l l cx2 + 1 0 cx €  - - J4 8 
w2 a e: =  - 

Yo 
or € =  w2 t1 3  

= e: ( l + ex _  �- e:) 
x M  2 

7 5 35 
f4 = - cx2 - - ex € + - J 4 

2 2 8 
3 M 

Pm = 4 7t  a 3 ( 1  - ex) 

Mass-function J4 is associated with Hehnert's o by equat ion 

( 1 )  

( l a) 
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The difference between radii-vectors of spheroid and co-axial ellipsoid of revolution is  defined 
by means of Darwin's form-parameter /4 

a (/ - s) = --/4 sin2 2 cp ; 
4 

a 
hmax = - /4 · 

4 
( l b) 

where hmax presents the greatest height of spheroid above the ellipsoid of revolution and which 
appears at 450 of latitude. 

The searched equil ibrium condition of one-parametric spheroid leads in any case to elimination 
of one unknown from every equation of system (1 ). Therefore a new equation appears in a general 
form 

(2) 

which characterizes the one-parametric figures of equilibrium and, in this sense, can be called 
"equilibrium condition" of one-parametric spheroid. The unknown values of coefficients u1 , u2 and 
u3 of this equation can be determined on the basis of known elements rx, E and o for three one-para
metric equilibrium figures. To this aim the use of two boundary figures seems to be most purposely, 
that is of the homogeneous MacLaurin's ellipsoid and of the spheroid of greatest mass-concentration 
the density of which on the free surface satisfies the Poincare's barrier 

c.u2 = 2 7t k Pmin . (3) 

The third necessary equilibrium figure can be the one-parametric spheroid of the earth for which 
we have at least four empirically defined elements y 0, w, a and ]z. 

Considering in equation system ( 1 )  the equilibrium-condition of a homogeneous ellipsoid 

and assuming /4 = 0, we obtain 

w2 8 4 --- = - rx - - r:x.2 
2 7t k p 1 5  35 

4 3 
E � - rx · o = - r:x.2 

5 ' 2 
and thus equation (2) for this figure takes the shape 

3 4 1 6  
- = U t  + - U2 + - U3 . 2 5 25 

(4) 

(5) 

(6) 

Applying the method of destrafication instead, flattening-functions of inner level surfaces. of the 
earth's spheroid and of the spheroid of greatest mass-concentration can be examined providing thus 
the foundation for computation of the mass-function o of these figures. 

Adopting for density-function a general expression 

P = Pmaxf (:) , (7) 

where Pmax stands for density in the mass centre and x for the equatorial radius of inner level surface, 
and denoting by rxx the flattening of this surface, we start from the expression of mass-moment of 
fourth order of an homogeneous ellipsoid approaching the square of flattening 

1 6  
K4 M = - - 7t p a1 r:x.2 

35 

and fina lly we get the necessary formulae for an inhomogeneous figure : 

a a 

K4 M = - - 7t p - (x1 rxx2) dx = - - 1t Pmax rxx2 + - rxx x - f - x6 dx 
1 6  1· d 1 6  ;·( 2 d oc) ( x) 
35 d x  5 7 dx a 

0 0 
a 

)4 = - = - - -- - rxx2 + - · ocx x - f - x6 d x . K4 1 2  Pmax 1 ;·( 2 d rx) ( x) 
a4 5 Pm a1  7 d x a 

0 

(8) 
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Therefore we see that the knowledge of equil ibrium condition, lacking in the system of equations 
( 1 ), is necessary for computation of one-parametric spheroidal equi librium-figure of the earth and of 
the spheroid of greatest mass-concentration as wel l as for examining the flattening-function cxx of these 
figures by means of the method of destrafication. On the other hand the obtained parameters ex, e: and 
o of these figures allow to determine the coefficients of "equil ibrium-condit ion" (2) we are looking for. 
The problem can be solved by the method of successive approximations when the density-law of 
one-parametric equil ibrium figures is known. Density-law itself can be defined by examining the 
mass-distribution known from seismic observations. Yet this law should be theoretically confirmed. 

This new conception of determination of "equil ibrium-condition" and of the normal earth's 
spheroid by mak ing use of some elements of Ledersteger's theory has practically been realized and the 
formulae necessary for respective computat ions presented in a more widely treated publication [3] .  
Here we restrain ourselves to give essentials of computation only and final results. 

Tak ing the modified Levy's formula 

p � Pmax l 1 - v (:tY (9) 

as basis of investigation of density-law of the one-parametric spheroid, Ledersteger has demonstrated 
[4] that when considering various physical possibilit ies represented by exponents A and µ the solution 

( 1 0) 

yields the best approximat ion of the earth's density independently of equi librium. In consequence this 
formula has been adopted as the most probable for one-parametric figures of equilibrium and used to 
determination of "equil ibrium-condition" (2) . 

l A order to obtain the first approximations of coefficients characterizing equation (2), besides 
Maclaurin's ell ipsoid the one-parametric earth's spheroid defined by Ledersteger has been considered. 
Computation of the latter was completed by obtaining the value of function J4 from formula (8) and 
using the given values cxx. On the basis of known funct ions respective integrals were calculated by 
applying the Simpson's method of approximate integration. The obtained values are : J4 = 
= - 275 . 1 0- 8 and o = 1 203 . 1 0- s. In view of deficiency of respective data, the spheroid of greatest 
mass-concentrat ion has been replaced in the first approximation by the mass-point spheroid for which 
we have Jz = J4 = 0 and e:� 2 cx. After having determined with these data the first approximation of 
coefficients u 1 ,  u2 and u3 of the "equilibrium-condi t ion" (2) and completed in this way the Helmert's 
equations system ( l ), computations have been started to infer the first approximation of one-para
metric spheroidal equi l ibrium figure of the earth as well as approximation of the spheroid of great
est mass-concentration. 

The same elements which determine the normal spheroid of the earth as equilibrium figure must 
also refer to the earth regularized in such a manner as to form an equi l ibrium figure. I t  is generally 
admitted that the disturbances of hydrostatic equilibrium occur exclusively in the earth's crust 
isostat ical ly equilibrated. Therefore, the first stage of regularizat ion of the earth must be performed in 
accordance with the theory of isostasy. The equatorial acceleration Yo accords with this theory. The 
effect of regularization upon the principal moment of inertia .b.is C and upon the statical flattening 
.b.is Jz has also been examined. Taking into consideration the theory of Airy-Heiskanen and 
Prey's development for the height or ' lithosphere and deepness of hydrosphere, the values .b.is C = 
0,0604 . 1 Q40g em2 and .b.is Jz = 37 . I o- 8 have been obtained . The effect of terms of zero degree of 
Prey's development has been omitt0d. The earth regularized in this way would possess a homogeneous 
all over the world extending ocean 2456 m deep and protrudi ng to 225 m above the geoid as well 
as a homogeneous rocky layer 1 7,8 m thick. Since the inertia moment C becomes increased, it can 
be reduced to its former value by condensing the water mass of world ocean in the manner as to make 
its upper surface coincide with the spheroid surface corresponding to the geoid and by concentrating 
gradual ly masses in the crust, which thus becomes one-parametric. It has been calculated that the 
static flattening is but slightly affected by .b.' J 2 = - 0, l . I o- s owing to this operation. 

Finally the following values determining the earth's spheroid have been adopted : 
y0 = 978,037 gal ; c.u2 = 5,3 1 7496 . 1 0- 9 sec- 2 ; a = 6378 1 55 m ;  J2 = 108305 . 10- s .  ( 1 1 )  
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I n  consequence of the error of Potsdam system y0 value has been adopted 1 2  mgal less than in the 
international formula in accordance with Fischer's 1 96 1  determination [5]. Jz has been defined as 
mean value derived from observations of artificial satellites carried out by King-Hele, Cook and Rees 
in 1 963 [6], Kozai in 1 963 and 1 964 [7] [8], with correction due to regularization of the earth. 

After introduction of data (1 1 ), Helmert's equations system completed by the first approximation 
of equation (2) has been solved. Quantities characterizing the density-law ( 1 0) have also been calcu
lated. Then, applying the principle of destrafication, flattening of inner level surfaces of this figure 
spaced in deepness at ten 0, 1 a. intervals have been computed. Hence, by using the formula (8), values 

J4 -:- - 276 . 10- s ; o = 1 208 . 1 0- s  · (1 l a) 
have been obtained. 

Considering these values and data (1 1 ), second approximation of the earth's spheroid by means 
of Helmert's equations has been determined and the following obtained : 

M = 5976,072 . 1 024 g ;  a. =  3353 13  . 1 0- s ; e: = 346 1 39 . 10- s ( l l b) 

As  boundary figure necessary to determination of the coefficients of "equilibrium-condition" (2) 
the spheroid of greatest mass-concentration of the series of the figures (belonging to one-parametric 
earth spheroid) with constant mass, revolution velocity and equator radius (M, w, a), has been adopted. 
Characteristic data of this spheroid are 

M = 5976,072 . 1024 g ;  w2 = 5,3 17496 . 1 0 - 9  sec- 2 ; a =  6378 1 55 m ;  

w2 a3 
E: = -- = 3461 39 . 1 0- s ; 

x M  

w2 
Pmin = -- = 0,0 1 269 . 

2 n- x 
( 1 2) 

After this figure with first approx imation of "equilibrium-condition" (2) has been computed and 
the flattening-functions of inner level surfaces examined, the following values were obtained by means 
of formula (8) 

J 4 = - 48 . 1 o- 8 ; 0 = 209 . 1 0- 8 . ( 1 2a) 

These data enable us to obtain the second approximation of flattening for spheroid ( 1 2) 

a. =  235964 . 10- s ( 1 2b) 

The elements of one-parametric earth's spheroid ( l l a) and ( l l b) as well as of the spheroid of 
greatest mass-concentration ( 1 2a) and ( 1 2b), inferred by the aid of destrafication principle, yield the 
second approximation of coefficients of equilibrium-condit ion (2). Subsequently, the latter equation 
for three figures of equilibrium can be written in the fol lowing form : 

3 
for Mac Laurin's ellipsoid 

2 
- UJ T  

4 
- u2 + 
5 

for normal earth's spheroid 1 208 = 1 1 24,3 u1 + 1 1 60,6 u2 + 1 1 98,l u3 , 

for spheroid of greatest 
209 = 556,8 U J  + 8 1 6,8 U2 + 1 1 98, J  U3 . mass-concentration 

Solving the system of these three equations we obtain 

U1 = 3 ,242 ; U2 = - 2,446 ; U3 = 0,335 , 

while we get as second approximation for "equilibrium-condition" of one-parametric spheroid 

8 

o = 3,242 a.2 - 2,446 a. E: + 0,335 e;2 

14 = - - o =  - 0,74 t a.2 + 0,559 rx e: - o,o77 e:2 
35 

Including this condition the third equation of Helmert's system ( I )  takes the form 

3 }z = 2 a. - E: - 1 ,074 rt.2 - 1 ,301 rx E: + 0,096 e;2 

(1 3) 

( 14) 

Similarity by means of (1 3) the unknown J4 can be eliminated from the remaining equations of 
system ( 1 ). 

Applying the principle of destrafication and considering the second approximation of "equilibrium
condition", computation of the flattening of inner level surfaces of the normal earth's spheroid and of 
the spheroid of greatest mass-concentration has been repeated. This provided the foundation to the 
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renewed calculation of functions J4 of these figures. The obtained results are presented in the Table 1 .  

Table 1 

x I -

a I 
I I 

1 I 0,9 
0,8 
0,7 
0,6 
0,5 
0,4 
0,3 
0,2 
0,1 
0 

]4 
0 

Normal spheroid of the earth 
---- - - -�-

p r:J.x 

2,6179 33531 3  1 0-8 
3,7807 307984 
5,0017 285201 
6,2208 266456 
7,3848 251237 
8,4476 239088 
9,3703 229640 

10, 1210  222578 
10,6749 2 1 7696 
1 1 ,0144 I 214825 
1 1 , 1287 2 13874 

- 276 . 10 - 8 
1208 . 10 - 8 

I da. 

I x -

dx 

2977 10- 6 
2249 
1654 
1 182 

818  
537 
329 

I 1 79 

I 77 

I 19 
0 

Spheroid of greatest mass-concentration 
-- --- - -- -

d a.  
p r:J.x -

d x  

0,0127 235964 . 10-8  3860 . 10- 6 
1 ,0153 202294 261 4  
3,2701 1 7621 3  1861 
6,3243 1 5 5422 1 292 
9,7789 1 39091 860 

13 ,2876 1 26543 543 
16,5577 1 17 1 52 320 
1 9,3496 1 10375 1 69 
2 1,4769 105804 7 1  
22,8065 1 03 1 70 17 
23,2586 102309 0 

- 48 . 10 - 8  
209 . 10 - 8  

Identity of J4 values for the normal earth's spheroid and the spheroid of greatest mass-concentra
tion with J4 as obtained in first approximation ( l l a) and (1 2a) shows that the approximation for 
equilibrium-condition ( 1 3) is final and computation by the method of successive approximations came 
to an end. 

The inferred "equilibrium-condition" ( 1 3) of one-parametric spheroid is connected with the 
density-law ( 10). Yet, since formula ( 10) is not strictly proved, the flattening-function of inner level 
surfaces and mass-function J4 of normal earth's spheroid have been examined for other power expo
nents of modified Levy's law (9), namely for (:A = 2, µ = 3) (:A = 2, µ = 1 )  and (:A = 4, µ = 2). Although 
Ledersteger expels the possibility of existence of Roche's distribution (:A = 2 ,  µ = 1 ), this case has also 
been examined in order to get the most just representation of the effect of density variation upon the 
quantities being examined. 

The obtained results are given in the Table 2. 

Table 2 Normal spheroid of the earth 

x A =  2, µ = 3 A =  2, µ = 1 l. = 4, µ = 2 
-

a p I r:J.x . 108 p I r:J.x . 108 p I r:J.x . 1 08 

1 2,7192 335312 2,2431  I 3353 1 5  1 ,891 9  335317 
I 

0,9 3,7845 307461 3 ,7978 I 309690 3,7290 3 1 1798 
0,8 4,9464 283984 5 , 1889 288979 5,4256 294563 

I 

0,7 6,1507 264455 6,41 63 272444 6,7763 282700 
0,6 7,3405 248440 7,4801 259347 7,7376 27501 1 
0,5 8,4596 235557 8,3802 249093 8,3524 270372 
0,4 9,4556 225470 9 ,1 167 241225 8,7006 267836 
0,3 10,2821 2 1 7895 9,6895 2354 1 1  8,8681 266634 
0,2 10,901 1 21 2647 10,0986 231407 8,9308 266194 
0,1 1 1 ,2841 209552 10,3441 229068 8,9453 266085 
0 1 1 ,4 138 208529 10,4259 228298 8,9462 266079 

]4 I - 277 . 10- 8 I - 213 . 10-s  I - 210 . 10- s 
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We notice the relatively insignificant variation of mass-function J4. Strictly speaking, the most 
digressing result for ().. = 4, µ = 2) cannot be taken into consideration because of striking deviation 
of this density distribution from the ideas generally admitted. The best approximation of the earth 
density distribution presents the one-parametric earth's spheroid with density-law ( 10) as shown by 
Ledersteger. Since the internal earth's constitution is not one-parametric, the formula ( 10) cannot 
strictly be referred to every one-parametric equilibrium figure and hence supposition can be made that 
this formula approximates only the density distribution proper to equilibrium figures. Therefore, 
equation ( 1 3) derived by means of distribution formula ( 10) can also be considered as approximating 
only the "equilibrium-condition" of one-parametric spheroid. Nevertheless, taking into consideration 
the results presented in Table 2 one can estimate that the error of approximation of function J4 does 
not excel I %. In  the point of view of geodesy such an approximation is amply sufficient. 

Ledersteger's hypothesis defining "equilibrium-condition" in the form of equation 
d/4 = 0 is not 
eh 

confirmed by "equilibrium-condition" ( 1 3) deduced on the basis of destrafication principle. Using 
equation ( 1 3) i t  is easy to show that on the free surface of inhomogeneous equilibrium figure the above 
mentioned derivative is less than zero and vanishes in the case of homogeneous ellipsoid only. 
Equation ( 1 3) provides the possibility for a definitive explanation of this problem so essential in the 
Ledersteger's theory of spheroidal equilibrium figures. 

Coming to an end we present all elements of the normal earth's spheroid which result from 
solution of  the system of Helmert's equations ( 1 )  with "equilibrium-condition" ( 1 3) added and starting 
data ( 1 1 )  considered : 

M = 5976,072 . 1024 g ; 

/4 = - 1 74 . I O- s ;  

a =  6,378 1 55 .  lOB cm ; a =  3353 1 3  . 10- s 

a hmax = -/4 = - 278 cm ; a- I = 298,23 
4 

Yo = 978,037 gal ; � = 530262 . 10- s ; �4 = 2863 . 10- s 

c.u2 = 5,3 1 7496 . 10- 9 sec- 2 ; i;; = 346774 . 1 0- s ; e: = 346 1 39 .  1 0- s 

J2 = 108305 . 10- s ; K2 = 44059,4 . 10 1 o cm2 ; a = 1 208 . 10- s 

Pm = 5,5 1 697 ; W0 = 626372,4 . 1 06 cm2 sec- 2 ; J4 = - 276 . 10- 8 

C - A =  K2 M = 263,302 . 1040 g cm2 . ( 15) 

When comparing the theoretically inferred mass-function J4 with its values empirically obtained 
by observation of artificial satellites, one can affirm a general accordance of determinations. Yet a 
noticeable divergence among empirical determinations of J4 speaks in  favour of theoretical result. 

Values ( 1 5) enable us to form a formula for theoretical gravity on the surface of normal spheroid 
of the earth 

y = 978,037 ( 1  + 0,0053026 sin2 qi - 0,0000072 sin2 2 qi) gal ( 1 6) 

First we have to confirm the truth of Helmert's formula ( 1 901), except for yo value. A pleasing 
1 

accordance is shown by coefficient - �4 with its theoretical value as obtained by Wiechert and Darwin. 
4 

Comparison of the formula of normal gravity with data empirically obtained in 1 962 by Uotila [9] 
appears also to be favourable. 
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Critical Remarks Concerning the Preceding Article 

by K. Ledersteger, Vienna 

As Mr. Zabek was prevented from attending the Symposium, and as the preceding article arrived 
only shortly prior to the Symposium, I was unable to report on it at once. Quite naturally I feel 
obliged to present it subsequently, but also I feel entitled to give my critical point of view, the more 
so as Mr. Z�bek has already published his article in more extensive form in Polish [ 1 ] . 

We proceed at best from Helmert's fourth-order equipotential spheroid of revolution, which is 
uniquely determined, as is well known, if four suitably chosen data are given besides the terrestrial 
mass E. In second-order approximation € =  w2 a3/k2 E = xe and 3 ]z  = (2 - x) e, and in fourth-order 
approximation the first form parameter /4 = - x e2 and the mass function J4 = - � e2. If e. g. 
(E, a, e) are kept fixed, then the rotational velocity w is determined by x and every point of the (x, x)
diagram [2, Figure on p. 66] represents a solution of the Helmert-system. However, if only E is given, 
every point of the diagram represents 002 equipotential spheroids of Helmert. If an equipotential 
spheroid S(a, e,f4,J6, • • • ) shall be free surface of an equilibrium figure, then in addition the equilibrium 
condition must be known in some form, e. g. w = w (E, S). Because, every mass configuration which 
is representing a possible equilibrium figure, and which we therefore denote in short an equilibrium 
configuration, becomes an equilibrium figure only for a particular rotational velocity. The details 
become most clear, if we proceed from the elements of Stokes (E, w, S). From (E, w, a, e,f4 = 0) we get 
for the ellipsoids an infinite number Helmert equipotential spheroids in the x-axis (x = O), the so-called 
equipotential ellipsoids, but we obtain exact homogeneous MacLaurin-ellipsoids only if in addition 
the equilibrium condition 

4 22 
€ = - e + - e2 

5 35 
( 1 )  

i s  given, while all other solutions can never represent equilibrium figures but can only b e  approximately 
thought of as equipotential spheroids having a physically impossible mass configuration. We also 
designate the MacLaurin-ellipsoids as "zero-parametric" equilibrium figures, because they have no 
form parameter at all .  They can already be uniquely determined in  second-order approximation. 

4 
In the (x,x)-di<agram the MacLaurin-ellipsoids are represented by the point E(x = - , x = 0) . 

5 
A strictly one-parametric surface never can be free surface of an equilibrium figure. Thus, if we 

speak of "one-parametric" equilibrium figures we understand such equilibrium figures which are 
uniquely determined already in fourth-order approximation. Hence, the k nowledge of the first form 
parameter should be sufficient, i. e. these figures are uniquely determined by (E, w, a, e,/4) or as Helmert 
equipotential spheroids, wherein w or x cannot be chosen arbitrarily but represents the equilibrium 
condition. In our diagram they are represented by a curve originating at point E, i. e. there are oo 3 one-
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parametric equilibrium figures. Accordingly they must have a density law with three constants. The 
first density constant, the mean density Pm, is given by the mass E and the volume. Thus, if in the 
definition of the figure we want to substitute the surface S(a, e,f4) by the density law, the equatorial 
axis can easily be introduced instead of Pm· Moreover, as in an equilibrium figure the density can 
never decrease toward the interior, for both the other density constants the surface density Pmin and 
the maximum density Pmax at the center of gravity may serve, which means that the density law must 
be continuous. Therefore we may state the density law conveniently in the form 

(2) 

where the continuous function / contains a suitably chosen constant v instead of Pmin· r stands for the 
running equatorial radius of the internal level surfaces : 0 � r < a. The detection of this unique density 
law could not be accomplished in a sufficient way as long as it could merely be orientated on the 
homogeneous ellipsoids and on the density distribution in the earth known only vaguely. This problem 
can be solved successfully only if the curve of the one-parametric equil ibrium figures is known. In this 
curve, beginning with the homogeneous ellipsoids, the mass concentration must increase continuously 
ti l l  in the 002 boundary figures, the one-parametric spheroids of greatest mass concentrat ion, the 
surface density reaches a minimum value. 

The region of all equilibrium figures on the right-hand side is bounded by the parabola F= j J4 j :  
: Jz2 = 1 5/7 between the points E and N which represents the external equipotenti<ils of the MacLaurin 
ellipsoids and which terminates in point N in the absolute spheroids of greatest mass concentration 
or in the 002 equipotentials of the mass point (x = 2, x. = 3/2). Besides, the level surfaces of the ellipsoids 
can be interpreted as two-parametric boundary solutions, i. e. as Wiechert-models with the mantle
density zero. Thus, it is rather plausible that the left-hand boundary l ine of the region of equilibrium 
figures also is defined in an analogously simple way, i. e. by the one-parametric equilibrium figures 
directly succeeding the ellipsoids. Now it can easily be proved that the form parameter /4 < 0 can only 
increase in its absolute value when rising above the surface of an equilibrium figure : d/4/da � 0. But 
since the form parameter itself vanishes only for the homogeneous ellipsoids, i t  is obvious to identify 
the desired left-hand boundary line with the parabola A = a  df4/d a = 0 between the points E and 
M(x = 1 ,458, x. = 3/2). This hypothesis at once is confirmed by the following facts : 

a) Point M represents boundary figures since there the mass function 16 vanishes which otherwise 
always is positive. 

b) The form parameter /6 vanishes in E as well as in M, so that it seems obvious to conclude that 
/6 = 0 in the whole curve of A =  0. But then/6 together with /4 is negative in the whole region of 
equilibrium figures. 

Should there be a density law which satisfies the homogeneous ellipsoids exactly, giving plausible 
v�lues for the mean density and for the surface density of the earth, and which above all permits to 
recognize the figures in point M uniquely as one-parametric spheroids of greatest mass-concentration, 
then not only the density law but also the hypothetical proposition A = 0 seems to be verified. After 
v arious trials the law 

(3) 

seemed to satisfy all conditions mentioned quite well .  For the ellipsoids n = Pmax.!Pm = 1 and v = O, 

and for the earth with Pm = 5,5 1 68 we found the surface density to be 2,61 8 and the maximum density 
to be 1 1 ,  1 27, which result is almost coinciding with that one of Helmert obtained by a totally different 
statement for the density law, while for a boundary figure in point M with the rotational velocity of 
the earth the corresponding results were : n = 4, 1 79, v = 0,970 and the surface density Pmin = Pmax 
( 1  - v)2 = 23,03 1 (0,03)2 = 0,020. Besides, i n  point M the constants n and v are almost unchangea, 
and 

n 
(1 -v)2 ,....., 0,0035 .  

Poincare stated, as  is well known, the following limit for the rotational velocity : 

w2 < 2 7t k2 Pm . (4) 
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According to Lichtenstein [3] it can be shown that pressure prevails in the whoJe fluid, if the more 
rigorous inequality 

c.u2 < 2 7t k2 Pmin 

holds true. Besides, Poincar6's barrier for spheroidal figures can easily be narrowed. For it is 

4 
There & between the points E and M lies within the l imits S e -S & <S 1 ,4583 e, i .  e. 

8 
- e < 0 < 0,9722 e .  
15  - -

Further, with Pmin = n Pm (1 - v)2 follows easily 

or 

O' = c.u2/2 7t k2 Pmin = 0/ n (1 - \I )2 

8 e 0,9722 e --- < O' <  . 
1 5  n (l - v)2 = = n (l - v)2 

(5) 

(4a) 

(6) 

(7) 

I n  our examples was n (1 - v)2---0,0035, thus O' ,_, 277,8 e or Q < 0,66. Anyway, there must be 
O' < 1 ,  i. e. e < n(l  - v)2 . . For the rotational velocity of the earth follows from the equation c.u2 = 
= 2 ri: k2 Pmin at once Pmin = 0,01 27. It is certain that this limit never can be reached in the one-para
metric spheroids of greatest mass-concentration. 

The fact that the density law (3) primarily is based on the spheroids of greatest mass concentration 
is of special significance. This is most clearly shown e. g. by the statement of Legendre's density 
function [2, p. 47] : 

Thus, for x = r/a = 0 results : 

and for x= 1 

1 
p = - G sin mx .  r 

Pmax = mG lim 
r =  0 

sin m x  = m G  
mx 

sin m 
Pmtn = G sin m = Pmax -- . m 

sin m 

(8) 

(9a) 

(9b) 

For the homogeneous ellipsoids Pmin = Pmax• i .  e. -- = 1 or m = 0. Generally, according to (2) 
m 

sin m x  sin m x  
P = Pmax f(x) = m G --- , hence/ (x) = --m x mx 

and in analogy to the equations (10.9) i n  [2, pp. 75 - 76] : 

I 1 

A =  _ = -- 3 f(x) x2 dx = 3 n  x2 dx 
1 - e Pmax J Jsin m x  
l - e1 Pm mx 

0 

I 1 
B = - . -- = -- 5 f(x) x4d x = 5 n x4 d x . 

(ah)2 1 - e Pmax 1· f sin m x 
a 1 - eh Pm m x  

0 0 

(10) 

( 1 1 ) 



With the new variable y = mx we get : 

or 

m 

m 

A =  - sin y .  y dy = - (sin y - y cos y) 
3 nj· 

3 n  m 
mJ mJ o 

0 

B = - sin y . yJ dy = - [(3 y2 - 6) sin y - (y3 - 6 y) cos y] 
5 nf 5 n  m 

m� ms o 
0 

n 

n 
A = - (3 m2 sin m - 3 m J  cos m) 

m s  

B = - ( 1 5  m2 sin m - 30 sin m - 5 m3 cos m + 30 m cos m) . 
ms 

Hence, we find for the one-parametric normal spheroid : 

m = 2,5 1 37 1 1 = 5 1 8490, 14" = 1 440 0 1 '  30, 14" ; 

n = 2,02 168 ; Pm = 5,5168 ; Pmax = 1 1 , 1 53 ; Pmin = 2,597, 
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( l l a) 

(l l b) 

( 12) 

i. e. almost the same results as in [2, p. 76] with the density law (3). However, for the one-parametric 
spheroid of greatest mass concentration used in  [2, p, 77] results : 

m = 3,24601 or 1 85058'57,6" 

and thus because of 
Pm = 5,5 1 1 3 , Pmax = 1 9,558 , Pmin = - 0,628 , 

i. e. already an impossible solution. Actually, m must be smaller than rc, and we could fix the limit 
at most by Pmin = w2/2 TC k2 = 0,0127. Putting m = TC  - T we find according to (9) : 

sin m = 't' ;  cos m = - 1 ; Pmin = 0,0127 = G ; Pmax = 0,0127 (TC - T) : 't' ,  ( 1 3) 
which together with the first equation ( 1 1 b) leads to 

't' = 0,038 1 /TC Pm . 

With Pm = 5,51 1 3  e. g. we get 't' = 0,00220050 or m =  3, 1 393921 5 =  1 79052'26, 1 " . 

( 14) 

Similar statements apply to the original law of Levy with A. = µ =  2. This means that i n  (3) the 
right-hand member does not represent t he density in the level surface, but the mean density of the 
mass enclosed within that equipotential. Then the individual density according to (7, lOa) in [2, p .  48] 
is, when we again put r/a = x : 

p = Pma.x ( 1 -
1

3

° 
v x 2  + � v2 x4) . 

Both the constants Pmax and v result from the equations 

1 - e 
-- = n ( 1  - 2v + v2) 
1 - ez 

(:•)' II�:. � - (i - �� v + �� v') . 

(3a) 

( 1 5) 

For the one-parametric normal spneroid we find n = 1 ,98 1 957, v = 0,289744, Pmax = 1 0,934, 

Pmin = 2,51 6, i .  e. again almost the same density distribution as according to (3). (3a) however gives 
in point M already a greater negative surface density (Pmin = - 1 ,323, Pmax = 20,5 1 3), wherefore 
statement (3) was favoured. 

4 
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If we consider the hypothesis A = 0 as sufficiently secured for the one-parametri; equilibrium 
figures, we obtain a determining equation for J4 : 

4 6 5 
J 4 = - - e2 + - e € - - €2 

5 7 1 4  ' ( 1 6) 

which may stand for an equilibrium condition. Thus we find for the one-parametric normal spheroid 
of the earth J4 = - 332 . 1 o- 8  [2, p. 85],  and that completely independent of the knovledge of the 
density law. On the other hand, the pertinent Wiechert-model with the depth of the core of 2900 km 
can be computed in fourth order approximation, and we get 14 = - 295 . 1 o- 8 [2, p. 1 1 5] .  But then it is 
clear that the 14-value of the real equilibrium figure of the earth must lie approximately in the middle 
of both values, because the density discontinuity at the core's surface amounts with :he Wiechert
model to about 8 units, with the equilibrium figure of the earth to about 4 units, and vanishes with the 
one-parametric model. Actually, in [2, p. 1 1 1 ] we found 14= - 3 1 5 . 1 0-8 in remarkable agreement with 
the equilibrium value computed by Kopal and James [4] on basis of a plausible density distribution. 
If, vice versa, we proceed from the Wiechert-model and from Kopal's 14 for the equilibrium figure of 
the earth, .then it seems very probable that independently of the hypothesis A =  0 for !he one-para
metric model of the normal spheroid must sesult : I 14 1 > 3 1 5  . 1 0- 8. As a matter of fact, at the 
transition to the continuous density law mass has to flow from the core to the mantle above to permit 
the density discontinuity to vanish ; however, this is counteracted by a further mass concentration 
in the mantle. 

With 12 and € kept fixed, Helmert's system furnishes for an external equipotential or for the free 
surface of a mass configuration independently of the equilibrium : 

4 I J 4 1 = - (3 J 2 + €) - 1 ,6 (e + e € - e2) 
5 

( 1 7) 

and we see that the absolute value of 14 decreases with increasing e :  t::.. I J4 I · - 1 ,66.e. An increase 
of e by only 30 . 1 o - 8, i. e. by a quantity of sixth order, already causes a decrease of the absolute value 
of 14 by 48 . 1 0- 8. This is shown especially clearly by the dual-layer models belonging to the data : 

E = 5976,3 1 8 . 1 024 g ;  cu2 = 5,3 1 7496 . 1 0-9, a = 6378,290 km ; 

ak = a  - 2900 km ; Ji = 1 083 1 0 . 10- B ; € = 3461 46,9 . 10- 8 
( 1 8) 

which were computed in [2, pp. 1 82 - 1 83]  - neglecting the form parameter /4 in computing the 
mass-functions - : 

e ec 
335308,0 . 1 0- 8 ;  0 PM= 4,834 ; p c =  1 0,942 ; ]4 = - 310,7 . 10- s 
3353 1 7,4 233235,4 . 1 0- 8 ; _ 4, 1 87 1 2,377 - 295,6 
3353 1 7,8 243039,9 4, 1 73 1 2,454 - 294,9 
33532 1 ,6 335321 ,6 4,0 1 6  1 3 ,270 - 288,8 

Naturally, this is connected with the variation of the density law : the greater the density of t he 
mantle, the greater I 14 I .  All these figures, but one, are not equilibrium figures ; for the Wiechert-model 
we find e = 3353 1 7,7 . 1 0- 8, 14 = - 295, 1 5  . 1 0- 8. 

For the models with contilluous density law we must search for the equilibrium solution some
where between the limits A = 0 and F = 1 5/7 without further clue and without any hypothesis : 

A =  0 : e = 335294,2 . 1 0- 8 ;  
335304,9 
3353 1 7,7 
335329,7 

F= 1 5/7 : 335345, 1 

• 

J4 = - 332,5 . 1 0- 8 
- 3 1 5,5  
- 295,2 
- 276,0 
- 25 1 ,4 

corresponds to 

the normal spheroid 
the Wiechert-model 
�bek's solution 
the equipotential of 
the homogen. ellipsoid 

In the third solution e. g., the increase of the mass of the mantle connected with the vanishing of the 
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density discontinuity !i p = 8,25 should just be compensated by the concentration in the mantle ; the 
like applies to the second solution corresponding to the normal spheroid with a small density dis
continuity (about 3 ,5) and with an already heterogeneous mantle. 

Mr. Z �bek proceeds from the idea of controlling the hypothesis A = 0 and the density law (3) by 
a direct computation of the mass function J4 accordingly to his equations (3. 1 2) [ 1 ]. He finds, in 
contrast to the above value in the parabola A =  0, the absolute value I 14 1 = 276 . 10- 8 which is smaller 
by 56,5 . 1o- 8 or by 1 7  %. The integration, of course, requires besides the density law the knowledge of 
the flattening function, but which can only be derived for the rigorous continuous density law of the 
one-parametric equilibrium figures according to the principle of peeling. If we thus consider the 
exposed discrepancy as proof for the incorrectness of the density law (3), we also are ignorant of the 
corresponding flattening function, and beyond that Z�bek's result itself becomes illusory. This fact in 
general states the difficulty of the infinite variety of models (E, w, a, J 2) which all have different 
continuous density laws with unknown flattening functions. 

The mass functions '2i of the dual-layer models can rigorously be computed from the density law. 
This certainly also applies to multi-layer (N)-models. But with the transition N-� oo the generalization 
of the formulas for the homogeneous ellipsoid can produce progressive percentual errors with 
increasing i. Both the constants Pmax and v of the density law (3), however, were only derived from 
the generalization ( 10.2 and 3) [2, p. 73] for the mass E and the moment of inertia C, whereat only the 
factors (1 - ex) occur in the integrand, which, because of their very limited variability may be repre
sented by a weighted mean and put in front of the integral sign. There, the more rigorous expressions 
of Z�bek (3 .2 - 5) [ 1 ]  are superfluous. The generalized integral for '2 merely served the purpose of 
showing that the average value e4 may be identified with the flattening eh of the homogeneous initial 
ellipsoid of the corresponding one-parametric series of figures (w, K2) = (w, C). In that way the 
determining equations ( 1 0. 1 6) [2, p. 78] for the one-parametric normal spheroid in second order 
approximation originated, which we now write in the form : 

0,9998 Pm = Pmax ( 1 - : V + � v2) 
( 19) ( 1 0  5 ) 0,8304 Pm = Pmax 1 - 7 V + 9 v2 · 

But already Z�bek's integral (3.6) for '2 leads to contradictions. For the expression (3.8a) he finds the 
value 3205 . 1 0- 6 in contrast to eh = 3266 . J0- 6, i .  e. a value too small by 1 ,9 %  or, expressed in a better 
way, by 5,4e2 which in turn causes the integral for '2 to furnish the value '2 = 1 06290 . 10- B which is 
too small by 2020 . 10- 8 = 1 ,8 e2. Hence, it is not to be wondered at that the integral (3. 1 2) for J4 shows 
an error of 56,5 . 10- 8 or 1 4,7 e3, i. e. a quantity of fifth order. As compared with equation ( 1 9) the 
i ntegrals for '2 and 14 have rapidly decreasing weights. Therefore, they must not be used with equal 
weights for the determination of the unknowns Pmax and v. This can clearly be recognized by writing 
t he last integral in the form : 

I J4 I  Pm = µ . 10- S pm = cx . 10- S pmax l - - v + - v2 . 
( 1 4  7 ) 

9 1 1  
(20) 

Besides, we have for the one-parametric normal spheroid : v = 0,5 14990 ; n =  Pmax : Pm = 
= 2,01 7 1 76 ;  e = 3353 1 3  . 10- 8 and with the already fictitious assumption ex = const = e : ex . 10- 8 = 

1 2  
=- (e2 - e3) = 384,2 . 10- s, cx n  = 775. 1 0 - 8 and I 14 I = 285. 10- 8 which value i s  already greater 

35  
than Z�bek's result . 

Thus, with regard to the deviation in '2 the discrepancy in J4 gives no permission to abandon 
the density law (3) and the hypothesis A =  0. On the contrary, the discussion in [2, § 10]  has proved 
sufficiently that the  figures with continuous density law lie in the parabola A = 0 and that in point 
M with J6 = 0 t hey have their absolute boundary. By no means, however, must the hypothesis 
A =  0 be abandoned, while at the same time maintaining the density law (3) which primarily is based 
on the boundary figures in point M. Just that is Z�bek's procedure, who defines the one-parametric 

4•  
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spheroids of greatest mass concentration only by O' = 1 ,  without being able to state a characteristic 
property which is independent of the density law. This comes up to the fact that from every point 
of the parabola A = 0 one goes downward in the corresponding vertical x = const till reaching the 
smaller absolute value of ]4 desired. Since further in M: ff ,...., 0,66, the x-value of Z�bek's spheroids 
of greatest mass-concentration is somewhat greater, namely x,...._, 1 ,4669, and they are located in 
the point (x = 1 ,467, x = 0,542), i. e. right in the middle of the region of Wiechert-models. From the 
general equation 

35 7 5 
- x + - � = - - - x 

8 2 2 

we find � = 0,0857, and further with J6 = + 11 e3 and /6 = - :Ae3 : 

B = ( - :A +  2,8875 l')) = 3,9504 - 3,02 10  x = - 0,48 12 . 

(2 1 )  

(22) 

In the (x, :A)-diagram for x = 0,542 - vide Figure in [2, p. 1 56] - the straight line 11 = 0 thus 
intersects the vertical x = 1 ,4669 in the point :A =  + 0,48 12, while according to the procedure in 
[2, pp. 1 50 - 1 52] Amin = 0,598 results. Thus :A and 11 are positive and Z�bek's spheroids of greatest 
mass concentration are not to be considered as boundary figures. 

Besides, the following arguments can be stated against Z�bek's equilibrium condition for the 
one-parametric figures : 

1 )  While it is very probable that the most simple equilibrium figures, after the ellipsoids of 
MacLaurin, represent the left-hand boundary of the region of all equilibrium figures in the (x, x)
diagram, now their curve runs entirely within the region of the Wiechert-models. The parabola 
A =  0, exclusively of point E, would lie completely outside the region of equilibrium figures. 

2) The equilibrium figures with a heterogeneous part, e. g. the three-parametric figures with 
homogeneous core and heterogeneous mantle, or vice versa, would be restricted to the incredible 
narrow region 1 5/7 � F� 2,75. 

3) Evaluating the integral for J4, especially of a heterogeneous figure, t he form parameter /4 
must not be neglected [5] .  

Finally, if we were forced to abandon the hypothesis A = 0 the question of the density law 
of one-parametric epuilibrium figures again is totally open. 
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Part II : 

The Figure of the Earth and the External Gravity Field 

Deviations of the Geoid from an Equilibrium Figure 

by Irene Fischer, Washington, D. C. 

The theoretical equilibrium figure of a fluid rotating body serves as a model for the earth when 
studying geophysical features and speculating about the forces producing these features. Since the 
choice of a model is essentially arbitrary, suggested by the focus of the study, the question is nqt that 
of being correct or incorrect, but rather that of being useful or not. Up to the time of the Vanguard 
satellite it was assumed that the earth was essentially in equilibrium and that its deviations from an 
equilibrium figure were small. Under this assumption the actual flattening of the earth would not 
be much different from a hydrostatic value. A model of the earth with the flattening and fitting other 
observable facts would then insure that unobserved facts could be predicted with only small errors. 
The Vanguard satellite changed this trend of thought. 

The hydrostatic theory of the earth implied a flattening within a small range of values around 
1 /297, but the actual value derived from satellite observations was wel l  outside that range. O'KEEFE 
[ 1 ], MARCHANT and HERTZ of the U. S. Army Map Service, were the first ones to compute this 
new value at 1 /298 .3 .  HENRIKSEN [2] computed the corresponding hydrostatic flattening at around 
1 /300, and O'KEEFE [3] interpreted the discrepancy as the failure of the hydrostatic theory concerning 
the equilibrium state of the earth. 

The discussion now turned to the choice of a useful model to suit the changed circumstances. 
LEDERSTEGER [4] points out that no theoretical equilibrium figure satisfies all observed quantities 
and he proceeds to compute various models with slightly larger than actual angular velocity . .The 
underlying philosophy refers to the lengthening of a day by at least one second on the last hundred 
thousand years and tentatively puts this model at an early date in the history of the earth. We are 
warned, however, not to take such speculation too literally, since the equatorial radius had been 
held fixed in the computations. Values derived for the flattening stay consistently around 1 /296. 
O'KEEFE [5], by contrast, insists that the proper equilibrium figure for geophysical reference should 
have a flattening of around 1 /300, corresponding to the present dynamical flattening. He refers to the 
lengthening of the day also, quoting MUNK and MAC DONALD's [6] interpretation of the observed 
greater actual bulge as a lag in the adjustment to a decelerating earth in the last ten million years. 
Thus Ledersteger's and O'Keefe's suggested reference models belong to opposite ends of a geological 
time interval. 

The present paper offers a chart of detailed astrogeodetic geoid features referred to the flattening 
of 1 /299.67 as computed by JEFFREYS [7], to see what geophysicists can infer from it. 

An equilibrium figure representing the same mass as the earth in a different distribution should 
have the same volume as a best fitting ellipsoid, for which the geoid deviations above and below 
should even out by definition. If a and f are the parameters of the latter and f H is the hydrostatic 
flattening, then the corresponding change in a for the condition of equal volume is 

� a 1 �/ 

-;; = 3 · 1 - fH 
For the FISCHER [8] ellipsoid with parameters f = 1 /298.3 and a =  6378 1 66 m the change in  a for 
f H = 1 /299.67 is a decrease by 32.7 m. 



54 

Figure 1 shows the astrogeodetic geoid - as much as we known of it at this time - on the 
Mercury Datum [8], with a tentative extension across Greenland by stellar triangulation. Figure 2 is 
referenced to the corresponding equilibrium figure with parameters/= l ;/299.67 and a =  6378 1 33 .3  m. 

It has been shown that only a homogeneous fluid can assume an ellipsoidal shape, otherwise 

there will be a slight depression in the middle latitudes. DE SITTER [9] gives the amount of this 

depression as - a. k .  sin 2 2 <p where k is estimated around . 5 (1 o- 6) independent of the mass distri

bution. While this amount reaches only 3 .2  meters at most, it gives a slight systematic increase to the 

geoidal heights, and has therefore been included in Figure 2. 
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As expected, some geoid features stand out more strongly from the hydrostatic reference figure 
(Figure 2) than from one with the actual flattening (Figure 1 ). Some features are pronounced enough 
to appear clearly in both figures, such as the Pleistocene depression around the Hudson Bay. The 
shallower Fennoscandian depression is clearer in Figure 2. Various geoid features are strongly 
correlated with the topography, following tertiary mountain ranges. Note the high along the Eurasian 
montain range, with the bridge-like Himalaya flanked by the Innerasian and Indian depressions ; 
the high in Bolivia and Colombia ; and the concentric feature around the Caribbean. Areas of volcanic 
and seismic activity seem to be correlated with geoidal extremes. There is the build-up in Japan and 
Southeast Asia towards the activity zone in West Pacific, the high in the active Turkish area, the 
buildup towards volcanic Iceland, the maxima in Central America and on the southern shore of 
Alaska and on the Aleutians, and probably more such features upon closer scrutiny. 
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A d d e n d u m : 

After presentation of her paper "Deviations of the Geoid from an Equilibrium Figure" Mrs. Fischer 
added following supplementation : 

This paper was written as a follow-up to the Prague Symposium on the Figure of the Earth,  
i n  1 964. A letter by John A. O'Keefe was read there, proposing that a reference figure with a flattening 
near 1 /300 be used for geophysical purposes (see Studia Geophysica et Geodaetica, 1 965, 2, p. 2 14). 
All I intended to do at today's meeting was to contribute a one-minute paper showing a geoid chart 
on such a reference figure - and then listen to a lively discussion between O'Keefe and Ledersteger. 
But now that O'Keefe suddenly had to cancel his trip, I will try to present his point of view. 

The discrepancy between the actual and the theoretical flattening, as derived from satellite 
analyses, should give some insight into geophysical forces that keep the earth from being in perfect 
hydrostatic equilibrium. The exaggeration of the geoid features when referred to a fluid equilibrium 
figure linked to the present rate of rotation should show more clearly where the earth has failed to 
attain equilibrium ; and then the geophysicists should come up with theorie-s of explanations. One 
such is the deceleration of t he earth's rotation ; and the earth's failure to catch up represents itself 
in the systematically negative geoid heights in the high latitudes. Known areas of seismic and volcanic 
activities would also show up in exaggerated geoid heights. 

I am sure that O'Keefe does not propose to use this theoretical flattening for geodetic purposes. 
Figure 1 shows a geodetic world datum currently used by NASA in its Mercury, Gemini, and Apollo 
programs. The question whether these or some other parameters would be a good choice for a geodetic 
reference figure has been brought up already at the General Assembly in Berkeley, in 1 963. While 
discussing that the International Ellipsoid may be obsolete, the Association of Geodesy could not 
make up its mind about a replacement at that time and left it to the astronomers, scheduled to meet 
i n  Hamburg a year later, to make up its mind for it. You will recall that a small working group with 
Cook as chairman was appointed to make proposals to the IA U committee on fundamental astro
nomical constants. The IAU was careful to point out that the values adopted at Hamburg (]z equi
valent to f = 1 /298.25 and a =  6378 1 60 ± 80 rn) were not meant to prejudice a decision by the IAG. 
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The president of the JAG, Bomford, has recently sent out a circular urging that such a decision be 
made at Luzern next fall. 

Now, O'Keefe would surely enter this discussion with proposing the actually observed flattening 
of 1 /298 .3  or thereabout for the purely geodetic purpose of representing the current state of affairs. 
The flattening of 1 /299.67 is proposed for a specific purpose, namely to assist geophysicists in their 
study of the interior forces, finding or refuting correlations with convection currents or heat flow etc. 

The 234 m of topographic layer above the geoid, which Ledersteger added to the major axis 
for the condition of equal volume with the real earth would seem to affect the computation of the 
axis for my Figure 2. But, as Ledersteger points out, one would have to reduce the deviations on that 
height level down again through these 234 m for a representation on the geoid level and such reduction 
for astrogeodetic deflections would be insignificant. Thus the topographic layer cancels out for 
practical purposes and the equal volume condition between the ellipsoids of Figures 1 and 2 still 
holds. Besides, a change in the major axis of Figure 2 would result in  a blanket correction of a I I  geoidal 
heights and thus leave the relative size of the features unchanged. 

On the Solvability of Molodensky's Integral Equation 

by Milos Pick, Prague 

The determination of the shape of the Earth from gravity data is usually reduced to the compu
tation of the disturbing potential, expressed as a potential d a single layer, located on the surface of 
the first approximation. That is such a surface whose heights above the reference-eJlipsoid are equal 
to the normal heights. An integral equation has been developed· Ly Molodensky and has been solved 
by extending it in a potential series according to a smaJI parameter. However, this solution is l imited 
to the case, when not only the slopes of the terrain but also the slope of any line connecting the fixed 
and not too distant varying point respect to the vertical are to be less than 450. 

The object of this contribution is to modify Molodensky's integral equation and to solve i t  also 
for the case when the prescribed conditions are not fulfilled. 

It is apparent that these conditions need not be fulfilled in the i mmediate sourroundings of the 
fixed point only. Therefore let us take out from the surface of the first approximation such areas in 
which the slope conditions are not fulfilled. Let the intersections of the surface and cones be the 
boundaries of these areas, where the cones are rotat ional with the top in the gravity centre of the 
Earth .  

We shall now deform the surface of the first approximation inside the area, in which the prescribed 
conditions are not fulfilled, as follows : 
a) The deformed surface will again be the Liappunoff's surface, 
b) the original and deformed surface will have a common tangential plane at the boundary, 
c) the deformed surface will fulfil the prescribed slope-condit ions, 
d) let the prescribed direct proportion exist between the tangens of slopes of the original and deformed 

surface in the central point . 
There exist infinitely many functions deforming the surface according to the given conditions. 

One of them, for example, is 

H - H = -- a - - . (H - Q) . 
- k - l ( r02)2 

a 2 a 

There are three constants in this equations : k, a, Q. 
Let us write Molodensky's integral equation 

2 7t x cos2 a0 = !::.. g + - R - d w + R2 -- d w . 
3 Jx Jx . !::.. H 
2 r r3 

(t) 

We are able to put for any point 

( l )  

(2) 
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x = x + ox ,  r -.. [r02 + f1 H2] 2 

and to write analogously to the Eq . (2). 

where 

2 Tt' x cos2 cx0 = l:!.g + - R =dw + R2 __ o w , 
- - - 3 Jx ;·x . l:!. H 

2 r r 3 

tan2 cx0 = - + - , 
- (Ci H)2 (Ci H) 

C) x c3) y 

(J) (J) 

-- C) l:!.g l:!.g = l:!.g -!- (H - H) . - . 
C) H  
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(3) 

Eq. (3) refers to the deformed surface and it can be solved using Molodensky's method. The prescribed 
accuracy i n  the vertical gradient of the anomaly is fairly small, only ± I 00 Eotvos ( ± 0,01 mgl/m) 
that is why the vertical gradient of the anomaly may be derived using e. g. N umerow's equation 

C, /1.! ,...., _I j' !:!.g - 1:!. go da .  
() H 2 Tt' r03 

Then we compute thP correction 

where 

og = - 2 Tt' x o c - - - - (H - Q) + - . - . + {( C) g C) Y ) C) g T0} H - H 

C) H  C) H C) H  y H - Q 

3 ;·-( I J 
) 1- (/1 H 11 H) + - R X --:- - = d w + R 2  X - - =- d w , 

2 • 1 r r3 r 3 
Z E 

o c = cos2 cx0 - cos2 a.0 • 

Finally we are able to compute the value oz from the following Eq. 

3 {o x  Jo x . l:!. H  2 Tt' o x  cos2 cx0 = o g + - R - d (u + R2 d w . 
2 r r3  . . 

(4) 

(5) 

The area of integration i:: will usually be small, as a rule a <  I km. Of course, it will be necessary to use 
electronic computers for solving Eqs. (3) -(5). 

R e fere n ces  

I .  Molodensky, M.  S . ,  Jeremejev, V. F. , Jurkina. M .  I . :  Metody izucenija vnesnego gravitacionnogo 
polja i figury Zemli. Trudy CNIIGAI K ,  1 3 1 ,  M. 1 960. 

Lineare Losungen des Problems vom Molodenskij 

by H. Moritz, Berlin 

Since t his paper will be published as Publ . No. 51 of the I nternational I sostatic Institute, Helsinki,  
in English : "Linear Solutions of the Geodetic Boundary Value Problem" the author prefers to give 
only a short Abstract : 

The linear (first-order) solutions of Molodensky's problem are derived in an elementary way, 
without using integral equations. The point of departure is the "gradient solution", which is obtained 
from geometric intuition. The other solut ions follow by mathem�tical transformations of the 
gradient solution. A relation to the terrain correction and the effect of first-order corrections on the 
deflections of the vertical are investigated. 
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About a System of Integral Equations for the Determination of the 
Earth Shape Regionally only by Means of Gravity Measures. 

by L. Bragard, Namur 

S u m m a r y . 

Applying the divergence theorem, a system of two Fredholm's equations admitting a 
unique solution, is obtained, which is equivalent to an analogous system previously found up. That 
system gives the distance between the points of the central part of an area of the topographical earth 
surface and the correspondent points of a reference area only in function of gravity values upon these 
areas and the one of an external level reference surface. 

For the ocean areas, the system is reduced to one Fredholm's equation, admitting a unique 
solution. 

So it is possible to obtain the earth shape by succesive regional determinations, without having 
to conserve the same external surface from one to another region. 
1 .  Let us consider the topographical earth surface S1 , an external level surface Se und the bulk e 
comprised inside the corresponding areas cre, cr1 of the surface Se, S1 and the lateral boundary of which 
is such as the gravity vector -; is tangent at each of its points (Fig. 1 )  

Applying the divergence theorem, we have, V being the earth potential, and the positive normal 
being bend outward 

where a. is the angle of the direction of g1 with the normal to the topographical surface. 
Applying besides the particular case of Green's theorem 

to the same bulk, we shall have 

hence 

(3) 

2 .  The equations ( 1 )  and (3) added up member to menber give us 

( Ve - V,) J f ge' d cre + J f <Vr - V/ ) g/ cos ix' dcr1 = 2 w2J J f c v, - V')d -r -J J f g'2 d-r 

or again 

e e 

( V, - V,) [J Jg: dcr, -f Jg' , cos •' d cr,] + J f ( V, - V')g/ cos •' dcr, � (4) 

e e 
upon the condition expressed by the relation (2) . 
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As we can write in first approximation 
V, - Ve = N1 g1 COS a. 

N1 being the distance between the surfaces cre and cr1 along the normal to S1 at P1 (Fig 2), the equation 
(4) finally will become 

(5) 

in which we can put 

V' - V, = - gm . h 
Km being the mean gravity computed along the normal h to cr1, comprised between that and an inter 
mediate level surface cr' (Fig. 3) 

The integral equation (5) is equivalent to a similar equation previously given out [ 1 ]  and calling 
in the underlying mass considered from cr1 until the origin of the coordinate system choosed inside 
the earth 
3. Let us now consider an area cr, of the level reference surface S, corresponding to cre and bounding 
a bulk e' the lateral boundary of which is such as the gravity vector y (proceeding from the reference 
mass, the potential of which is U), is tangent at each of its points (Fig. 4). 

We shall obtain likewise the integral equation 

( U, - U,) [ff y,' d o, -ff ye' cos W d cre] +ff (Ue' - U,) y/ cos W d oe =  

(6) 

owi:lg to the condition 

(2') 

[3 being the angle of the direction of le with the normal to cre at Pe. We shall have again in first 
app ·oximat ion 

Ue - U, = -- (N1 + N2) y, cos D 

whtre y, is the reference gravity at the point P, corresponding to Pe and D is the vertical deflection 
at t1e point P, as the normal to o1 at P1 (Fig. 2). 
4. The equation (6) becomes thus 
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We can put in the equation (7) 
Ue - U' = - h · Ym 

Ym being the mean gravity computed along the normal h to cre comprised between that and am 
intermediate level surface cr' (Fig. 5). 

Pig. 1 

Fig. J Fig .  If-

-, h er' 

Fiq. 5 

Fig . 6 

The integral equation (7) is equivalent to a similar equation previously given out [ 1 ] and callinES 
in the underlying mass considered from cr, until the origin of the choosed coordinate system. 
5. Solving the Fredholm's equations (5) and (7) each of which admit a unique solution, it willl 
be possible to get N1 (and hence D) and (N1 + N2) cos D, whence finally N2 distance betweern 
cr1 and the referential cr,. 

Using the same process to successive shares ot the topographical earth surface so as to cove�r 
it entirely, we shall be able to determine its shape. 

That method for determining regionally the earth shape offers the double advantage to. nee<d 
know the gravity values only relating to the considered region of the topographical earth surfac e 
�nd to be able to change the external level surface Se from one to another region. It is, indeedi, 
necessary to use whenever as intermediate such an external surface, if we will avoid to call in thte 
knowledge of the densities comprised between cr1 and cr, . 
6. For an ocean area cr0, we have cos ex = 1 and the equation ( 1 )  is simplified. Taking into accoumt 
the equation (2) and the relaiion 

it is written finally 
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(8) 

g0 being the corresponding gravity. 

7. I t  would be possible also to use the gravity gradients. Indeed, if we apply the particular cases 
of Green's formula 

- - �2 v d -r  d V  ) 
dn 

t o  the bulk e previously considered, we obtain the equations 

(9) 

( 1 0) 

Subtracting member to member from the equation (9) the equation ( 1 0), after having multiplied 
its two members by Vi, we get the equation 

which becomes for an ocean area a0 

8. The surfaces cr will be practically curved squares of large sides. To obtain values of N1 and 
(N1 + N2) relating to a given area, which are sufficiently representative, i t  will be convenient to 
compute only those which are concerning the central square the surface of which is about the ninth 
of the curved square (Fig. 6). 

9. If instead of the bulks e, e' we took the bulks E = L: e, E' = L: e', we should obtain instead 
of the equations (5) and (7), the equations 
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N1 g, cos a [ff g,' d S, 
-
ff g( cos a' dS,] +ff N1 ' g(' cos' a' J S, 

s s s e t t 

The latter are equivalent to two equations previously given out [2], owing to the additional 
conditions of mass and volume equality of the bulks bounded by the surfaces S1 and S,. But they 
need know the gravity values all over the topographical earth surface to determin.e its shape even 
regionally. 

R e fere n c e s  

[ 1 ] Bragard, L .  Methods t o  determine the shape o f  the topographical earth surface by successive 
regional determinations of this in function of regional gravity measurements or in function of 
these and regional vertical gravity gradient measurements, Uppsala, Geodetic Institute Series 
(on printing). 
[2] Bragard, L. Method to determine the shape of the topographical earth surface by means of 
gravity measurements on that surface by solving two integral equations, Studia Geophysica at 
Geodetica, Prague, t. 9, fasc. 2, 1 965, 1 1 0 - 1 1 1 .  

Analytical Integration of the Orbital Perturbations 
Caused by Gravity-Anomalies 

by K. Arnold, Potsdam 

S u m m ary 

In  former publications a solution was presented fot the computation of  pertubations of satellite 
orbits caused by mean values of gravity anomalies of 1 00 x 1 00, 1 50 x 1 50 or 200 x 200 surface 
elements. Thereby the perturbations result from numerical integrations. Because of the very great 
number of necessary integration steps, the computation expense is considerable. 

Therefore a way is ,shown for the analytical integration of orbital perturbations of terrestrial 
gravity anomalies. The disturbance potential corresponding with the mean gravity anomaly of 
one surface element is desciibed as a series of spherical harmonics. By simple substitutions it is  
possible, to transform this expression in  the same form, which G .  V. Groves or W. M. Kaula have 
found in their perturbation theory for the potential described by spherical harmonics. 

It is advantageous that in this way the existing computer programs for the computation 
of perturbations from spherical harmonics can be applied. 

Note : This summary was presented by Dr.-Ing. habil. L. Stange. The complete paper will be 
published in , ,Gerlands Beitrage zur Geophysik". 



On the Determination of the Earth 's Ellipsoid on the Basis 
of Satellite Observations 

by M. Bur§a, Prague 
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The problem of determination of the Earth's ellipsoid parameters on the basis of satellite 
observations has been solved theoretically by Albrecht Euler of about 200 years before the era 
of the artificial satellites [ l ] .  Euler's theory concernes especially the determination of the form 
of the meridian ellipse on the basis of zenith distances measurements of the Moon at its transit 
through the meridian, from the stations spaced at the meridian being investigated. 

Actually, at the time of artificial satellites, the situation is much more advantageous as at 
Euler's t imes from the point of view of accuracy of the parameters being determined, than the 
artificial bodies are nearer to the Earth. At the beginning the situation had been considered very 
optimistic, but later it had been necessary to correct this optimism. According to Izotov [2] it 
appeared that the equations being used for determining the ellipsoid parameters correspond formally 
to the classic ones, only the information source is another, namely, the origin of the absolute terms. 

Here we would like to point out a further fact being not respected before which also under
lines the pessimistic point of view : using the values of the orbital elements ca.lculated from obser
vations at satellite stations not covering (homogeneously) the whole Earth's surface, we cannot 
obtain the exactly geocentric orbit. That is why the obtained ellipsoid pararr.eters cannot be also 
exactly geocentric being only of a local significance in general. Therefore we will not obtain the 
Earth's ellipsoid replacing the Earth body as a whole. 

The absolute term in the equation for the quasi-geoid height � which can be used for the  
determination of  the ellipsoid's parameters by L �2 = min has the approximate form [3] 

where 

�o = (X2 + y2 + Z2) - a0 1 - -e2 1 - ----- - e4 ( . . . . ) - Hq , i1i [ 1 ( x2 + y2 ) ) 
2 o x2 + y2 + z2 o 

a0, e; - accepted approximate parameters of the reference ellipsoid, 

( 1 )  

X, Y, Z - coordinates of respective satellite station (M) on the Earth's surface, whereby 

X · x - 6 ' cos 8' cos (ex' - S) ! 

Y · y - 6 '  cos 8' sin (ex' - S) , 
Z · z - 6 ' sin 8' ; 

Hq - normal height of the satellite station in question, 

(2) 

x, y, z - geocentric satellite coordinates (the x axis is parallel to the plane of the Greenwich 
astronomic meridian, the z axis coincides with the rotation Earth's axis), whereby 

x = 6 [co5 u cos (n - S) - sin u sin (n - S) cos iJ , 
y = 6 [cos u sin (n - S) + sin u cos (n - S) cos i] , 
z = 6 sin u sin i ; 

6 '  - topocentric satellite distance, 
ex', 8' - topocentric equatorial satellite coordinates (right ascension, declination), 

S - Greenwich sidereal time for the observed position Sp, 
n - right ascension of the ascending node, 
i - inclination of the orbital plane, 

u - argument of declination. 

The coordinates of satel lite stations can be determined on the basis of satellite observations 
more conveniently than by eqs. (2) e. g., from equations of orbital planes of numerous satellites [4 ] 

[X + 6' cos o' cos (ex' - S)] sin (n - S) sin i - [ Y + 6' cos 8' sin (ex' - S)] . 

. cos en - S) sin i + (Z + 6 I sin o') cos i = 0 . 
(4) 
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Jn this case it is sufficient to know only two orbital elements, namely n, i. 
I n  any case we determine the satellite orbital elements on the basis of topocentric observations 

and if they ought to have an exactly geocentric character, we had to know the geocentric position 
of all used stations in advance. At present we do not know the geocentric coordinates - their 
determination is actually the basic task of geodesy, which involves also the problem of determination 
of the general Earth's ellipsoid. 
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For the present we dispose only of the coordinates in reference systems differing from the 
geocentric ones in general by the following quantities 

0 X = !:::, Xo + W Y - ljJ Z ,  

o Y = f:::, y0 - w X + E Z , 

0 Z = !:::, Zo + ljJ X - € Y , 
(5) 

where 6 x0, 6 y0, 6 z0 are coordinates ·of the centre O, (see fig. 1) of the reference ellipsoid E, in 
relation to the Earth's mass centre 0 and €, lji, w small angles defining the directions of the reference 
system axes X, Y, Z in relation to the geocentric ones x, y, z. 

The fact that the quantities o X, o Y, o Z  are not known, creates errors in the calculated elements 
n, i etc. namely on, o i  etc., being functions of the same arguments !:::, X0, !:::, y0, !:::, Z0 €, lji, W. 

As an example we have analysed a case [4, 5 ] , where the orbital elements are determined from 

dx . dy . d z  . 
one position x, y, z and the velocity components - = x, - = y, - = z. For the distorsion of 

dt dt dt 

the rectascension of the ascending node we obtained, if the components x, y, z are errorless 

. . . . 

- x sin (n - S)] - E (Z z cos (n - S) - Y [x sin (n - S) - y cos {n - S)]) -

. . . 

- ljJ (Z z sin (n - S) + X [x sin (n - S) - y cos (n - S)]) + 

+ w z
0
[Xcos (n - S) + Y sin (n - S)1} [(xy - yx)2 + 

. . . 

+ (z x - x z)2 + (y z - z y)2]- 1 cosec i ,  

(6) 



and for the distorsion of the inclination 

8 i = { 6  x0 [; cos fQ - S) cos i - y sin i] + 6 Yo [; sin i + 

+ z sin (0 - S) cos i] - 6 z0 [x cos (0 - S) + y sin (0 - S)] cos i + 
. . 

+ e: (Z [x sin i + z 5in (0 - S) cos .i] + Y [x cos (Q - S) + 
. . . 

+ y sin (Q - S)] cos i) - lfl (X [x cos (0 - S) - y sin (0 - S)] cos i -
. . . 

- Z [y sin i - z cos (Q - S) cos i]) - w ( Y  [y sin i -

- � cos (0 - S) cos i] + X [� sin i + � sin (.Q - S) cos i])} . 
. . . . . . 

. [(x y - y x)2 + (z x - x z)2 + (y z  - zy)2]- 1 . 
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(7) 

Analogically we obtained distorsions of other elements [5 ]. Distorsion of each element (N) 
can be expressed in general by the formula 

(8) 

where aN , . . .  ,f N are coefficients namely, functions of approximate (quasi-geocentric) coordinates 
of satellite as well as of velocity components, orbital elements and time. 

Given example is rather schematic but it sufficiently illustrates the fact that the determination 
of exactly geocentric elements of satel lite orbits requires the knowledge of the geodetic fundamental 
parameters D, x0, D, y0, D, z0, e:, lfl, w of those reference systems in which the position of the satellite 
stations is expressed. Actually these parameters are not known with sufficient accuracy and if 
neglected, the orbital elements should involve distorsions independent on the observation errors. 
Partially these distorsions are of a systematic character being dependent on the concrete distribution 
of satellite stations. 

Because of dis torsions 8 N of the orbital elements N the determined position of the satellite 
should be also distorsed, namely by the errors 8 x, 8 y, 8 z being the total differentials of functions (3). 
These values influence then the quantities (2) and later also ( 1 ). 

By this reason the situation concerning the determination of the general Earth's ellipsoid on 
the basis of sate1Jite observations would be very unsatisfactory, if it would not exist the real possibility 
that the satellite stations could cover the whole Earth's surface, including islands etc. This fact 
should weaken essentially the dis torsions 8 N as well as their influence on �0• Out of this - from 
the point of view of the solution of the given problem - an absolute advantage of the satellites 
is the well known possibility to determine the polar flattening of the Earth's ellipsoid on the basis 
of perturbation of 0 or of argument of perigee with high accuracy. 
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A New Parameter for Ellipsoidal Calculus 

by G. J. Bruins, Delft 

To describe the meridianplane of an ellipsoid of revolution different parameters and quantities 
are used. So Jordan ([ 1 ]  page 35 and next) uses a, b, ex, e, e' m, n, cp, �. y, W, V, w, v, M and N. The 
meaning of these symbols is well known. Jordan gives also a great number of formulae to describe 
their interrelations, but it is not easy to see the general line of these interrelationships and to reproduce 
them instantly. 

Therefore we will now introduce another parameter o and show that most quantities, indicated 
above, can be expressed as very simple trigonometric functions of o. 

The new parameter o is defined as half of the angle between P on the ellipse and the two foci 
of the ellipse A and B. (see figure 1 ). The bisectrix of this angle is normal to the ellipse and intersects 
the equatorial plane under an angle cp . cp is the geographic latitude. 
The sine-rule in !1 A C P and !1 BC P gives : 

AP AC  BP BC 
a nd -

sin cp sin o sin cp sin o 
sin cp AP BP AP + BP 2 a  a 1 

or -- = - = - =  - -
sin o AC  BC AC + BC 2 c  y a2 - bZ e 

or sin o = e sin cp ( 1 )  
and i f  cp = 900 

sin o0 = e ( la) 

The formula for the second principal radius of curvature N ( = PD in figure 1 )  can also be 
derived from this figure in the following way. 

AD2 = AP2 + N2 - 2 AP . N cos o 

BD2 = BP2 + N2 - 2 BP .  N cos o 

Subtracting these two formulae, we get : 

0 = (AP - BP) {CAP + BP) - 2 N cos o} 
As 

AP - BP =f= 0 except for o = 00 

and 

AP + BP =  2a 

C i rk e l  

e l l i p s e  



we get : 

and with ( 1 ) : 

a N = -

cos 0 

a a 
N =  = -

V 1 - e2 sin2 cp W 
the well-known expression for N. (Jordan). 

It is also easy to introduce the reduced latitude � . 
From figure 1 follows : 

N cos cp = a cos � 
and with (2) : 

cos cp = cos � cos 0 

Squaring (3) we get with ( 1 ) : 
1 1 

---- = . (1 - e2 sin2 cp) 
1 + tan2 cp 1 + tan2 � 

and after some mathematical manipulations : 
tan � 

l/ 1 - e2 = cos o0 

also a well-known expression given by Jordan. 
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(2) 

(3) 

(4) 

It is easy now to express all the formulae that appear in Jordan et. al. [1 ] as functions of 8 
and 00 : 

ya2 - b2 . e = = sm o0 
a 

f a2 - b2 e ' = = tan o0 
b 

b 
a 

y 1 - e2 

l/ 1 + e'2 

ex = 

n =  

m =  

a - b 
a 

a - b 
a +  b 
a2 - b2 
a2 + b2 

= COS 00 

= cos o0 

1 
cos 00 

= 1 - COS 00 

1 - cos 00 
= = tan2 1/2 00 1 + cos 00 

1 - cos2 00 
1 + cos2 00 

In the following formulae, according to Jordan [ 1 ] :  
cp stands for the geographic latitude 
� stands for the reduced latitude 
y stands for the geocentric latitude 
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sin a 
sin cp = -

sin ao 
tan o 

sin � = -

tan o0 

sin cp 
sin � 

cos a 
cos ao 

COS <p 
-- = cos 8 
cos � 

tan cp 
--

tan � 

tany 
tan cp 

tany 
--

tan � 

1 a 
- - W = 11 1 - e2 sin2 cp cos ao b 

b2 
cos2 a0 = -

a2 V = l/ 1 + e'2 cos2 cp 

b 
cos 00 

a 
w = l/ 1 - e2 cos2 � 

v = y 1 + e'2 sin2 � 

We also get simple formulae for the principal radii of normal curvatures M and N: 

cos2 80 
m = a  

cos 8 
1 

N= a -

cos 8 
N cos2 8 - = ---
M cos2 00 

, /-- cos ao y N M = a --

cos2 8 

a Mpole = Npole = --COS o0 

Mequator = a cos2 00 

Nequator = a  

= cos a 

cos 8 
-

COS 00 

cos 80 
- --

cos 8 

1 
cos a 

Hence we see that all quantities of the ellipsoid can be expressed in simple trigonometric 
functions of 8 and 80, the latter being the parameter of the special ellipsoid with eccentricity 
e = sin ao and focal distance c = v a2 - b2 . 

With these formulae it is not only easy to see the relations between the different quantities 
themselves but also between their differentials. 

It seems worthwhile to introduce this parameter in [ 1 ] especially in Chapters XII, XIII and 
XIV (zweite Halfte) in order to investigate wheter the many deductions can be given in a more 
simple form. This will be done in a following paper. 

L i t e ra t u r e : 
[ 1 ] Jordan, Eggert, Kneissl : Handbuch der Vermessungskunde, Ba11d IV, e te uml zweite Halfte, 

1 0. Ausgabe (1 958, 1 959). 

Some Remarks about Ellipsoidal Coordinate Systems 
by G. J. Bruins, Delft 

S ummary 
In problems concerning the figure of the earth different coordinate-systems and parameters 

are used, lineair and curvilinear, orthogonal as well as oblique, isometric and non-isometric. 
In this paper some properties of the coordinates and parameters used by Hirvonen [ 1 ] and 

Molodenski [2] are compared. 
p a r  1 .  
I n  geodesy, in two- as well as i n  three-dimensional space, i n  most problems the metric cartesian 
coordinate system (x, y, z) is adopted to locate a point in the plane or in space. 
However also curvilinear coordinates may be introduced. 
For example we may have the coordinate transformations. 
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a) spherical coordinates (r, <p, A.) 

x = r cos <p cos A. , y = r cos <p sin A. , z = r sin <p 

With varying values of the parameter r a family of spheres is associated. On each sphere r = 
= constant a point is defined by the latitude <p and longitude A.. 

b) ellipsoidal coordinates according to Hirvonen [ 1 ]  page 4 (a, f3 A.) 

x = c cosec a cos f3 cos A. , y = c cosec a cos f3 sin A. , z = c cot a sin f3 

(c is a constant) 

c) ellipsoidal coordinates according to Molodenski [2] page 39 (u, (3, A.) 

x = c cosh u cos f3 cos I. , y = c cosh u cos f3 sin A. , z = c sinh u sin f3 
(c is a constant) 

In the following the latter two systems will be compared, especially the differences between 
the parameters a and u. 

Therefore we may consider a meridian section, thus el1minating A. in the equations. 

S y s t e m  1 :  

S y s t e m  2 :  

x = c cosec ex cos f3 , z = c cot ex sin f3 

x = c cosh u cos f3 , z = c sinh u sin f3 

In both systems c is a constant. If in system 1 ,  ex is constant we may write : 

and so : 

c cosec ex = a , c cot a = b 

x = a cos f3 , y = b sin f3 

(1)  

(2) 

(3) 
(4) 

which are the well-known parameter formulae of an ellipse, in which f3 is the reduced latitude. 
The focal distance is : 

y a2 - b2 = c if cosec2 a - cot2 ex = c 

If, on the other hand f3 = constant we may write : 

(indepentend of ex !) 

and so : 

c cos f3 = a' , c sin f3 = b' 

x = a' cosec oc = a' sec (90 - oc) , y = b' cot a = b' tan (90 - ex) 

which are the well-known parameter formulae of a hyperbola. The focal distance is : 

y a'2 + b'2 = c y cos2 f3 + sin2 f3 = c (independent of f3 !) 
From (5) and (8) we find : a2 - b2 = a'2 + b'2 = c2 

(5) 

(6) 

(7) 

(8) 

(9) 

Consequently system 1 defines a family of confocal ellipses - one for each value of a - and a 
family of confocal hyperbolas - one for each value of (3. 
The same conclusion holds for system 2 if we put : 

c cosh u = a , c sinh u = b ( 10) 

If c is the same constant in both systems 1 and 2, we also see that a and b are the same in  both 
systems, because : 

cosec2 ex - cot2 a = 1 = cosh2 u - sinh2u 
Or in other words : 

if we take : 

then we also have : 

cosec a = cosh u 

cot oc = sinh u 

This relation between QI( and u can be transformed into another form : 
From ( 1 1 ) and ( 1 1  a) we get : 

or 

cos ex = tanh u 

1 - tan2 11z a 

1 + tan2 I'/2 (J.· 

( 1 1 )  

( 1 1 a) 
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or 
p a r  2 .  

tan2 1/2 ex = e-u , cot 1/2 ex = e" , u - e/n cot 1/2 ex ( 1 2) 

Until now we saw the agreement between the systems 1 and 2. We now want to sei whether 
there are any differences. In both systems the parameter curves (ex, [3) and (u, [3) constitute a system 
of ellipses and hyperbolas. 

To find additional conditions we consider the derivatives (as Hirvonen has alread} done for 
system 1 ) :  

S y s t e m 1 :  

S y s t e m  2 :  

C) x  cos (X - - - c  cos f3 

C) (X sin2 ex 
CJ z sin f3 
- = - c 
C) (X sin2 ex 
C) x  

sinh u cos f3 - = + c 
C) u 
C) z - = + c cosh u sin f3 
C) u 

a x sin f3 -- = - c---
C) f3 sin ex 
C) z cos ex - = + c-- cos f3 
a f3 sin (X 

ax . -- = - c cosh u sm f3 c � 
C) z  . - = + c smh u cos f3 
C) f3 

For both systems the condition of orthogonality holds : 
C) x C)x C) z  C) z- - +- - = 0 
C) cx C)[3 C) ex  C)[3 

( 1 3) 

However the condition for isometry holds only for the system 2 (Canchy and Riemann equations) : 

and ( 14) 

This means that in system 2, x and z are conjugate harmonic functions of u and f3 and that 
they may be wdtten in analytic form : 

x + iz = f(u + i[3) 
To find this function we substitute (2) : 

x + iz = c (cosh u cos f3 + i sinh u sin [3) 
= c (cosh u cosh i f3 + sinh u sinh i [3) 
= c . cosh (u + i [3) ( 1 5) 

Because u and f3 are an isometric system all properties 'of conformal transformations are valid 
for this transformation. So the fundamental quantities of the first order are : 

or : 

E = G = ( C) x )2 + ( C) z)2 = C) ( x +
.
iz) 2 = c2 j sinh2 (u + if3) j C) u C) u C) ( u + i [3) 

E = c2 (sinh2u cos2 f3 + cosh2u sin2 [3) 
= c2 (cosh2u - cos2 f3) 

With (6) and ( 10) we get : 
E = a2 - a'2 ( 1 6) 

An arbitrary point P is defined by the parameters u and [3, or, if we like, by the seen: major 
axis of the ellipse a = c cosh u ( 10) and the semi axis of the hyperbola a' = c cos [3. (6). 

From elementary mathematics it is known that : 

where A and B are the focal points. 

A P  + BP =  2a 

A P - BP = 2a' , 



7 1 

So we get : E = A P . BP ( 1 7) 
In the same way other applications can be made with the isometric system (u, �) but also in 

the metric system (a, a'), e. g. the computation of the Jane-width of a Decca-system. 

ell ipse 

a.' 

a. 

Fig. 1 
p a r  3 .  

In the theory of conformal transformations often the following transformation is used : 
x + c W =  e/n --

X - c 

wherein : W = w + i v  and X = x + iz  

and c i s the focal distance (see figure 1) 
From the theory of complex functions it is known that : 

with 

e/n (a + ib) = e/n J a +  ib J + i argument (a + ib) 

J a +  ib J = modulus of (a + ib) = 11 a2 + b2 

Applying this to W we get : 

as : 

and : 

so : 

and : 

w + iv = etn I X + 
c + i arg (X + c) 

X - c  X - c 

J x + c J = PB ,  J x - c J = PA 

X + c  
argument -- = < AP B 

X - c 
PB 

w =  e/n -
PA 

1 ) 

V =  < A P B = 2 8 

(figure 1 ) 

PB 

( 1 8) 

( 19) 

(20) 

From this we see that the curves w = constant are circles of Apollonius because - = constant 
PA 

and the curves v = constant are circles of Steiner through the points A and B. This system is useful 
in geodesy e. g. in demonstrating map projections. 

Combining the transformation ( 1 8) with the transformations (2) or (1 5) we find a relation between 
the system (w, v) and the system (u, �). 

1 ) 8 = 1 /2 v is also a very useful parameter to describe the inter-relationships between the differ
ent quantities of the meridianplane of an ellipsoid of revolution. These interrelationships are 
described by the author in a separate paper, also published in these proceedings. 
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Suppose 
Then (1 5) 

and 

u = u + i �  

X= c cosh U 
x+ c W=  e[n --
X - c  

Eliminating X from these two equations we get a relation between W and U: 

eW = 
cosh U+ 1 

or 

cosh U- 1 
e W + 1 e112 W + e- 1/2 W 

cosh U = w = 11: w 11 w = coth 1/2 W e - 1 e 2 - e- 2 

( 1 5) 

(1 8) 

(21 ) 

which gives the relation between the elliptic coordinates ( U = u + i �) and the coordinates ( W = 
= w + i v) . 

L i t e ra t ure : 
( 1 ) Hirvonen, R. A. : New theory of gravimetric geodesy. Publication of the Isostatic Institute nr. 32, 

Helsinki 1 960. 
[2] Molodenski, M. S. , Eremeev V. F., Yurkina M. J. : Methods for study of the external gravitat

ional field and figure of the earth . 
Moscow 1 960. Israel Program of Scientific Translations, Jerusalem 1 962. 

Mass-Sources of the Gravitation Anomalies 

by Ivan Pola, Prague 

It is possible to substitute the mass of the Earth by the mass-points, in such a way that the 
gravitation effect equals the observed values of gravity, corrected by the centrifugal acceleration. 

Let us denote these values g (x;, Y;, z1), where x;, Y;, z; are the coordinates of the observed 
points on the Earth surface. It is not necessary to introduce any other reductions or to interpolate 
the gravity values. 

The procedure of computation -of the position and the magnitude of the almost minimum 
number of mass-points consists of two nonlinear operators ; one of them serves for determining 
the magnitude and the location of the sources, the other one is for the determining of z-coordinates 
of the computed sources. 

The form of the first operator in general three-dimensional case on the Earth surface is 

. {gj (x;, y;, z;) 3/2} Mj - sup mm 
h · _ z· 

[(x; - u1)2 + (y; + vj)2 + (z; - hj)2] , 
(uj, Vj) - D (x;, Y;) +- - Oj 

( 1 ,) 

hj +- (max z; + hE:. , H) 
oj 

wheregj (x;, Y;, z;) is the gravitation anoma ly in the point (x;, y,; ,z;), x;, Y;, z; being the coordinates of the 
observation points on the Earth's surface, ui, vj, hi being the coordinates of the computed mass
point Mi, Mi = f. mi, f is the gravitation constant and mi is the mass of mass point Mi. Oj is the 
suitable vicinity of the point (uj, vj) in the plane (x, y) ; let us apply the operator in all points (x;, y;) 
from this vicinity. D is the two-dimensional interval, which includes all the observation-points, 
h8 is the minimum possible distance of the sources Mi from the Earth's surface. 

The second operator can be written in the form 

hj = max {[ t , 1 547 _ 

Mj cos (4 , 1 888 + a.;/3)] 1 12 + z;} , 
(x;, Y;)- OJ 

g j (x;, Y;, z;) 
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where hi is the corrected coordinate hi of the source Mi, gi is the difference between the gravitation 
anomaly gi and the vertical gravitation effect of the source Mi in all the observed points, 

M· 
cos rxi = 2,598 1 1 [(uj - Xj)2 + (vj - y;)2] . 

gj (Xj, yj, Zj) 

I n such a way we can determine almost the minimum number of mass-sources using two operators, 
so that it holds 

I s Mj (hj - Zj) 

I g (Xj, Yi, Zj) - � 3 /2 
i=-O [(Xj - Uj)2 + (yi - Vj)2 + (Zj - hj)2] 

< E ,  

for a small positive value o: prescribed beforehand. It is possible to compute next values from the 
mass-sources (as for example potential and some its derivatives, regional or residual values of 
gravity a. s . o.) and the method can be also used for the solution of the inverse gravity-problem. 
At the present time, the procedure is worked up for the digital computer, because otherwise it is 
not realizable. 

A Contribution to the Determination of Gravity by a 
Transformation Method*) 

by Jan Kaspar, Prague 

I n t r o d u c t i o n  

The paper presents several possibilities provided by transformation methods in solving problems 
which are related to the determination of the figure of the Earth in a l imited region. I t thus follows 
up papers of Marussi and Hotine (see [2], [5]). 

The basic idea of the solution is in ascribing known points of a "model" surface, - approxi
mating the Earth's surface in a "model" - , to corresponding points of an image surface, which 
is an approximation of the real Earth's surface. The ,,model" surface is immersed into the "model" 
space related to a reference body, - or reference surface - . The image surface is then in space 
corresponding to the real Earth. 

(Jr) X '  O Q-------

y' 

z' 

Fig. 1 Fig. 2 

I 
I 

I 
I 

I 

(Jf} 

I I 
I I 

I .. , I 
I g I 

I I I 
\ ' .... / I / 
\ I -{ I 
I I I I 
'I.. I / 

' ...._ .._ I 

*) The paper was already published in "Studia Geophysica et Geodetica", No. 2, Prague 1966 
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-
If vectors of a known "model" gravity g in points P of the original ("model") surfc:ce (rr) are 

-
related to vectors g' of real gravity in corresponding points P' of the image surface (rr'1 not only 
the shape, orientation and dimensions of the surface approximating the Earth's surfa;e can be 
determined, but also the transformation of one surface into the other (see Fig. 1 ,  2). The quantities 
defining the gravity vector relation may also be determined, so that it is possible to ilterpolate 
gravity acceleration over the image surface. 

These quantities may be determined by measurements of astronomical longitudes an latitudes, 
by gravity measurements and by measurements of spacial d istances and relative co-ordinate differences 
in an arbitrary co-ordinate system. 

This paper links up with paper [ 1 ] and [7], in which equations of general transfornation of 
one surface into another, as well as equations of the image surface, have been deduced. Arcs of 
measurement along the basic lines of principal curvature of the original surface were relected as 
parameters. The suitability of the choice of parameters as well as the invariability of the e�pressions 
occuring in the power expansion series is discussed. The achieved results will be mentioned as 
necessary, and some of the deduction sequences will also be given. 

The paper also presents, in short, an expansion of the position function of a po· t on the 
original surface, as well as the image surface. This result is used in determining the expansion of 
extreme values of scale (linear magnification, extention ratio) and of its d irect ions, with respect 
to the lines of principal curvature, as well as for expanding the gravity vector on the image surface. 
The process of application of these results in determining the image surface, which aprroximates 
to the Earth's surface in a limited region, is also mentioned . Closed equations of correction for 
measured astronomical latitude and longitude are given. The corrected geographic co·ordinates 
are related to the gravity vector on the image surface. The equation of correction of the 
absolute value of the gravity vector is mentioned, as well as the equation for the spacial distance 
of two points on the image surface and the equation for corresponding zenith distance. 

In these equations the known quantities are co-ord inates - parameters - of the original 
points on the "model" surface and invariants determining the shape of this surface and the 

-
"model" gravity vektor g on this surface. The unknowns are invariants determining the shape, 
transformation and the gravity vector on the image surface. The equations also contain 
expressions which determine the orientation of this surface in a co-ordinate system related to the 
Earth's axis and the Greenwich meridian. 

After linearization of the equations of deviations, it is possible with the use of ·he minimum 

condition {1v, n} { Q:,� l} { nv, I} = min. (see [6]), to determine the unknown quantities and thus 

the orientation, shape and magnitude of the image surface, as well as the co-orcfuation of the 
-

gravity vector, g' , which in t urn leads to the determination of the geographic co-orlinates in the 
corresponding point of the image. 

Some Consequences of the Expansion on the Figure and 
Rotation of the Earth*) 

by L. Egyed, Budapest 

The Earth's figure and its rotation show a close connection and only the mas; distribution 
and the angular momentum, i. e. the mechanical energy - potential + inertial energy - determine 
the level surface. 

If no change can be supposed in the structure of the Earth's interior and no loss of inertial 
energy occurs, the shape of the Earth can be regarded as steady. This was the classical view point 
in geodesy. 
*) This paper was presented by Dr. - Ing. habi l . P. Biro. 
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There are, however, very important observed variations, e. g. the slowing down of the Earth's 
rotation etc. which in more detailed investigations must be considered. 

In this article it is suggested that nearly all the known changes observed on the Earth figure 
and structure can be reduced to the expansion of the Earth. 

If a Dirac cosmology is valid - D irac, 1 938 - and the existence of h igh-pressure phases in the 
sense of Ramsey - Ramsey, 1 949 - can be accepted, than an expansion of the Earth amounting to 
a yearly radius increase of 0,65 ± 0, 1 5  mm/year can be theoretically derived. 

It is surprising that the same rate of expansion can be obtained from the distribution of conti
nental and oceanic areas, from the retreat of water covered areas during geological ages - Egfed, 
1 956 a, b -, as well as palaeomagnetic data do not contradict to the rate indicated above. Moreover, 
it is very easy to show that the recent slowing down of the Earth is consistent with the above value. 

According to the law of the conservation of angular momentu..rn the formula wJ = const 
should be considered as valid for the Earth, if the well known outer effects are eliminated, where 
J is the momentum of inertiae and w the angular velocity of the Earth. 

From thjs formula 

1 dJ 1 dw 

J d t  w d t  

But for a shorter time - which i n  the case of the Earth also may amount to some hundred 
million years -

dJ 
J d t  

2 dR 

R d t  

2 ex 

R 

where dR is the radius increase and R the radius of the Earth. Hence the yearly radius increase 

1 1 dw 
ex = - R - . - .  

2 w d t  

dw 
According to the newest data - = - 4,8 1 . 10- 22 radian sec- 2 = 1 ,44 . 10- 1 4 rad sec- 1/ 

d t  
/year ; w = 7 ,29 . 10- s sec- 1 , R = 6,37 .  1 0 8 [Munk and MacDonald, 1 960]. 

This results in ex = 0,63 mm/year, a value in excellent agreement with that obtained theoreti
cally as well as from geological-geophysical observations. This result says that, at least at the 
present, no effect of tidal forces is involved into the slowing down of the Earth. If this is right this 
can be extrapolated for the future of the Earth too : the slowing down effect can be only the result 
of the expans ion. 

It was K. Ledersteger who tried to compare some extreme values of the Earth in the case of 
a contracting Earth. In the case of an expanding Earth i t  is possible to give an upper limit - i. e .  the 
value without energy loss - for the minimum value of angular velocity. 

The greatest volume and greatest momentum of inertiae can be obtained if  the effect of gravity 
does not exist more. This is the end result of the extrapolation of the Dirac cosmology. Then the 
Earth becomes a homogeneous body with a density of that of the basic-ultra-basic rocks. As a 
reliable value for it p = 3,2 can be chosen. This corresponds however to a radius of 7,64 . 1 08 cm. 
The momentum of inertiae at this end-phase will be 1 3 ,95 . 1044. The application of the law on 
the constancy of angular momentum results in the formula 

for the greatest length of the day. 
There are some hints that in the very past the slowing down of the Earth was affected also 

by tidal forces. 
One can show, that in the case of a Dirac-cosmology the distance of planets from the Sun 

was proportional to a time parameter t corresponding to the age of the Solar-system, while that 
of the length of the year - 't' - proportional to the square of this time-parameter : 
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r = k t  
't" = µ t2 

This formula enable ,us to calculate for the geological past the numbers of rotations of the Earth 
during an actual year i. e. during the time span corresponding to a whole orbit around the Sun. 
As the most probable value of the radius increase amounts to 0,65 ± 0, 1 5  mm/year, using this 
value, the following table was calculated for t = 4,5 to t = :x:> and for the time interval of the last 
400 million years. 

Table 1 .  Number of rotations as a function of 6. t and 10 

!�I S I 4,5 r 5 6 8 10 12 

0 365 365 365 365 365 365 365 
50 361 362 363 365 365 366 369 
100 356 358 361 364 365 367 373 
1 50 352 354 358 363 365 368 377 
200 347 350 356 362 365 368 38 1 
250 342 346 353 36 1 365 369 385 
300 337 342 350 360 365 369 389 
350 332 338 347 358 365 370 393 
400 327 334 344 357 365 371 398 

According to this table the numbers of Earth's rotation have surpassed the recent value only 
if the correct value of time parameter higher was than about 1 , 1  . 10 10 years. 

On the other side Wells - 1 963 - made the suggestion that the Devonian corals show that the 
number of rotations in this period amounted to 400 in an actual year, which at a radius increase 
of 0,65 ± 0, 1 5  mm/year, can be fulfiled at t = oo only. If Wells is correct and t =I=- oo, the contra
diction can be solved only by supposing that the rest of the slowing-down effect was due to tidal 
friction which must have been more effective in the past, as the planets and so the Earth too, were 
much closer to the Sun. 

Concerning the change in ellipticity one can derive [Egyed, 1 965] by using the general ized 
Clairant-equation the following formula : 

de =  2Q
. 

dw + Q + (5 Q  + 3 Po _ 2) � 
e W d I t px. a 

where the meaning of the letters : 
e = 3,3535 + 0,0003 . 1 0- 3, ellipticity 

w = 7,29 . 10- s sec- 1 , angular velocity 
ex =  6,5 ± 1 ,5 . 10-2 cm/year, yearly radius increase 
a = 6,378 . 1 08 cm, the greater axis of the Earth's spheroid 

Po = 2,85 g cm- 3, density of the Earth at the surface 
p x = 5,52 g cm - 3, average density of the Earth 

m 
Q = - = 0 5 1 3 

2 e ' 

w2 r1 3 m = -'- , r1 being the mean radius of the Earth. JM 
The computed value for the relative yearly change in ellipticity will be 

de 
- = + 1 ,26 . 10- 10 e 
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This is a positive number which can be interpreted, that recently the expansion manifesting 
himself in the change of gravity and that of the centrifugal force results in an increase of the ellipticity. 

According to Bullard - 1 948 - , the ellipticity of an Earth in hydrostatic equilibrium amounts 
to 3,3632 ± 0,006 . 10- 3 i. e. it surpasses the actual value of the ellipticity. If this value can be 
regarded as real, then the discrepancy between the two ellipticity values may be regarded as a delay 
recovering hydrostatic equilibrium in a solid Earth at a steady increasing ellipticity. Taking the 
value of Bullard as correct, the actual value of d e/e amounts to 2,9 ± 0,3 . 1o- 3 which corresponds 
to a delay of about 2,3 . 101 year in recovery, and shows towards a viscosity of 8 .  1 026 poise for 
the interior of the Earth . .  

In  any case an effect of the increasing ellipticity is  reflected in the discovery of Krause - 1 965 -
that there exists a belt of equatorial shear zone for the recent as well as for the past. 

The greatest tensional effects in the upper mantle and crust arise in the case of an expanding 
Earth along the equator. The increasing ellipticity increases also the tensional forces in a non-linear 
way and the shear faults would act as the release of strain energy. An iteration is insured exactly 
by the non linear stresses. According to Krause a second shear zone corresponding to a past equator 

can be traced along the ocean bottom. 
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The Asymmetric Structure of the Earth and its Secular Processes*) 

by G. Barta, Budapest 

It is known that in the direction of Australia the intensity of the geomagnetic field is by 30 % 
greater than in the opposite Atlantic areas. From the strong deformation of the magnetic field the 
conclusion can be drawn that the whole Earth's body is asymmetrically built up. If we approximate 
to the magnetic field by a dipole, so the dipole lies about 300 or 400 km for from the geometrical 
centre in the direction of Australia. 

Supposed, that the magnetic dipole corresponds to the Earth's inner core, then the core is 
excentric in that direction. It is remarkable that the equatorial major axis obtained from observations 
of satellites coincides with the direction of excentricity of the magnetic dipole with an accuracy 
of 10. Consideration of this striking accordance not as an incidental one has far-reaching conse
quences. [2] 

Owing to the secular magnetic variation is namely the magnetic dipole moving to West by 
0,20 in a year, therefore we may assume that the equatorial major axe is wandering to West. 

This assumption is supported by the fact, that the positions of the equatorial major axis 
calculated by different authors with classic geodetic methods based on long series of observations, 
are generally lagging to East behind the positions of the major axis, which resulted from obser
vations of satellites [2, 6]. 

If the secular magnetic variation has some kind of connection with a motion of the Earth's 
core, i. e. with displacements of masses, so must the observable partial periods of the secular 

*) This paper was presented by Dr.-Ing. habil. P. Biro. 
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magnetic vanation manifest themselves in phenomena, which are connected with the density 

distribution, respectively with the moment of inertia of the Earth. 
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Fig. 1 .  Variation with 50 years period in the secular variation of the magnetic field and in the 
variation of the Earth's rotatory speed [ l ,  2]. 
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Fig. 2. Variation of the Chandler-period according to Melchior. Below : Variation of the polar 
altitude after elimination of the seasonal variation [3, 5] .  
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I n  series of secular variations at most of the magnetic observatories is demonstrable an os
cillation with a period of about 50 years [ J  ]. The greatest positive departure of the direction of the 
variation from the adjusted variat ion arose in 1 935,  and the greatest negative one in 1 9 1 0, and in 
1 960, respectively. Same extreme time data appear also in the amplitude and period of the polar 
altitude, in the oscillation of the Earth's rotational velocity, and in the variation of sea level at 

several marigraph stations. 
It appears as a certain power effect concerning the whole Earth had been maximal. This effect 

gave rise to the increase of the amplitude and period of variation of polar a ltitude [3, 5] .  In 1 935 
this effect caused by increase of the westward drift the maximal deviation from the uniform trend 
of the secular magnetic variation and caused by its braking force the maximum deviation from the 

uniform rotation of the Earth, which appeared in chronometry. 
It is interesting to compare those results with the frequence of earthquakes. If about 1 9 1 0  the 

Earth was touched by a certain power effect, what caused certain changes in the Earth's body, 
then these changes ought to bring about strains in the Earth's crust. According to F. Mosetti's 
investigations in the frequence of earthquakes is observable a maximum in 1 9 1 0, and a minimum in 

1 935  [4] .  The earthquake activity in the last ten years suggests again to a maximal earthquake fre
quency. Examination of the earthquake frequencies corroborates therefore our previous consider

ations. 
Gravimetric, electromagnetic, and seismological measurements discover more and more 

further asymmetries in the Earth's structure, as the domain of researches is penetrating down to 
greater depths. From investigations of the last decade we know unambiguously, that the Moho
rovicic layer, the low-velocity layer, and probably even the Gutenberg-Wiechert layer are lying 

higher underneath the oceans, then under the continents. The above summary considerations em
phasize the asymmetric material structure of the total Earth, as they are rest ing on results of magnetic 
measurements, which are related to the total Earth. In this way they are drawing our attention 
to the recognition, that the asymmetric structure can cause important phenomena. 

Naturally, a centric homogeneous model of Earth, being in hydrostatic equilibrium is a very 
useful approximation, but results of the measurements are compelling us to take in account physical 
reality beyond mathematical abstraction. 
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Part III : 

Gravity Anomalies , Deviations of the Vertical , 

Observations (Methods and Results) 

Aerial Gravimetry for Direct Observation of the 
External Gravity Field 

by Bela Szabo, Bedford, Mass. U. S. A. 

I 
The knowledge of the earth's external gravity field is an essential requirement for precise 

determination of gravity dependent earth parameters and for the successful ut i l ization of gravity 
data in physical geodesy. Over accessible land areas terrestrial gravimetry provides the measurements 
with adequate accuracy, however, this method is economically feasible only over wel l  developed 
areas. In inaccessible land areas and over the oceans, which constitute more than two-thirds of the 
earth's surface, new methods and instruments are required for the accomplishment of gravity 
measurements. 

Theoretically, there are two possible to obtain the global external gravity field of the earth : 
First, by direct surface and aerial gravity surveys fil ling in the gaps existing over unsurveyed areas ; 
and second, by utilization of the external gravity field described by spherical harmonic coefficients 
derived from satellite tracking data. Studies conducted on this subject indicate that harmonic 
coefficients, derived from satel lite data are both unreliable and inadequate to satisfy the requirements 
of scientific geodesy and navigation without the support of direct global measurements. The combin
ation of the two methods would be the best approach for a reliable solution of all problems dependent 
on the gravity field of the earth. The minimum requirement for direct measurements would be a 
global coverage in  form of mean anomalies for 50 x 50 blocks with ± 5 to ± 1 0  mgal accuracy. The 
mean values can be derived most economically from two or three east-west aerial profiles across 
each block. 

I I  

In 1 958 AFCRL conducted the first experiments of  aerial gravimetry with a modified Lacoste 
and Romberg sea gravimeter in a KC- 1 35 aircraft . Later, the Askania-Graf sea gravimeter was 
also included in the tests. These early experiments proved that aerial gravimetry is feasible and 
satisfactory accuracies can be achieved provided navigation errors can be reduced below certain 
limits. Additional test flights and experiments have been carried out by AFCRL in 1 960 and 1 962. 
The feasibility of aerial gravimetry was confirmed by these experiments and it was also concluded 
that a great number of problems must be resolved before an operational airborne gravity measuring 
system could be achieved. Fairchild (FLAGS) Corporation flew a triangle at 1 2,000 ft. using a 
Lacoste and Romberg instrument and a B-57 aircraft in  1 961 . This test also indicated the feasibil ity 
of aerial gravimetry. In  January 1 965 AFCRL was provided with a KC- 1 35 aircraft and the means 
required for the intensification of research and tests in aerial gravimetry. The goals of the new 
effort were : the selection and designation of the components of a complete airborne gravity measuring 
system which would satisfy minimum requirements ; the derivation of data reduction methods 
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including computer programs, and t o  resolve the downward continuation problem o f  gravity for 
the purpose of obtaining useful ground or sea level values from high altitude aerial profiles. 

Gravity measurements obtained by airborne sensors, like any other moving gravity measuring 
technique, are affected by the Eotvos effect. This is composed from the vertical components of the 
Coriolis and centripetal accelerations resulting from the motion of the aircraft. This effect, which 
is severa l thousand milligal, can be computed from the aircraft's navigation data. If the navigation 
data are not accurate enough the Eotvos correction will be in error. The critical navigation data 
are ground speed (velocity error) for east-west flights and azimuth for north-south flights. 

One knot (one nautical mile/hour) error in the ground speed for east flights at 400 knots produces 
errors in the Eotvos correction ranging from 1 0.8 mgals at the equator to 4.6 mgals at latitude 
of 800. For west flights the same velocity error will affect the Eotvos correction by 4.2 mgals at 
the equator and by 2.0 mgals at latitude 800. 
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v = _: 0. 5 knots 
a! = !:_ 0.  I d e g r e e s  
'P = _:_ I .  5 minutes 

The effects of azimuth errors are linear functions of aircraft velocity. An error of 0. 1 degree 
in azimuth for north-south flights at 400 knots will result in Eotvos correction errors from 5.2 mgals 

(at the equator) to 0.9 mgals. (lat 800). 
Geographic latitude and earth radius errors contribute to the Eotvos correction errors but 

the combined effect is less than one mgal under current conditions. Figure No. 1 shows the errors 
in the Eotvos corre�tion at various latitudes and azimuths assuming that : (a) the ground speed is 

accurate to ± 0.5 knots ; (b) the azimuth error is ± 0. 1 degree ; and (c) the latitude error is ± 1 . 5  
minutes of arc. 

In addition to the Eotvos correction error, errors in the verticallity of the stabilized platform, 
vertical accelerations of the aircraft, and errors in the elevation (flight altitude) of the aircraft are 
the major error sources in aerial gravimetry. Any one of these errors could exceed the allowed 

maximum for the combined total error under certain conditions, therefore, the greatest care is 
necessary in the selection of instruments, operation and data reduction to achieve acceptable results. 

6 
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III 

The KC-135 aircraft equipped with an APN-99 doppler radar navigation system was gradually 
instrumented and modified to include the following gravity sensors and auxiliary instruments. 

1 .  LaCoste and Romberg modified sea gravity meter with new solid state electronics, mounted 
on an ART-57 stable platform. 

2. Ask�nia-Graf modified sea gravity meter with new solid state electronics, mounted on an 
ART-25 platform. 

3 .  Worden-quartz digital aerial gravity meter by Texas Instruments, Inc. , mounted on an ART-57 
platform. 

4. APR-5 .airborne profile recorder with spotting camera. 
5. Photo panel to record data from aircraft navigation system. 
6. Analog-to-digital converter and magnetic tape recorder for recording gravimeter, APR-5 and 

navigation data. 
7. MD-1 astrotracker for improved heading. 
8. An accelerometer system mounted on the ART-57 platform of the LaCoste and Romberg 

instrument, to record horizontal accelerations. 
With the above described -instruments a total of 450 measuring hours were flown between 

January 65 and May 66. From these, 364 hours flight time were satisfactory for data reduction 
and about 90 hours were rejected prior to the data reduction due to turbulence, instrument failures, 
autopilot malfunctions, etc. The flights were accomplished over three areas : 

(1)  Edwards AFB Test Range in California where the performance of the navigation system 
have been periodically checked by flights over the ·tracking range. 

(2) South Central U. S. Test Area covering an area of 60 in latitude and 70 in longitude. The 
existing ground gravity · coverage of the area permitted the computation of profiles at aircraft 
altitudes with ± 1 mgal accuracy. These "uplifted" profiles were used to evaluate the profiles 
measured by the airborne instruments. The area was covered in a grid pattern with profiles of 
30 minutes spacing in east-west and north-south directions. All profiles were flown in both directions 
and the area is covered at 25,000 and 30,000 ft. altitudes. 

(3) North Central U. S. Test Area which is 1 70 long in longitude and it is 30 wide in latitude. 
This area permits long (800 miles) profiles and in contrast to the smoothness of the gravity field 
in the southern area, the gravity anomalies are changing more rapidly and attain much larger values 
than those in the south. This area was covered only at 25,000 ft. altitude with east-west profiles 
at 30 minutes intervals and north-south lines with 1 o spacing. 

IV 
The reduction of the collected data is in progress at the present time. The only measurements 

reduced are the east-west profiles over the South Central test area. The preliminary evaluation of 
the reduced measurements show the following results : 

1 .  Mean An9ma./ies for 50 x 50 Blocks. The error of the mean anomaly of an area is composed 
from the representation error of the number of profiles available for the computation of the mean 
value and from the measurement errors. Since the statistical representation error for one central 
profile in a 50 x 50 square is 1 3.4 mgals, a minimum of two profiles symmetrically located inside 
the blocks are required to meet the desired 5 to 10  mgal accuracy. Four pairs of symmetrically 
located profiles were found within the 50 x 50 block of the South Central test area. Three pairs 
were observed with the LaCoste and Romberg gravimeter and include one east and one west line 
each. The fourth pair was observed with both the Lacoste and Romberg and the Askania-Graf 
instruments. (The Askania gravimeter can measure, at the present time, only in west direction 
because of its short range for airborne use). 

One mean anomaly value was computed from each profile pair selected to represent the mean 
anomaly of the block. The mean was also computed from all available ground survey data and 
utilized as standard. From ground data the "uplifted" profiles, corresponding to the aerial profiles, 
were derived and from each corresponding pair the mean value of the block was computed (control 
profile pairs). From the comparison of these values the actual representation error, the actual 
total error and the· measurement error was obtained for each observed pair. The figures are shown 



--- - ---· ·- ---·--

( I )  Gravity Meter 

(2) Fligthline Pair 

( 3 )  Mean Anomaly 
50 x 50 Square 
(Standard) 

(4) Mean Anomaly 

. -

(Control Profile Pair) 
-

(5) Actual 
Representation 
Error (4) - (3) 

(6) Mean Anomaly 
(Observed Profile 
Pair) 

(7) Actual Total Error 
(3) - (6) 

-
(8) Measurement Error 

(4) - (6) 

(9) Mean of L - R 
Actul Total Errors 

( 1 0) Statistical 
Representation Error 

( 1 1 )  Total Error for 
50 x 50 Square 

83 

Table 1 .  Values from Symmetrical Pairs (mgals) 

L - R  L - R  L - R  L - R  A - G 

--

35 � 5 E/39 � 5 W  38 � 5 £/36� 5 W  37 ° E/38 ° W 39 ° W/36� 5 W  39° W/36� 5 W  

I 
- 5.7 

' I I 

- 1 .2 - 5.6 r- 5. 1 - 7.8 - 7. 8  

+ 4.5  + 0. 1 + 0.6 I - 2 . 1 - 2. 1  

I 

+ 8.2 - 10.7 - 0.6 - 10. 1 - 7.8 J _ I 

- 1 3.9 + 5.0 I - 5. 1 + 4.3  + 2 . 1  

- 9.4 + 4. 1 - 4.5  + 2.2 0 

I I i 
7. 1 

± 6.4 

± 1 1 .0 ± 6.4 

in Table 1 .  It can be seen that the mean of the Lacoste and Romberg actual total errors for this 
particular block is 7. 1 mgal, and 2. 1 mgal is the actual total error of the mean value derived from 
one pair of west profiles measured by the Askania sensor. 

The representation error termed as "actual" is valid only for th is particular block and it is 
relatively small due to the smoothness of the gravity field in this area. If we use the statistical represen
tation error determined from a statistical analysis of all existing gravity data, then for a 50 x 50 
block, represented by two symmetrical profiles, the representation error will be ± 6.4 mgal. Comb
ining this with the standard measurement errors the total standard error for an average 50 x 50 block 
is obtained. (Line 1 1  of Table 1 ) .  

The measurement errors were also derived from all available profiles i n  the test area. For the 
Lacoste and Romberg gravimeter 55 east-west pair combinations were available (one east and one 
west line in each pair). For the Askania gravimeter 36 pairs of west profiles were used. The differ
ences between the measured and the "uplifted" consrol profiles were used for the computation 
of the standard errors which are ± 7.4 mgal for the LaCoste and Romberg and ± 4.2 mgal for 
the Askania Graf gravimeter. Combining these standard errors with t he statistical representation 

6 *  
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errors for two symmetrical profiles we obtain ± 9.8 mgals standard total error for the LaCoste 

and Romberg and ± 7.7 mgals for the Askania instrument. 
The Worden airborne gravimeter showed large systematic and random discrepancies with 

respect to the control data and to the values measured by the other two instruments. The average 
discrepancey was about 50 mgals. The electronics and the sensor of this system require additional 
studies before final conclusions can be made. 

2. Mean Anomalies for JO x JO Blocks. A preliminary study was made to determine the 

obtainable accuracy for 1 o x 1 o squares. The mean values for 25 1 o x 1 o blocks were computed 
from two symmetrical east-west profiles across each block. In the South Central Test area the 
representation error for two such profiles is practically zero and the statistical representation error 

is only ± 0.6 mgal. An average standard error of ± 29.7 mgals was obtained for the LaCoste and 
Romberg and ± 9.7 mgals for the Askania gravimeter. 

v 
From the prdiminary reduction and analysis of the measurements in the South Central test 

area it can be seen that the Askania-Graf instrument performed better than the LaCoste and Rom

berg. However, it must be noted that the LaCoste and Romberg results are derived from both 
east and west profiles, the Askania results contain only west profiles. The effect of the same ground 

speed error is larger in east direction, therefore, the comparison cannot be considered as final 
conclusion. It is true, however, that profile to profile comparisons under identical flight conditions 
are still in the favour of the Askania instrument. Both instruments are acceptable for global surveys 

provided navigation errors are reduced. 
The errors from present aircraft navigation are excessive where cartographic corrections 

obtained from existing map coverage and aerial photography would not be possible. Estimates 
for cartographically corrected navigation accuracies achieved during test flight are : 

ground speed ± 1 . 1  to 1 . 5 knots 
azimuth 
position 

For global surveys requiring about 
navigation accuracies would be : 

ground speed 
azimuth 
latitude 

± 0.2 to 0.4 degrees 
± 0.3 to 0.5 nautical miles 

± 8 mgal accuracy for 50 x 50 mean anomalies the desired 

± 0.5 knots 
± 0. 1 degree 
± 1 .5 minutes of arc 

The random stabilization error of the ART-57 platform is ± 3.5 minutes of arc according 
to simulation tests. To obtain more accurate gravity data it is required that the stable platform 
be aligned with respect to the local vertical or the apparent vertical to an accuracy of 1 (one) minute 
of arc. The apparent vertical is the direction of the resultant between gravity, Coriolis and other 
constant effects, therefore, post flight corrections to the local vertical can be computed. 

The present computer program for data reduction is not final. The vertical acceleration problems 
and spectral analyses of gravity data are being studied to establish optimum filtering method, 
Theoretical studies on the downward continuation of gravity have been made at Ohio State Univer
sity and the results are published. The application of these studies for the observed material will 
be done at AFCRL after the final filtering method is determined. 

. The instrumentation research to improve airborne gravity sensors and related instruments 
is continuing. To resolve the critical navigation problems and for the improvement of gravity sensor 
stability, various inertial guidance system components are under investigation for possible use 

in aerial gravimetry. As a result, a pendulus integrating gyro accelerometer was laboratory tested 
and converted into a gravity sensor. This sensor is prepared for flight testing which will start in 
August 67. 

The ART-57 platform is inadequate to support accelerometer type of gravity sensors, in addition 
the use of separate stable platforms for two or three different instruments introduces a variable 
in the comparison of the results. As a solution an airborne platform is being developed for AFCRL 
capable of supporting two or three sensors. The platform design and quality of components will 
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provide stabilization with respect to the local vertical within 3 to I 0 seconds of arc in  the presence 
of horizontals acceleration up to 1 00 gals. 

Bell Aerosystems Company developed a shjpboard gravity measuring system with an accelero
meter sensor. The system was developed under contract to NA VOCEANO. The first tests have 
been completed very satisfactorily and additional tests are scheduled by USC&GS. The Air Force 
i s  considering testing this system in an aircraft when the shipboard tests are completed. 

Some Remarks on the 
. Gravity 

Accuracy of Interpolation 
Anomalies.*) 

by Vincenc Vyskocil, Prague 

of 

The interpolated value of gravity anomaly can be determined from the Lagrange formula 
of interpolation 

n 

gint = 1: g; q; ' 
i=O  

(.� qi =  1) 
i=O  

( 1 )  

in  which gi indicates the values of  anomalies in  observation points and q i  are the  Lagrange's coeffi
cients. The error m(gint) of interpolated value gint is a resultant of several partial errors. 

The first partial error m(I) expressing the effect of mean square errors m(gi) of "observed" 
values gi can be determined from the formu la 

n 

m2 (I) = m2 (g;) � q;2 .  (2) 
i = O  

The Lagrange's coefficients qi(x) for the function of one variable g(x) can be easily computed. 
For the function of two variables g(x,y) the coefficients qi•j (x, y) are practically derived only for 
squared or oblong net of observation points. 

The magnitude of the error m(I) is dependent on the value 

I have computed the values A (x) for equidistant observation. points and different degrees n of 
interpolation polynomials. The values A(x) � 1 ,  if the number of equidistant observation points 
on both sides of the point P(x) is the same. Since the number of observation points on both sides 
is different, the values A (x) can be greater than 1 .  In this case the stabil ity of interpolation is not 
guaranteed. A relatively small error in a distant observation point can cause a great error m(I) 
in the interpolated value gint· 

When using an unsuitable method of interpolation, the accuracy of interpolated values gint 
can be essentially diminished. Therefore it is necessary to find a criterion for applicability of i nter
polation formulae. The condition 

(3) 

can be considered as such a criterion. The condition (3) is always fulfilled in the case of linear 
interpolation and of the plane interpolation in a triangle or a tetragon .  Using interpolation poly
nomials of higher degree (n > 2) this condition is fulfilled only by a c-ertain distribution of obser
vation points. 

* ) Abstract. The paper will be published in "Travaux Geophys. Acad . Tchecosl . Sci. ,  Geofysikalni 
sbornik 1 967, Academia Praha". 
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The second partial error m(II)  can be regarded as an error of the method of interpolation. 
Since the exact form of function g in unknown it cannot be computed theoretically. Two effects 
can be distinguished in this error. One of them m(II 1) represents practically the remainder term in 
interpolation formula and its values diminish increasing the degree n of interpolation polynomial .  
The other m(I I2) includes the effect of local irregularities (disturbances) of function g. Its value can 
be diminished only when decreasing the distances among the observations points. 

When the condition (3) of stability is fulfilled the validity of relation 

can be reached. 
The third partial error m(Ill) is caused by mean square errors in the coordinates x,y of the 

point P and the observation points. 
The values of gravity anomalies are often dependent on the altitude h. Let us assume that we 

are to interpolate a function g(x, y, h) on the surface h(x, y) expressing the shape of terrain. The 
Lagrange's coefficients are invariant only with respect to the linear substitution of arguments x 
and y. When interpolating the function g(x, y, h) as a function of two variables (values of arguments 
x,y are taken from the maps and the altitudes h are not considered), the deformation of interpolation 
process can occur. It depends on the magnitude of the partial error m(IV) caused by neglecting 
the altitudes h, if such an interpolation is possible at all .  

I tried to show that methods of interpolation using polynomials of higher degrees do not 
guarantee more accurate results by themselves . I t  is always necessary to consider the stability of 

interpolation process. The err.or m(gint) is regarded as a resultant of four partial errors. 

On the Accuracy of the Deviations of the Vertical Interpolated 
by Gravimetric Methods 

by Dr. P. Biro, Budapest 

It is known, that the mean square error (m. s. e. ) of the absolute deviation of the vertical, 
calculated by the formula of Vening-Meinesz resp. that of Molodensky will be hardly less than 
± 1" even in Middle-Europe. But the influence of the far unsurveyed areas changes very slowly, 
and therefore one can interpolate the relative deviations of the vertical more accurately using 
the mentioned formulae only for a certain district. 

If we have some astrogeodetic points with �, , "1)1 known relative deviation of the vertical inside 
of an area with the radius r and we calculate the so-called gravimetric deflections of the vertical 

in the same points taking in account the anomalies of zones up to the radius R, we can expreses 
the difference of the two deflections of the vertical as a linear function of the co-ordinates. For example 
in point A 

( 1 ) 

Having more astropoints than three, the coefficients can be calculated. Then we can determine 
the relative deviation of the vertical in an arbitrary point P. We have to determine only the gravi
metric deviation of the vertical (�gr, "tlgr) in the same point, and we get 

� int _ � gr b . '"' P - '"' p + a cpp + ).p + l  

int gr , b' "I , "f) P = "f) P + a  Cflp + " p + c 
(2) 



If our point P is in the middle of n astrogeodetic points lying symmetrically to each other 

. l n E; int 
= 

E; gr + _ L (E;r _ c;gr); 
p p n i= I 

. l 11 "f) int 
= "f) gr + _ L "f)r __ "f)ll'r); 

p p n i= I 
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(3) 

We will check the accuracy of these components of the interpolated deviation of the vertical. 
The m. s. e. of the North-South component is 

(4) 

(using the formula of the propagation of errors), where 8 is the error of the linear interpolation 
(the sum of the neglected terms). We can get a similar formula for the East-West component, too . 

We will estimate the value of the terms in formula (4). 
In the first term mc;r means the m. s. e. of the components of the relative deviation of the 

vertical which depends on the m. s. e. of the astronomical positioning, being less than ± 0, 1 " in 
latitude and ± 0,2" in longitude. I t  can be written 

I mc;r I ,...., I mcp I < 0, 1" 

I mrir J ,...., I m)- coscp I < 0,2" 

We can assume with safety 

I mc;r I -- 1 m1J r I < 0,2" (5) 

In the second term of formula (4) mc;gr means the m. s. e. of the component of the gravimetric 
deviation of the vertical. This later can be determined by the well known formulae of Vening
Meinesz or Molodensky by the summation of the effects of surface elements. Using for the practical 
calculation for example the grid-net of Jeremejev, the m. s. e. of the components of the gravimetric 
deviation of the vertical can be expressed as the quadratic su'm of the m. s. e. of a central circle 
and the same of three zones (each zone consisting of more circular rings with the same effect) 
as follows : 

m2 ;:  = m2t: + m2i: + m2i: + 1112.r: .,.gr <.,o <., l c, 2 � 3 

where the zones are the followings : 

central circle r 0 = 5 km 
zone 1 5 km - 100 km 

2 l 00 km - 300 km 
3 300 km - 1000 km 

(6) 

The effect of each zone can be expressed as a sum of the effect of surface elements, being the 
product of a constant and !:lg the mean anomaly multiplicated by a trigonometric function of the 
azimuth of the surface elements i .  e. 

11 Ill 

E; gr 
= a L L 11 g;k cos ak 

z i = l k = l 

n m 

1J :r = a' L L !:l g;k sin ak 
M i'= I k= I 

(7) 

The m. s. e. of the effect of each zone can be expressed as a function of the m. s. e. of the 
gravity anomalies. 
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m E. = ± 0, 1 5" r0 · o 
m � = ± 0,50" for r 0 = 5 km 0 
m t: = ± 0,040" m /\ � 1 � Kl 

m t: = ± 0,01 5" m A �2 � g2 
m E. = ± 0,014" m A · 3 � g3 

(8) 

If we have a more detailed gravimetric net in the neighbourhood of the point and a higher 
accuracy is to be achieved, we can carry out a more detailed evaluation in the central and l st zone 
taking the following values : 

r0 = 1 , 1 km 

zone 1 '  1 , 1 - 7,3 km 

1 "  7,3 - 1 00 km 

2 1 00 - 300 km 

3 300 - 1 000 km 

m �o = ± 0, 1 6" 

m i: = ± 0,032" m /\ S I"  � K1 · 

m i: = ± 0,038" m A " l "  � Kl " 

m �2 
= ± 0,0 1 5" m 6 g2 

m �3 
= ± 0,014" m 6 g3 

The unknown m. s. e. of the gravity anomalies can be usually replaced by the error of inter
polation of the gravity anomalies - in the case of a detailed gravity net - or by the error of 
representation in the case of a thin net, which both can be determined on test areas. 

The general experience is that the mentioned two errors are function of the square root of 
the density s of gravimetric points. For the free-air anomalies we can find the following values 
for different terrains in the literature : 

m f::::. g 
in flat and in mountains of 
hilly areas medium heigth 

USSR ± 1 ,08 ys 

GDR ± 1 ,0 ys ± 4,5 1/s 

India (average) ± 1 , 1  ys 

All the values have been got with a linear interpolation of the free-air anomalies. Considering 
the possibility of a hypsographic interpolation, the coefficients can be less (For example in GDR 

in mountains only ± 1 ,  1 5  l/ s ). 
We too have carried out some numeric investigations in test-areas, and have got the following 

results in Hungary. 

in flat areas 

!:::, h <  2 m  

in hilly areas of 

200 - 300 m height 

in mountains of 

200 - 750 m height 

m f::::.g = ± 0,6 ys 

± 2,8 ys 

( ± 1 ,6 . s) 

On the base of these values we are able to estimate the m. s. e. of the components of the gravi
metric deviation of the vertical. (Some numeric results are in the first part of table II.) 

Turning back to the problem of the accuracy of the interpolated deviation of the vertical we 
have further to investigate the 3rd term of equ. (4). It is the error of the l inear interpolation of the 
deviation of the vertical. 
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According to Molodensky 

0 1 6" --1 o" I , /\ . 
< q2 - 1 u,g ' ( 1 0) 

where q = R/r, the ratio of the radius of the area with known astrogeodetic points to the radius of 

the gravimetrically surveyed area, while !:::..g is the mean anomaly round the circle with a radius R. 
From equ. ( 1 0) one can determine the R radius of that area from where gravimetric data are 

needed if we want to interpolate the deviation of the vertical inside of an area with the radius r. 

Vo 1 6" 
R ?:- r T 6g 

Let we take an error of interpolation o = 0, 1 6" ;  

Some values of R, r and !:::..g are the following. 

Table I. 

!::..g R/r mgal 
r = 20 30 

30 5,5 1 10 1 60 

40 6,3 1 30 1 90 

50 7, 1 "1 40 2 10  

60 7,7 1 50 230 

70 8,4 1 7() 250 

Table II 

I m E,o m E, 1 · m E, 1  . .  m E,2 m f,3 I 
Flat land ± 0, 1 60" ± 0,030" ± 0,080" + 0,1 50" ± 0, 1 40" 

Hilly land 
200 - 0, 1 60 0, 1 30 0,4 10  0, 1 50 0, 140 
300 m 

Mountains 
300 - 0, 1 60 0,360 1 , 1 20 0, 1 50 0, 1 40 
800 m 

40 

R km 

220 

250 

280 

3 1 0  

330 

m E,gr 

60 

330 

380 

430 

460 

500 

m E,r 0 

± 0,28" ± 0,20" ± 0, 1 6" 

0,50 0,20 0, 1 6  

J ,20 0,20 0, 1 6  

I 

1 00 km 

550 

630 

7 1 0  

770 

840 

m E, · mt 

± 0,36" 

0,59 

1 ,36 

As it appears, in Middle-Europe, where we have sure more astrogeodetic points inside of a 
circle with a radius r = 1 00 km, it is enough to have gravimetric data from an area of some hundred 
or a thousand k.ilometers. 

In conclusion we have the following results. If we estimate the accuracy of the interpolated 
components of the deviation of the vertical on t he base of the mean distance of the gravimetric 
points, we can wait for the following accuracy in a point in Middle-Europe, supposing a detailed 
gravity net in the vicinity of the point (5 - 6  measured points in the central circle of r0 = 1 , 1  km 
and an average density of 2 km) up to 7,5 km, a gravity net with a density of s = 1 5  km in the 
zone 7,5 - 1 00 km, and having Arnold's and some satellite data in the zones 1 00 - 1 000 km. 
(See table II .)  



90 

S u m mary 

The mean square error of the components of the deviation of the vertical interpolated by 
gravimetric methods has been i nvestigated and expressed as a function of the error of interpolation 
of the free-air anomalies. Later has been determined in test areas of different kind of terrains. In  
result the errors of interpolation are in  

flat land ( 6 h  < 2 m) 

hi lly land (200 - 300 m) 

mountains (300 - 800 m) 

where s is the mean distance of gravimetric points. 

± 0,6 v� mgal 

± .2,8 v� mgal 

± 8,0 l/;-mgal 

Taking these results in account the mean square error of the i nterpolated components of the 
deviation of the vertical has been calculated for a point in M iddle-Europe surrounded by a detailed 
(s ,......., 2 km) gravity net up to 7,5 km, a normal density of gravimetric points (s ,......., 1 5  km) between 
7,5 - 1 00 km, and in the far zones up to 1 000 km having Arnold's and some satellite data. The 
calculations have shown, that the mean square error of the interpolated component of the deviation 
of the vertical is in 

flat land ±: 0,3" 

hilly land 
(200 - 300 m) ± 0,5 " 

mountains 
(300 - 800 m) ±: 1 ,2" 

including the error of the components of the astrogeodetic (relative) deviation of the vertical and 
the error of the linear interpolation. 

Determination of Scale in Spatial Direction Networks 

by K. Rinner, Graz 

1 .  Introduction 
Procedures for determining the scale in spatial direction networks are actually of practical 

importance and are also used for the determination of the PAGEOS world network. 
Spatially oriented directions between observation points can be calculated from photogram

metric astronomical direction observations to satellites and simultaneous t ime measurements. 
r 

They constitute a spatial direction network connecting points on the earth's surface. The calculation 
and adjustment of a spatial direction network determines shape and space position of the polyhedron 
formed by the observation points ;  the scale of the polyhedron is, however, unknown (Fig. 1 ). 

On account of the geometric simi larity of the model constituted by the space directions, measure
ment of the Jenght of one side of the direction network would be sufficient for the scale determination. 
For known geodetic principles, however, i t  is desirable to measure the lengths of several sides thus 
improving and controlling the scale determination. 

The sides of a spatial direction network are running through the terrestrial body as straight
l ined distances.between two points on the earth's surface. Therefore, their lenght cannot be measured 
directly ; it has to be derived with the aid of a spatial base network in which the side to be deter
mined is a diagonal. 

On continents this base network may be a spatial geodetic network of the l st order sufficiently 
reinforced by additional measurements (distances, zenith distances and astronomic measurements). 
Sides running below the surface of the sea must be determined with the aid of network containing 
space points (satellite positions). Secor, Laser and Doppler measuring devices can be used to form 
such networks. 
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Fig .  1 

A systematic investigation of procedures for determining the scale in  direction networks was 
carried out by the author in  [ 1 ] . The fol lowing report deals with the scale determination, acutally 
of practical importance, with the aid of a spatial polygonal traverse and by means of a prodecure 
suited for the application of Secor. 

2. The spatial polygonal traverse 
A space polygon may be oriented or non-oriented. I n  the former case, the oriented directions 

of the polygon sides are known and we have got the spatial analog to the two dimensional oriented 
travers. 

For the non-oriented polygonal traverse we have got the projections of the spatial polygon 
angles into the equatorial plane and the declination angles of the polygon sides. The projection 
of the traverse into the equatorial plane corresponds therefore to a non-oriented plane polygonal 
traverse. The spatial traverse is derived therefrom by means of the declination angle of the polygon 
sides. 

e 
...... 

e1. 
,..,, 

k 

e -

Fig. 2 
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2. 1 .  The oriented spatial polygonal traverse 
The directions of all polygon sides in  space can be oriented by determining astronomically 

the longitude ).., latitude cp, and azimuth a in every second point of a space polygon. I n  this case, 
the latter is formed by simply jo ining the oriented sides. It corresponds to a two-dimensional compass 
traverse measured by jumps (Fig. 2). 

For determining an oriented traverse every other polygon point must be a Laplace point, 
and geodetic direction and zenith distance measurements need be carried out in these points only. 
However, the traverse contains no control and there is no possib ility of controll ing and improving 
the always uncertain refraction. This is on ly possible by making additional measurements in the 
omitted (jumped) points. 

In the case of an additional observation of horizontal directions and zenith distances in one 
of the jumped points the spatial angle of the polygon sides starting from this point can be derived 
both from these observations and from the oriented directions on the neighboring points. Equating 
the two expressions gives a conditional equation which may be used to determine a value for the 
refraction coefficient . 

Every further astronomical quantity observed in  a jumped points provides another conditional 
equation. 

Altogether four cond itional equations are available by determining all astronomical data in 
such a point so that three successive points of the polygon are Laplace points. They are the equations 
(3b, c) derived in the Annex for each of the two polygon sides. 

They can be used to determine an improved value of the refraction coefficient for each side 
and to improve the observed astronomic and geodetic data. 

The derivation of the formulas as wel l  as l inear forms therefore are contained in the Annex. 
I t  should be pointed out that Eq. (6a) contains no longitudinal term and, therefore, also exists 
if the astronomical longitude was not determined. 

The adjustment of a system of such equations leads to optimum values for the coordinates 
of the polygon points from which the base can be determined as diagonal. 

It is also possible to introduce parameters A, cp or (1.0 of the orientation matrices which are not 
observed as unknowns into the adjustment and to determine them at the same time. 

2.2. The non-oriented spatial polygonal traverse 
We obtain a non-oriented space polygon by observing the latitude cpi , the azimuths aij in each 

polygon point as wel l  as the directions and zenith distances of the polygon sides. l n  this case, rel
ations for determining the decl inat ion 'Oij and the hour angle tij = wij - )..i of the polygon sides 
follow from Eq. (2), Annex (Fig. 3). Since the difference of the hour angles tu is equal to the difference 

Fig. 3 

of the time angles wij counted from Greenwich, the angles b. wij = b. tij of the polygonal traverse 
projected into the equatorial plane are known. It is t herefore possible to determine a direction 
angle wij of a polygon side from the observed data and an assumed direction of the first side as 
for the two-dimensional polygon. 



n 
Wij = CU 1 2  + � /:1 fp ± n 

p = I 
This equation is supplemented by the condition given in Eq. (3 c), Annex : 

Su + sji = o 
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(1 )  

(2) 

If the polygon contains two-non-consecutive Laplace points, m and n, Eq. ( I )  delivers a condition 
for the intermediate observed data. 

m 
Wm,m- 1  = Wn,n + 1 + � /:1 fp + (m - n) 7t 

P = " 
(3) 

We can eliminate the influence of refraction for each side with the aid of Eq. (2) . The linear form 
(6a) derived in the Annex can be used therefore. An approximate elimination is provided by the 
following system : 

1 
Zij = z' ij + 

A . .  
cos sij CS' ij + S'ji) 

lj 

Aij = - sin z'u (sin <p; + sin <pj) + cos z'u (cos <p; + cos <pj) 

Often it will be sufficient to use the simplified relations 

(in Eqs. (4a, b), z' are observed zenith distances and 8' are values calculated with z'). 

2.3. The observed data 

(4a) 

(4b) 

Geodetic observed data for three-dimensional networks and the space polygon are horizontal 
directions r, zenith distances z and lenghts s of the network sides. (r, z) determines the bundle of 
directions for every network point. In addition we use the coordinates (<p, ).) of the plumb l ine 
obtained by astronomic measurements and the direction of the meridian determined by the orientation 
constand a0 of the horizontal directions. The procedures of astronomy and of the observation of 
horizontal directions are well tried and need not be discussed. 
The distance observation must be made by light waves to obtain an accuracy of some mm/km. 
Longer distances (over 20 km) should be determined in sections to reduce the influence of refraction 
and permit additional controls. Local direction and distance networks with known transfer properties 
can be provided for calculating the total distances. 

In microwave observations we must endeavour to eliminate the influence of reflections. This 
may be done by additional eccentric measurements or multiple controlled subdividing. The latter 
is recommended for better elemination of the refraction influence. An average accuracy of only 
± 5 mm/km for network sides may be expected from microwave measurements. 

The most difficult task is the determination of good zenith distances for long network sides. 
Favorable conditions prevail in the mountains where we can expect an accuracy of ± 2". Obser
vation from platforms about 20 m high in the flat country should be provided. 

If this were not possible zenith distances may be derived from the difference in leveling heights 
if the difference of the geoid undulations is known. This is always the case when the vertical direction 
has been determined in the distance end points P;, Pj· 

In the region of network sides 1 .0 we can assume spherical potential surfaces. Besides it is 
permissible to assume that the orthometric height difference !:1 Hij can be determined by leveling 
and gravity observation in the flat country. From the known vertical directions in P;, Pj we know 
the angle ftij formed by the verticals 

cos frij = sin <p; sin <pj + cos <p; cos <pj cos () ... 1 - A;), (5) 

The true zenith distances ZiJ and Zji can be calculated from the height difference !:1 HiJ and the 
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Fiq . 4 

measured side sij. From Fig. 4 we take the following relations : 

� H .. cos - = s . . cos z . .  - ---.f}ij ( ,ftij ) I/ 2 I) 1) 2 

Hence follows for the true zenith distance not affected by refraction : 
----------- ·-- - . · -

tan - -- = tan ·--- - + - -- - · + -- - tan zij su &u vsij - 6 Hu ( sij &iJ )2 
2 siJ + 6 Hij 2 -- sij + 6 Hij sij + 6 Hu 

2 

In this equation, only the posit ive root makes sense for the flat country. 

(6a) 

(6b) 

With the aid of the known vertical directions in P;, Pj it is also possible to free the observed 
zenith distances Zij , Zj; from the refraction influence if the assumption of a symmetrical (circular) 
path curve is permissible. Fig. 5 shows a projection onto a plane, parallel to the two verticals, in 

Fig. S 

which the zenith distances Zij, Zj; and the angle .f}ij between the verticals appear because of the 
small distance of the vertivals accurate to terms of h igher order. We take therefrom the fol lowing 
equation existing between the observed zenith distances z' , the refraction amounts S z, the true 
zenith distances z and .&. 



o Zij + o Zji = &;j + 7t - (z' iJ + z'ji) 

For a �ymmetrical path curve, i .  e .  if  ozij = ozj; i t  follows because of z = z' + o z :  

1 
Zi; = 2 (7t + &;j + z';; - z'ji) 

1 / I Zji =1 (7t + &ij - Z ij + Z ji) 

If  the vertical directions of the end points are unknown the refraction coefficient 

R R 
k = - = - (o Zij + 0 Zj;) 

r s 

R radius of curvature, r radius 
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(7a) 

(7b) 

(8a) 

must be i ntroduced as an unknown and be determined in the course of the calculation. k can be 
determined for a certain area, for every station, or - if the network has sufficient redundancy 
i n  determination - for each side. From the known coefficient k follows according to Eq . (8 a) 
for a symmetrical path curve the refraction angle : 

s 
o z = - k 

2 R  

Errors i n  the determination of o z  effect for flat bearings ( z • �) direction errors : 

s in cp 
do = -- o z ,  

cos o 

cos cp si n t 
dw = o z  

cos o 

The influence is particularly h igh for large o, i .  e. near the poles 
2.4. Calculation of the space polygon 

(8b) 

(Sc) 

From the available observed data we determine, uncontradictedly, sides sij and directions rij· 
With them we can determine the base length. 

b = xn - x1 = :L s;j rij (9) 
-- - .__. -

b = / b / = 11 ( Xn - X1 )2 

For the adj ustment we form the differential formula : 

( l Oa) 

I n  it we represent the directional variation d'!J as a function of the observed q uantities which we 

combine to a vector : 

dr;j = lfj dP;j 

d!!._Tij = ( z, r, ).., cp, a );j 

I f  Qp denotes the weighting matrix of dp it follows, according to know rules, for the base error : -
Qbb = 'l;' ( rT. r · · )2 Q  + s2 · · ( rr . . r . . )TQ ( rT· · '· · ) L..,., -- In• I] SS I] - IJ:!.:_J p � lj l I] ( l Ob) 

mb = mo f Qbb 
A strict n umerical adjustment should be carried out by the more expensive, but clearer procedure 
of adjustment by variation of parameters. The value of a strict adj ustment is, however, as for the 
p lane polygonal traverse, problematic because of the low redundancy i n  determination since the 
gain in accuracy attainable stands i n  no reasonable relation to the necessary expenditure i n  cal
culation. 
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For this reason, an approximation method is indicated that fulfills all revlevant conditions. 
We assume that all directions and zenith distances have been observed, the first and every further 
fifth point are Laplace points, in the other points of the polygon cp and a are assumed to be observed. 

Here, the procedure is described by individual calculation steps (Fig. 3) : 
1 .  The orientation matrices R/...cp , Rep are formed by means of  the astronomic data and all local 

- -

directions r'(z, a) are transformed to the equatorial system in directions r(o, w) and r(o, t) . 
Preliminary direction coordinates are known as a result of the operation to be carried out ac
cording to Eqs. ( 1 )  and (2), Annex. 

(o), (w) in Laplace points 
(o), (t) in points with observed (cp, a) 

2.  We correct the two (o)-values obtained for each traverse side according to point 1 ,  with tht.. 
aid of Eq. (4 b) : 
This procedure corresponds to an approximate correction for refraction assuming a circular 
path curve. 

3. The refraction angles determined according to point 1 

� t; = f;k - f;j = Wjk - Wij ( 1 1 )  

o f  the polygon projected i n  the equatorial plane are corrected, as for the plane polygon, by 
means of the conditions, Eq. ( 1 ) .  Thus, we obtain uncontradicted direction coordinates w 
for each polygon side. 

4. With the values ( o, w) obtained according to points 2,3 we calculate corrected directions .!) 
of the polygon sides and enter Eq. (9) with them. 

For an error estimation we form according to Eq. (9) : 

(Xn - X1) = � X =  L S COS O COS W 

( Yn - Y1 ) = � Y = L s cos o sin w 

(Zn - Z1) = � z  = L s sin o 

I f  we denote the direction coordinates of the base by bi .  b2, b3 i. e. 

1 T -- (Xn - X1)  = (b 1 > b2, b3) 
b - -

it follows from Eq. ( 1 2a) and the first Eq. ( lOa) :  

( 1 2a) 

Qbb = b 12 Qxx + b22 Qyy + b32 Qzz + 2 (b 1  b2 Qxy + b2 b 3 Qyz + b3 b 1 Qxz) ( 1 2b) 

The weight coefficients Q;k can be expressed, according to known rules, by Q00, Qww Q0w and 

the uncorrelated Qss· The following holds for the quadratic coefficients : 

Qxx = 2.::{(cos o cos w)2 Qss + (s sin o cos w)2 Q00 + (s cos o sin w)2 Qww + 

+ 2 (s2 sin o cos o sin w cos w) Q0w } ( 12c) 

Qyy = L{(cos o sin w)2 Qss + (s sin o sin w)2 Q0?) + (s cos o cos w)2 Qww -

- 2 (s2 sin o cos o sin w cos w) Q0w} 
Qzz = L { sin2 o Qss + <s cos o)2 Q00 } 

Similar expressions are found for the mixed coefficients Qxy. Qyz• Qxz· We are not going to write 
them down ; we just point to the remarkably simple sum 

( 1 3) 

The latter determines the point error of the end point and gives an upper bound for the accuracy 
of the base length. The observed data should be introduced in  Eqs. ( 1 2) ( 1 3) but in  most cases i t  
will b e  sufficient to use estimated weights o f  the direction coordinates ( o, w). 
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The two first Eqs. ( 12) describe the projection of the space polygon into the equatorial plane, 
the last Eq. ( 1 2) the projection into planes normal thereto. This concept facilitates the estimation 
of errors. 

For a schematic polygon with equal side errors and equal errors in 8, w it follows from 
Eq. ( 1 3) : 

0 -< cos 8 < 1 holds for a north-south traverse, cos 8 = 1 for an east-west traverse. 
An estimation of errors for a traverse 2,500 km long with sides 20 km long and measurement 

errors 

m.s = ± (2 cm + 2 . 1 06)s , mz = ± 3" 

shows that a relative side accuracy of ± 1 .5 mm/km can be attained. 

3. Scale determination by Secor 
3. 1 .  The basic idea 

The scale of a direction network may be also derived from four distances s; (i = 1 to 4) which 
are measured from an arbitrary point S to arbitrary four network points P; (i = 1 . . . 4). If P' 1 
denote the points corresponding to P; in the network model, the model point S' can be determined 
from three side ratios (Fig. 6). 

p I 

Fig. 6  

s; s ' 1 
µ,j = - = --; (1) Sj S j 

Each ratio determines an 'Apollonian sphere as the locus for S' whose center M' ij lies on the line 

P';Pj = s;j at a distance of 

from P;, and has the radius : 

µ . .  2 
I IJ I 2 ) m r = s ; - ( a  J µ· ·2 - 1 J 

IJ 

I 
µ;j I r r = s ij J µ· ·2 - 1 IJ 

(2b) 

7 
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The point S' corresponding to the measuring point S is fixed as point of intersection of three Apollon
ian spheres or by space section from the three centers M' ij with the distances r' ij- When S' has been 
determined the scale factor follows as ratio of corresponding sides : 

S· :A = � (3) 
Si 

The problem has an infinite number of solutions if the three Apollonian spheres form a bundle 
as in this case each point of the common intersecting circle may be regarded as a solut ion . This is, 
for instance, the case if the four points P; form a square and S l ies above the center. In this case, 
the Apollonian spheres degenerate to the symmetry planes of the sides s;j and intersect in the normal 
to the plane of the points P; passing through the center of the square. The common line of inter
section corresponds to the intersecting circle of the degenerate Apollonian sphere. Analogous 
conditions exist if a larger number of points P form a regular polygon and the point S lies above 
their point of intersection. 

Besides these critical loci providing an infinite number of solutions there are others for which 
the solution is unique but uncertain. They follow from a discussion of the differential formulas 
for the problem. For the analytic representation of the problem it is convenient to start from the 
relation 

s;2 = :A2 (y' - x'; )2 = ( y - x; )2 (4) 

Then, x;, Y; denote the position vectors of the points P' ;, S in the model, and x;, Y; the corresponding 

vectors in nature. Four distances s1 give rise to four equations (4) in which the three coordinates 
x, y, z of S and the scale factor :A appear as unknowns. 

In the practical application of the procedure it is always possible to carry out n > 1 quadruples 
of four measurements s;i each to n points Sj (with Secor). In such a case we have got an adjustment 
problem since a system of 4n equations with (3 n + 1 )  unknowns, i. e .  with (n - 1 )  excessive 
observations, is given. 
3 .2.  Calculation and adjustment 

Differential formulas of (4) are required for the calculation. It follows : 

s; a; = - . :A 

d s; = a; d:A + rx1 dx' + �; dy' + y;dz '  

x' - x;' 
rx; = :A ----

s; 

I I I 

�i = :A y - y ; 
' y; = :A z - z ; 

S; S; 

Each side s;i measured from P; to Si gives rise to an observational equation : 

s· ·  + y . . = :A (s ' . . ) + d s . . IJ IJ IJ I] 

(s ' ;i) = v' [(y'i) - x' ;)2 
(y'i) = approximate value 

(5a) 

(5b) 

The system of observational equations existing for n points Si and four points P; can be represented 
by the equation 

v = A x + l (6a) 

In it 

denotes the vector of the (3 n + 1 )  unknowns. The coefficient matrix A, with the auxiliary quantities 

':._Ti = ( a 1i , a2j , a3; , a4i ) 

rx 1i � lj ylj 

K 
CJ.2j �2j Y2j (6b) -

_J ct.3j �3j YJj 
ct.4j �4i Y4j 



assumes the simple form : 

f �1 K1 0 . . . . . . . . . . . . 0 ) 
kz 0 K2 . . . . 0 

A =  

kn 0 0 Kn 

The vector of the absolute quantities is given by 

/ T = () .. ) (s' )T - sT 

() .. ) , (s ' ) from approximate values 
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(6c) 

(6d) 

Since the variations of the coordinates dy are not required it is convenient to eliminate them so 

t hat , after elimination, .A is left as the only unknown of the normal equation system. 
An investigation carried out in [ l ] on optimum and critical configurations leads to the following 

result : 
a .  The procedure fails if the points P and S lie on a sphere. This is always the case if the points Pi 

are located on a circle. 
b. If the points of the terrestrial figure lie in the corners of a regular polygon and the (n + 1 )  in the  

center of the  circumscribed circle, the relative accuracy of the scale factor will be  independent 
of the number n. Therefore, a terrestrial figure formed by the corners of an equilateral triangle 
and its center of gravity makes expect a good result for the scale determination. 

3 .3 .  Numerical studies 
The procedure described might be used to carry out the scale determination of a direction 

network with the aid of the known Secor measuring device. A high accuracy can be expected 
because a very great number of distance quadruples can be measured to four points P; of the net
work by means of Secor. 

Numerical studies were carried out on a seriex of models to gain an insight into the accuracy 
with different arrangements of the terrestrial point groups and of the space points Si. They were 
chosen so that they corresponded to the conditions prevailing in the PAGEOS world network. 

The root of the weight coefficient of the scale factor was calculated for each assumption. The 
error of the observed distances was assumed to be constant. The calculation was made dimension
less with an arbitrary unit E. The scale error is determined by the fol lowing relation : 

1 · ' Q m"A = - m � .AA 
E s 

where ms denotes the d istance error and E the unit of the model. The conditions of the PAGEOS 
world network fol low approximately if E is chosen with 500 km. Herewith and for ms = ± 5 m 
i t  follows : 

This means that the tabulated values of the numerical studies correspond, i n  this case, to units 
of the 5th decimal of the scale error. Now we are going to report on the investigations carried out 
and the results obtained. 

First study 
I t  has been shown in  section 2.2 that for theoretical deliberations favorable results will be 

obtained by a configuration in  which three of the terrestrial points form an equilateral triangle 
and the fourth point lies in the center of gravity of the latter. This assumption constituted the basis 
for the first study. The radius of the circumscribed circle was assumed with 4 £, the height of the 
points S with 3 £  (Fig. 7 a - d). 

7 *  
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Four different assumptions were made to find out to what extend the position anc number 
of space points affect the result. 

For the first assumption the scale was derived with the aid of one single space point o varying 

position. The points were chosen in  the nodes of a lattice of mesh with. The l'' Qn values btained 

were written down in Fig. · 7 a beside the lattice points. An optimum result is attained if he space 
point l ies above the center of gravity of the base figure. A scale error m"A = ± 2,6 . 1o- 6  isobtained 
with the assumptions made (ms = ± 5 m, E = 500 km). The error grows l inearly with the distance 
error ; for ms = ± 20m it would amount to the fourfold, i. e. about 10- s .  

In  assumption 1 b the scale determination i s  made with four space points forminga square 
of side length E. The position of the square was varied. Fig. 7 b  shows the results obtaind for the 

y Q)..J.. values in  the center of gravity of the figure formed by the four space points. I n  this case 

maximum accuracy is reached if the center of gravity of the space points lies above the ::;enter of 
gravity of the terrestrial points. The accuracy is  twice that of assumption 1 a, i .  e .  it gnws with 
the root of the number of space points. 

This result is confirmed by assumptions 1 c and 1 d where 9 and 1 2 1  space points ar used. In  
the former case, maximum accuracy m"A = ± 0,9 . 10- 6 in the latter m"A = ± 0,3 1 0- 6  (Fg. 7 c, d). 

Second study 
In  further numerical studies the influence of height and of the number of space p�ints was 

investigated for various configurations of terrestrial points. The space points were chosm, in the 
known optimum position, in a quadrangle of side length 2 £  so that their center of gravity ay above 
the center of gravity of the terrestrial figure. The number of space points was varied from 1 to 1 96, 
the heights frc:im 5E to 8 £. 

A diagram showing the dependence of l' Q)..).. on the height and on the number of sp<ee points 

was drawn for each of the base figures chosen. Besides, Figs. 8 a - f  show the configuratbn of the 
terrestrial points. The area of the space points is shaded. From the figures and diagrami we take 
the following results : 

a. In  all assumptions the accuracy grows with the root of the number of space points as has been 
presumed in  theoretical deliberations. 

b. The influence of different heights on the accuracy of scale determination is smal l .  I n  my case, 
the lowest of the assumed heights gives the best result .  

c. The most favorable result is obtained with a terrestrial figure the points of which l ie in tte corners 
and in the center of gravity of an equilateral triangle (Fig. 8 a). A rhombic figure of diagonal 
ratio 1 : 3 gives a scale of only slightly reduced accuracy. The same holds for a rhombic figure of 
diagonal ratio 1 : 2. A loss in accuracy of about 40 % was found for a diagonal rati J  of 2 : 3 
(Fig. 8 c).  This is noteworthy since this figure comes already near the crit ical configLration of 
the terrestrial points. 

d. An increase in the number of terrestrial points to 6 (Fig. e, f) gives only a small increase in 
accuracy. 

3.4. Result 
The result obtained is very important for the scale determination in the PAGEOS network 

by SECOR. It shows that the great number of rhombic figures available in the PAGEOS network 
may well be used. Besides, the four-distance version of SECOR now available is ful ly ufficient . 

In  particular, the scale determination in the PAGEOS network by Secor has the following 
a�vantages : 

a. With the use of one single figure and a distance error of ± 20 m,  an accuracy in scale determin
ation of ± 1 mm/km can be expected if at least 200 space points are used. 

b. Various figures of the world network including such over oceans may be used for the scale 
determination. This gives a possibility of improving the accuracy and control ling the procedure. 

c. The scale determination can be carried out independently of the direction measure:nent and 
repeated at any time. 



a =  �.J E =  650km 
b = 4 E =2000 km 
a : b  = 1 : 3 

a = 2 E = 1 OOO km 
b = 4 £  = 2 000km 
a : b = 1 : 2.  

+ x  

+x 

1 

+x 

fii;;.=,7 

+y 

Fig.B a  

Fig. 8 b  

-- h = 5,0 E 
. . . . . . . .  h = 6,5£ 

0 6 ' 

0) .5 

0 ,  4 

0,.3 

0 , 2  

o, 1 

D,5 

0,4 

0, 2 

0 '  1 

- - - h = 8,0E �=,7 
0, 6 

0, 5 

0, 4 

0 , 2 

o, 1 
Fig.8c 

1 03 

-

\ 
� \ 
\ \  
:. \ \\' \ \ 

. \ 
· .. , I\ ·' 

· . . . '>� �· I-f'.. . . . ::-: : .... -r"'---- · · ·· ·  '"" -.... -"": .-=:-· · · ·
· 

. . . . � ':":':" - �-� . . . . -

f 4 9 16 ts 36 49 Gil 81 1()() 121 14'1 1tlJ 19G "'" 

\ 
": \ 
\\  

v \ I\ •.\ 
·. ' I\ "' . 

• . ..... K ....... 
. . . · 

,... -
-� � ... _ ..:..:..: · � -"':' 1:-: .• "':" .-: -. . .  � =-": �  

1 4 9 16 !5 .J6 49 64 81 m 121 1# 169 f96 "" n  

r, 
J 
�\  
�\ 
\ �, 

\\ I 

\ 1 "\ 
r'\\1' 

\ •• 'I K �. " .. �· . . . " -r--� - .. "- -... _ �· · · · · · 
- ·  i- -. . . . . . .

. . . . �:-. ':':":' 

1 4- 9 16 25 36 1;9 Gil 8f 'KJO 121 '#I 169 19' =- n 



1 04  

�9 U--l-----+--+--+---+-- --l--+---+---+--t--+-+� \ I 

I ! I rrt-, --'---'-----' •�----+--+---+-i--+----1 i ' \ 
I i I! I I I I l-+'+--+----+--+--+----+--t--t--t -+i -'--T--

1 i : I 

a =  2, 7£ = t300km 
b = 4 £ =  2oookm + x  
a : b  = 2:3 

b 

' , 1 I 

0) 4 ,__..._._.--I-�->---+-! -n--1 _ .:__• _ _J 
I ! ' ' I i 
I I i I 

Fig. � d 

o, s 

0, 4 

4r'Z £ :::11.5;7£= 28SO/fm Fig. 8 e 
o, ! 

h = 5,0 E 
+x . . . . . . . . . . . h =  6,5 E i - - - h = B,O E 

2t1'2£=2,8E ft,OOkm 

Fig.8 f 

IG;.r,b 

0, 1  

o, 1 

1 If fJ � lS 36 49 64 81 W f21 flll e; 1$6 = n 

! l i I 
i 

I 
I I I 

[\ I I I ; I I I I :\  I I I ! I 

·. \ I I 
":\ I I : I \ : , I \ � I ' I I 

.. \ 
I 

I ! I ! K �- I . T I 
i.. , I �  r':.· . . , ...... I'°""--� .... _ 

- ·  i:..:.:._ . . . ':""". :- - :-: :t..-:-1'.":"'!i .�� I I I l 
1 

I . ' 

, -r-:--i 

1 If 9 f6 l.5 J6 49 6* Bt m t.tt tiff t& 196 = n 



105 

Summary 
The scale determination in  spat ial direction networks is an actual problem of geometric satellite 

geodesy. The present paper reports on two practicable methods. They are the spatial polygonal 
traverse measured along the earth's surface on continents, and the us·e of Secor that is also possible 
over water surfaces. The former method requires a great expenditure of observations and is restricted 
to continents. The accuracy attainable was found to be ± l mm/km. The latter method may be 
used i n  any number of quadrangles of a direction network . I ts accuracy can be increased over 
± 1 mm/km by repeat ing the observations. Further suggestions for the scale determination with 
other configurations and with other measuring devices (Laser and Doppler) have been made in [ 1 ] . 

The present paper originates from a research project sponsored by Gimrada, USA, under 
contract no. 9 1 -591 - EUC-4006. 

L i t e r a t ure : 

I .  Rinner, K. : Annual Technic?.I Report, Contr�.ct Number 9 1 - 59 1 - - E UC -4006. 

C o n d i t i o n a l  E q u a t i o n s  i n  T h r e e - D i m e n s i o n a l P o l y g o n  

I . General form 
The horizontal directions r;j and r1;, the zenith distances Z;j, z1; and the side s;j are assumed to 

have been observed between two Laplace points P; and Pj . a01 denotes the orientation constants 
with which the horizontal directions rtj are transformed to azimuths Gfj , !:_L

cpl... be the orientation 

matrix thc>.t can be calculated from the astronomic data (cp, 1...)1 i n  the Laplace point P,. The local 
directions ( sin z · · sin ( r · · - a  · ) ) 'J 9 01 

r,J· - ( z ,  r )  = sin z · · cos ( r · ·  - a · )  - IJ IJ OI 
COS Zij 

can be transformed with the aid of the matrix (- sin "A1 - sin cp1 cos "A1 cos cp1 cos "A1 ) �1 cp"A = cos A.1 - sin cp1 sin l...1 cos �I s in A/ 

0 cos cp1 sm cp1 

to the equatorial system through Greenwich. 

r;1- (  o ,  w )  = ( �:: !i� ��: :�� ) -- lj � l.J 
sin o · ·  'J 

The transformation equat ion has the form : 

( U;j ) 
v · ·  'J 
W· · IJ 

�-ij ( O ,  w )  = '!_;
cpl... !.!) ( z ,  r � a0) 

( 1  a) 

( l b) 

( l e) 

(2) 

Since the directions oriented in  the equatorial system are available for each Laplace point, the 
fol lowing vector equation ex ists between two Laplace poin ts P; P{ 

Hence the scalar equations : 

W · ·  + W ·  = 0 lj J I  

U, i Vjj --;- Ujj Vji = 0 

They are equivalent to two conditions for the direction coordinates o, w 

o;1 + oji = O 

Wji - Wij + rt = 0 

(3a) 

(3b) 

(3c) 
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This gives differential formulas with the fo llowing coefficient schedule : 

d A. d cp d a  dz 
--· ·--- --

d ll A '  B'  C' D' 

d v  A " B " C" D" 

d w 0 BI" 
C"' D '" 

A ' = - cos A. sin z s i n a  + sin cp sin A. s in z cos a - cos cp si n A. cos z 

B' = - cos cp cos A. sin z cos a - sin cp cos A. cos z 

C' = - s in A. sin z cos a + sin cp cos A. sin z si n a  

D' = - sin A. cos z sin a - sin cp cos A. cos z cos a - cos cp cos A. sin z 

A" = - sin A. sin z sin a - sin cp cos A. sin z cos a + cos cp cos A. cos z 

B" = - cos cp sin A. sin z cos a -- sin cp sin A. cos z 

C" = cos A. sin z cos a + sin cp sin A. sin z sin a 
D" = - cos A. cos z sin a - sin cp sin A. cos z cos a - cos cp sin A. sin z 

B'"  = - sin cp s in  z cos a + cos cp cos z 

C'" = - cos cp sin z sin a 

D' " == cos cp cos z cos a - sin cp s in z 

2. Linear forms for the equations 

(4a) 

(4b) 

From the first equation (3 b) follows system (5a) in  which we have designated the observed 
values by strokes : 

d w· · + d w · · + Wl · · = O I] JI  I] 

wI. .  = sin o' · ·  + s in o' · · IJ I] JI 

(5a) 

We introduce Eqs. (4 a) (4 b) and replace the differentials of the observed quantit ies cp, A. and r by 
correct ions v. Since the zenith distances z are distorted by a systematic portion of refraction we 
introduce for each ide a refrnction coefficient k .  (thi corresponds to the assumption of a circular 

refraction curve) and replace the differentials of the zenith distances by the following expressions : 

d Zij = Vzij + fXij kij 

d Zji = Vzij + fXijkij 
rxu = 

2 R  

R = mean radius of curvature 

As a resu l t  we obtain the equation : 

(5b) 

b1 ij v cpi + b1j; v cpi + c1 u VaiJ + C1j; Vaji + d1 ij Vzij + d1ji Vzji + rxu (d1 u + d1j;) ku + W 1 u = 0 (6a) 

The following system holds for the coefficients : 

bi BI" ij = ij 
I C"' 

c ij = ij 

d'u = D1 11 u 

b1 BI" 
ji = ji 

I C '" 
c ji = ji 

dlji = D"lji 

wrij = sin o'u + sin o'ji 

From the second equat ion (3 b) we obtain the differential relat ion : 

v · · du . . + u· · d v· · - v· · du · ·  - u · · d v · · + Wlltl) = 0 I} JI JI I) JI I} I) JI 

(6b) 

(7a) 
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After some transformations we obtain the equation : 

- sin w'u ( d  uu + d Ujt )  + cos w'u (d vu + d vj; )  + cos ou ( w'iJ - Wji + rr )  = 0 (7b) 

Introducing the relations according to Eqs. (4a, b) we obtain the l inear form for the second 
L aplace condition. 

II I I  + b" + b" + I II + I I + a ij V)J + a  ji v).) ij Vcpi ji Vcpj v ij C  ij Vaij c jl Vaji 

+ d" ij Vzij + d "ij Vzji + (Xij (d"ij + d"j; ) kij + W If ij = 0 

The fol lowing system holds for the coefficients : 

a" . .  - - s1·n 1·'1 · · A 1 • • + cos w' · · A " · ·  I) - VJ I) I) I) I) 
I I  

• 
I A ' + I A " a ji = - sm w u ji cos w u ii 

bi t . I B' + I B" ii = - sm w  u ij cos w u ij 
b" . I B' + I B" jl = - sm w iJ ji cos w iJ ji 

II 
• 

I C '  + I C" c iJ = - sm w iJ iJ cos w ij iJ 
" • I C' + I C" c ji = - sm w u Ji cos w iJ ji 

d" 
. I D' + I D" u = - sm w ij u cos w u u 

di/ • 
I D' + I D" ji = - sm w ij ji cos w IJ ji 

W"u = + cos o'u ( <ll 1iJ - w'11 + rr )  

(8a) 

(8b) 

The two equations (6a) and (8 a) are the linear forms for Laplace's equations between two space 
points. They contain corrections for all observed quantities and the refraction coefficient as the 
only unknown. 

Elimination of the latter leaves one equation containing only correction quantities. 
If astronomic quantities cp or A were not observed the corrections V cp• VA must be replaced 

by differentials dcp, dA and the latter be introduced as unknowns. 

dcp , dA  instead of vcp , vA (9a) 

I f  the azimuth au was not observed the orientation constant a01 of the horizontal directions will 
be unknown and we must introduce 

Vaij = Vrij + d 00/ (9b) 

into the Eqs. (6 a) and (8 a). 

Studies of Gravity in Space According to Bjerhammar 

by Bo-Gunnar Reif 

Abstract 

An investigation is made of the possibi l i t ies to use Bjerhammar's new gravity reduction method 
for a study of the gravity in space. 

For this purpose Bjerhammar's theory is applied to two test models. The basic integral equation 
of the theory is solved by different approaches and the results are compared. Although the test 
models were of i l l-behaved nature, with mass focused between the topographical and the reference 
surface the results from the applications are in very good agreement with the theoretical values 
both at the topographical surface and in space. Hence Bjerhammar's theory can be successfully 
applied to gravity problems in space. 
Introduction 

In 1 849 Stokes published his famous solution of the gravimetric boundary value problem. 
The solution refers to an approximately ell ipsoidal equipotential surface the so-called geoid. Applied 



1 08 

on the gravity field of the earth all external masses had to be reduced inside the geoid. Rudzky 
and Heiskanen among others developed reduction methods for this purpose. The methods howeve<, 
were not entilrely satisfactory because densities had to be guessed or estimated. In 1 945 Molodensky 
presented a quite new solution of the boundary value problem. However, also his solution had 
some drawbacks. All integrations were carried out at the unknown physical surface. Furthermore 
the convergence of the solution for terrain inclination above 450 is questioned. Later on new 
methods have been developed by among others Bjerhammar [4] and Hirvonen [8] .  In Bjerhammar's 
new theory the problem is revised in the following way : 

"A finite number of gravity data (gravity anomalies) is given for a nonspherical surface, and it 
is required to- find such a solution that the boundary values for the gravity data (gravity anomalies) 
are satisfied in all given points. (External boundary value problems for finite number of points.)" 
(See [4] . )  
The gravity anomaly 

The normal way of tackling the gravimetric problem is to separate the gravity field of the earth 
in a regular and an irregular part . This can be done by introducing a reference sphere with the same 
rotation as the earth. Then the irregularities in the potential can be described by 

T =  W - U 
where 

W = potential of the earth 
U = potent ial of the reference sphere (theoretical potential) 
T = disturbance potential 

By taking the normal derivative of T we obtain 

where 

- -- == -- = - = 
-
( g 

-
y

) 
g = gravity at a surface point of the earth 

y = theoretical gravity at the same point 
g - y = gravity disturbance 
11 = normal of the reference sphere 

Here ·only g can be determined since we don't know the actual height above the reference 
sphere. 

From measurements it is possible to obtain an estimate of the height by 

where 

W0 - W 
Zo = - -- -Yo 

Z0 = theoretical height 
W0 = potential at a point of the sphere 
'( 0 = theoretical gravity at the sphere 

(For higher accuracy a correction is needed . )  
By the aid of the theoretical height we define the gravity anomaly as 

b.. g = g - y Zo 
I t  can be shown [4] that the anomaly defined in this way satisfies the boundary condition 

T v T 
--- . - - - = - 6.g Yo v n 

Gravity reduction 
From the usual approximation of the boundary condition 

(J T 2 T  

o r · J ,. . J 

(Brun's formula) 

( 1 ) 

(2) 

(4) 

( 5 )  

(6) 
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and the generalized Stokes' formula 

1 f j" 00 2 n + 1 (' 0) 
1J = -- D. g* 

4 7t rj 2: n - 1 rj Sn n = 2  

P,, (cos wij) d S (7) 

Bjerhammar [3] derived the integral equation for gravity reduction 

where 

1 (f ( 1 2 ( t 2 - t COS Wij ) ) /::,. g· = · · - /::,. g* - - 3 f COS Wr - - 1 d S 
1 4 1t r -2 r rJ r3 (8) 1 

• 

s 

r 0 = radius of the reference sphere 
r ·  = distance between the origin and the actual point P1· at the physical surface .I 

or in space 
T = disturbance potential 
tlgj = gravity anomaly at Pj 
!lg* = "gravity anomalies" at the reference sphere 
wij = geocentric angle between actual and moving points 

Pn (cos wij) = Legendre polynomial 
S = surface of the reference sphere 
t = r0/rj 
r = rij/rj 
rij = distance between the moving point on the reference sphere and the actual 

point Pj 
I t  should be noted that !lg* has no direct physical meaning if there exist masses between the reference 
sphere and the physical surface. 

reference figure 

t I g .  I . 

By omitting the two terms of lowest order in (8), the following integral equation is obtained 

!l g; =  -- dS 
r/ - r02 ff !lg* · 4 7t 'i r;13 

(9) 

In this equation !lg* is an unknown function at the reference sphere and D.g a function, 
known in discrete points at the physical surface. 

Once we have a solution !lg* to (9) we can make the following statement. 
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If T is harmonic and condition (6) is fulfilled at the physical surface the following relation is 
valid for T in space 

_ CJ T _ 2 T 
= 
r/ - r 02 ff 8 g* 

d S 
CJ rj rj 4 7t rj rij3 

(Here of course the notations refer to a point Pj in space.) 
In order to prove this statement we introduce the following notations 

or with 

and 

C') T  
G = - r ·- - 2 T  

1 Cl rj 

r/ = x2 + y2 + z2 

G = - 2 T - x- + y- + z-( t; T  t; T  t; T) 
t;x Cl Y Cl z 

r·2 - r 2 r1· r 8 g* F = 1 0 
0 

d S  
4 1t r  r . . 3 0 • I) 

( 1 0) 

F is harmonic outside the reference sphere and equal to r 06g* at the sphere (see [1 1 ]  page 262). 
G and its first derivatives are continuous. By differentiating G twice with respect to x, y and z we 

obtain 

t;2 G = - 4 
a2 T - ( x C'J3 T + y C)3 T + z a3 T ) 

CJ x2 Cl x2 C' x3 Cl x2 Cl y  Cl x2 C) z 
a2 G a2 T ( C)3 T C)3 T C)3 T ) 
Cl y2 = -

4 
Cl y2 -

x 
Cl y2 Cl x 

+ Y Cl y3 
+ z 

Cl y2 C)z 
a2 G 

= - 4 
a2 T 

- ( x Cl 3 T + y Cl 3 T + z Cl 3 T) 
C') z2 C) z2 C') z2 C') x  C') z2 Ci y  C) z3 

After introducing the operator symbol 

we get for the sum of the second derivatives 

6 G = - 4 6 T - x- + y- + z- 6 T_O ( Cl Cl Cl ) 
CJ X C)y C') z  

since T is harmonic outside the physical surface Hence G as well as T is harmonic everywhere in space. 
Furthermore F G at the physical surface according to (6) and (9). 
But if two functions are harmonic outside and take the same values on a bounding surface, 

then they must be identical everywhere outside this surface ([1 1 ]  page 1 34). Hence F _ G in space 
and ( 10) is valid. 

Let us study a very simple model. The model is a homogeneous sphere of radius r 0 with a 
disturbing point mass m at the center of the sphere. 

Here it is natural to define 6g as the attraction caused by the point mass m. Then (6) must be 
Cl T 

replaced 6g = - - . 

Cl r 
Jf the sphere is taken as reference surface we have 

Gm 
6 g* = ro2 
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where 
G = gravitational constant = 6.66 . 10- s in c. g. s. units. The continuation of !:l.g• in space 

is then 

or 

r .2 - r 2 J 1· G m 
!:l. gj = J 0 

d s 
4 7t r1 r 2 y . . 3 • 0 lj 

0 0 
After evaluation of the integral we obtain 

or 

Gm 
!:l.g· = --

J r ·2 J 
which we recognize as Newton's law of gravitation . 

In the generel problem (6) must be fulfil led. At the physical surface the gravity anomaly had 
to be defined as the difference between g and y taken at different heights for reasons mentioned 
before (4). I n  space we obtain the gravity disturbance as the difference between g and y taken at 
the same point. Then the disturbance in space can be computed by the formula 

The vertical deflect ion 
The vertical deflection is defined in the following way 

Here 

1 a 1J 
� = - . -Yj a x 

1 a 1J 
·� = - . -Yj a y 

a r 1 a r 

a r 1 a r 

tX = azimuth 

(North-South) 

(East-West) 

Before the derivatives of 1) are determined we rewrite (7) in the more suitable form 

1j = -1- JJ !::J,. g• (� - 3 r + 1 - 5 t cos Wij - 3 (COS Wij 1 n 1 - t cos Wij + ') d s 
4 1t rj r 2 

( 1 1 )  

(12) 

By the aid of these expressions Bjerhammar derived the fol lowing formulas for the vertical 
deflection which can be used when the unknown function f:l.g• has been determined. 

(1 3) 
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where 

nj = 1 ff !:ig* t sin w sin a k ' dS 
4 rtyjr/ 

(Generalized Vening Meinesz formulae ) 

2 3 ( r + 1 )2 
k' = - - 8 + 3 I n  <I> r 3 r2 <l> 

(r + 1 )2 - / 2  
2 <1> = -----

2 

(14) 

( 1 5) 

In order to test the theories of Bjerhammar, several applications have been made, all of which 
have been quite successful [4], [6]. Until now, however no applications have been made to theoretical 
models with disturbance masses focused between the reference sphere and the physical surface. 
Such models cause very large oscillations in the reduced gravity anoma.ly field !:ig* and might be 
difficult to handle numerically [4]. 

Also the possibilities to continue the anomaly field in space have been left uninvestigated in 
the preceeding applications. 

In this paper we have solved equation (9) for two models of the type mentioned above. As a 
check of our solutions the vertical deflection is computed at different points in space and at the 
physical surface by the aid of formula ( 1 3) and compared with the corresponding true values obtained 
from Newton's law of gravitation. 

Since gravity measurements can only be made in a finit number of discrete points at the 
surface of the earth, it will never be possible to obtain a strict mathematical solution of eq. (9) . 
Nevertheless it is allways possible to obtain a "solution" !:ig* that satisfies eq . (9) in all given points. 

In this way the "final solution" is immediately obtained. 
For practical applications it will often be suitable to start with a "preliminary solution" 

according to the method of least squares. This means that a low order solution is computed with 
consideral degrees of freedom ("supernumerary equations"). Then the sum of the squares of the 
residual gravity anomalies at the measured points is minimized. Cf. Bjerhammar 1964 p. 25 eq. 33 .  
Here the "preliminary solution" represents the case when the residuals are neglected. However, 
the residuals cannot be considered as stochastic variables and therefore the preliminary solution 
is only a part of the final one. In order to obtain the final solution we add corresponding corrections 
for the residuals . 

In order to obtain a preliminary solution of eq. (9) two different techniques have been used. 
1 .  Zero order approximation method [4] 
By substracting and adding t1g* to the numerator of the right member of (9) we obtain 

t1 gj = J 0 J J d s 
r -2 - r 2 ff tig* - !:ig* ·  + !:ig* ·  
4 rt rj rijJ 

Since !:ig*J is constant with respect to the integration 

Hence 

with the first iterative solution 

or 

t1g*j = t1 gj + J 0 J d s 
r-2 - r 2 1 ·1 · t1 g· - t1 g 

4 rt rj rij3 

( 1 6) 

( 1 7) 

( 1 8) 

( 1 9) 

(20) 
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By the aid of formula (20) we can gener ate a �g*-field which can be used for determination 
of other quantities, for instance the vertical deflection. 

Vertical deflections for this solution are given in tables 3- 6. 
The accuracy of the solution, however, is comparatively low but could be increased by th� 

fol lowing procedure. 
The �g*-field should satisfy (9). Therefore an estimate of the error in our solution is 

(21 )  

To this residual-field o�g we could apply the zero order approximation 

(22) 

From the new solution �g* + o�g* a new residual-field can be determined and so on. The 
prncedure can be repeated as long as the residual-field is decreasing in magnitude. 

It should be noted that the method is time-consuming since every determination of a point 
in the �g*-field necessitates the evaluation of two integrals at each stage in the procedure according 
to (21 ) and (20) or (22). 

2. Height-parameter solution [4] 
We approximate �g* by a polynomial in h in the following way 

where 
�g* = �g -t C 1h -t C2h2 -t . . . + Cm - I hm - 1 + Cm h m  

�g = anomaly at the physical surface 
h = height above the reference sphere 
c; = unknown constants 

(23) 

For the determination of the polynomial coefficients c; we use the fact that �g* should satisfy (9). 
Of course it is normally impossible to satisfy (9) in every point. Instead we pick out n (n > m) discret 
points which gives us the following linear equation system 

1 I 
where 

a1 1 c 1 + a 1 2 c2 + . . .  + a 1m Cm = � G 1 

a2 1  Ct + a22 t2 + · · · + a2m Cm = � G2 

� Gj = �gj -
rj2 

- ro2JJ�g dS 
A 7t r1 r;j3 

Here ajk and � Gj are determined by numerical integration. 

(24) 

(25) 

(26) 

If the rank of the system is equal to m equation (9) is satisfied in al l our discret points and a 
final solution is obtained. It has been found convinient, however, to have the rank greater than m 
and solve the system according to the method of least squares [ 1 ] . Then (9) is satisfied in none 
of the discrete points but instead we have a much better fit to the �g-field in general. 
Descriptions of the models 

Two test models have been used. In both cases the reference sphere is replaced by a plane 

8 
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in order to simplify the computations. As a consequence of this the boundary condition, which 
is used to generate the given !:ig values, is changed to 

?J T  
!:i g = - ---

a n 
(27) 

Both models have the same topographical shape. A cone of height 4. 1  km and radius at the 
base 24.6 km, which is placed on the reference plane. The difference in the models lies in the 
distribution of the disturbing masses. 
Model No. 1 :  Two point masses are located on the axis of the cone. One (m1) 4 km below and the 
other (m2) 2 km above the plane. The vertical components of attraction of the point masses at the 
vertex are 1 48. 1 54 and 95.295 mgal respectively. The masses are then m1 � 1 45.798 . 1 0 1 3 kg and m2 � 6.334 .  1 0 1 3 kg. (Yeremeyev's model) 

T 
4, 1 T 

2, 0 

4. 0 

l 
F I  g .  2 .  

The gravity anomalies are considered to be given at the surface of the cone and in the plane 
beyond the cone, and are computed by the formula 

?J T cos (n, r1 ) cos (n, r2) 6.g = - - = Gm1 + Gm2 ---?J n r1 2 r22 (28) 

The true vertical deflection 'E,j at the point P1 on the surface or in space is obtained as the ratio 
between the horizontal component of the gravity anomaly at P1 and the theoretical gravity YJ· 
Hence G ( sin (n, r1 ) sin ( n, r2 ) ) 

'E,1 = - mi + m2----
Yj r �2 r2 2 

where r1 and r2 are the distances from P1 to m1 and m2• 
(29) 

The values of the true vertical deflection at the surface of the cone and in space is given in 
Table 1 .  

Model No. 2 :  A rod of infinitesimal thickness and of 6 km lenght is placed along the cone axis 
from a point A 4 km beneath the plane to a point B 2 km above. (Because of the symmetry of the 
model only a cut along the axis is studied.). 
The density is a linear function of the relative position on the 'rod. By introducing a coordinate 
system according to fig. 3 the density function can be written 

cr (z) = c . ( z - ZB ) (30) 
where c is a suitable constant. In c. g. s. units the constant is c = 0.5 . 1 01. Then the total mass 
of the rod is 90 . 1 0 1 3 kg and the corresponding attraction at the vertex of the cone 202.856 mgal . 



TABLE I 
Model I 

True vertical deflection at the physical surface and in space. 

l 

0 . 0  
0 . 6  
1 . 2 
1 .  8 
2 . 4  
3 . 0  
3 . 6  
4 . 2  
4 . 8  
5 . 4  
6 . 0  
6 . 6  
7 . 2  
7 . 8  
8 . 4  
9 . 0  
9 . 6  

1 0 . 2  
1 0 . 8  
1 1 . 4 
1 2 . 0  
1 2 . 6  
1 3 . 2  
1 3 . 8  
1 4 . 4  
1 5 . 0  
1 5 . 6  
1 6 . 2  
1 6 . 8  
1 7 . 4  
1 8 . 0  
1 8 . 6  
1 9 . 2  
1 9 . 8  
20 . 4  
2 1 . 0  
2 1 . 6  
22 . 2  
22 . 8  
23 . 4  
24 . 0  
24 . 6  

h 

4 . 1  
4 . 0  
3 . 9  
3 . 8  
3 . 7  
3 . 6  
3 . 5  
3 . 4  
3 . 3  
3 . 2  
3 . 1  
3 . 0  
2 . 9  
2 . 8  
2 . 7  
2 . 6 . 

2 . 5  
2 . 4  
2 . 3  
2 . 2  
2 . 1 
2 . 0  
1 . 9 
1 . 8 
1 .  7 
1 . 6 
1 .  5 
1 . 4 
1 .  3 
1. 2 
1 . 1  
1 . 0 
0 . 9  
0 . 8  
0 . 7  
0 . 6  
0 . 5  
0 . 4  
0 . 3  
0 . 2  
0 . 1 
0 . 0  

�o 

0": 00000 
8 . 20522 

14 . 1 6207 
16 . 82767 
1 7 . 69961 
1 7 . 99966 
1 8  . 1 561 2 
1 8 . 22592 
1 8 . 1 7447 
1 7 . 97281 
1 7 . 6 1678 
17 . 1 2232 
1 6 . 5 1 642 
1 5 . 82968 
1 5 . 091 39 
14 . 32698 
1 3 . 55703 
1 2 . 79732 
1 2 . 05926 
1 1 . 35067 
1 0 . 67§46 
1 0 . 03934 
9 . 44039 
8 . 87949 
8 . 3557 1 
7 . 86759 
7 . 4 1 33 3  
6 . 99096 
6 . 59841 
6 . 23363 
5 . 89463 
5 . 57947 
5 . 28633 
5 . 01 3 5 1  
4 . 75942 
4 . 52259 
4 . 301 65 
4 . 09535 
3 . 90255 
3 . 7221 8  
3 . 55329 
3 . 39500 

�5 KM 

0': 00000 
3 . 52527 
6 . 425 1 3  
8 . 47921 
9 . 8 1 754 

1 0 . 66 106 
1 1 . 1 7868 
1 1 . 47052 
1 1 . 59253 
1 1 . 57907 
1 1 . 45536 
1 1 . 24284 
1 0 . 96080 
1 0 . 62657 
1 0 . 25543 
9 . 86036 
9 . 4521 4  
9 . 03940 
8 . 62888 
8 . 22568 
7 . 83353 
7 . 45504 
7 . 09 193 
6 . 7452 1 
6 . 4 1 539 
6 . 1 0254 
5 . 80644 
5 . 52668 
5 . 26269 
5 . 01 38 1  
4 . 77930 
4 . 55842 
4 .  35042 
4 . 1 5454 
3 . 97005 
3 . 79624 
3 . 63245 
3 . 47802 
3 . 33237 
3 . 19491 
3 . 0651 2  
2 . 94250 

�o = vertical deflection at the physical surface. 

�1 0 KM 

0·: 00000 
0 . 54880 
1 . 08522 
1 . 59789 
2 . 07725 
2 . 5 1 602 
2 . 90936 
3 . 25469 
3 .  5 5 1 39 
3 . 80036 
4 . 00367 
4 . 1 64 1 8 
4 . 28528 
4 . 3706 1 
4 . 42394 
4 . 44899 
4 . 44939 
4 . 42853 
4 . 38962 
4 . 33555 
4 . 26898 
4 . 1 9226 
4 . 1 0747 
4 . 01 647 
3 . 92082 
3 . 82 19 1  
3 . 72089 
3 . 6 1 876 
3 . 5 1 635 
3 . 4 1 433  
3 . 3 1 327 
3 .2 1 364 
3 . 1 1 578 
3 . 0 1999 
2 . 92649 
2 . 83544 
2 . 74696 
2 . 66 1 1 2  
2 . 57796 
2 . 49750 
2 . 41 973 
2 . 34464 

�5 km = vertical deflection 5 km above the reference surface. 

L = distance from the cone axis (km). 
h = height of the model above the reference surface (km). 

0·: 00000 
0 . 20274 
0 . 40342 
0 . 60006 
0 . 79080 
0 . 97392 
1 . 14796 
1 .  3 1 168 
1 . 46408 
1 . 60445 
1 . 73230 
1 .84740 
1 . 94973 
2 . 03944 
2 . 1 1 685 
2 . 1 8243 
2 . 23673 
2 . 28038 
2 . 3 1 409 
2 . 33856 
2 . 3 5454 
2 . 36278 
2 . 36401 
2 . 3 5893 
2 . 34822 
2 . 33252 
2 . 3 1 246 
2 . 28857 
2 . 26 14 1  
2 . 23 1 43 
2 . 1 9909 
2 . 1 6477 
2 . 1 2885 
2 . 09 1 65 
2 . 05346 
2 . 01453 
1 . 97509 
1 . 93535  
1 . 89548 
1 . 85563 
1 .  8 1 595 
1 . 77654 

�20 KM 

0·: 00000 
0 . 09778 
0 . 1 9497 
0 . 29100 
0 . 38530 
0 . 47735 
0 . 56666 
0 . 65278 
0 . 73531  
0 . 81 392 
0 . 88830 
0 . 95824 
1 . 02355 
1 . 0841 2  
1 . 1 3989 
1 . 1 9082 
1 . 23696 
1 . 27836 

- 1 . 3 1 5 1 3  
1 . 34739 
1 . 37532 
1 . 39908 
1 . 41 888 
1 . 43491 
1 . 44739 
1 . 45655 
1 . 46261 
1 . 46578 
1 . 46628 
1 . 46434 
1 . 4601 5  
1 . 45391 
1 . 44583 
1 . 43606 
1 . 42480 
1 . 41 22 1  
1 . 39842 
1 . 38360 
1 . 36786 
1 .  3 5 1 33 
1 .  334 1 3  
1 . 3 1 636 

1 1 5  

�25 KM 

0': 00000 
0 . 05465 
0 . 10907 
0 . 1 6306 
0 . 2 1 640 
0 . 26888 
0 . 32031 
0 . 37051 
0 . 41930 
0 . 46653 
0 . 5 1 206 
0 . 55575 
0 . 59752 
0 . 63726 
0 . 67490 
0 . 7 1039 
0 . 74370 
0 . 77479 
0 . 80366 
0 . 83032 
0 . 85478 
0 . 87708 
0 . 89726 
0 . 91 537 
0 .93 147 
0 . 94562 
0 . 95790 
0 . 96838 
0 . 97714  
0 . 98426 
0 . 98982 
0 . 99392 
0 . 99663 
0 . 99803 
0 . 99822 
0 . 99727 
0 . 99526 
0 . 99226 
0 . 98836 
0 . 98363 
0 . 97812  
0 . 97192 
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T 
4. 1 

4 • .0 

1 
0 

A 

I 
.. 
z 

F i g .  3 

p 
j ( x .  , z .) 

6 J J 

24. 

At a point Pj with coordinates (xj. zj) the disturbance potential is 

where 

Hence we have 

ZA 

T = G \ cr (z) d z 
• p 
z J 

p = distance from Pj to the element of integrat ion. 

ZB 
a T = _ G 5 cr (z) cos 6 d z 
a Xj p2 

ZB 
ZA 

a T = G 5 cr (z) sin 6 d z 
a Zj p2 

ZB 
By the transformation z - z1 = xj tg6 we get 

ZA 

r') T
 = - G l cr cos 8 d8 

a Xj _) 
ZB 

After evaluation of the integrals we have 

x 

(3 1 )  

(32 )  

(33) 



TABLE 2 

Model 2 

True vertical deflection at the physical surface and in space. 

L 

0 . 0  

0 . 6  

1 . 2 

1 .  8 

2 . 4  

3 . 0  

3 . 6  

4 . 2  

4 . 8  

5 . 4 

6 . 0  

6 . 6  

7 . 2  

7 . 8  

8 . 4  

9 . 0  

9 . 6  

1 0 . 2  

1 0 . 8 

1 1 . 4 

1 2 . 0  

1 2 . 6  

1 3 . 2  

1 3 . 8  

1 4 . 4  

1 5 . 0  

1 5 . 6  

1 6 . 2  

1 6 . 8 

1 7 . 4  

1 8 . 0  

1 8 . 6  

1 9 . 2  

1 9 . 8  

20 . 4  

2 1 . 0  

21 . 6 

22 . 2  

22 . 8  

23 . 4  

24 . 0  

24 . 6  

h 

4 . 1 

4 . 0  

3 . 9  

3 . 8  

3 . 7  

3 . 6  

3 . 5  

3 . 4  

3 . 3  

3 . 2  

3 . 1  

3 . 0  

2 . 9  

2 . 8  

2 . 7  

2 . 6  

2 . 5  

2 . 4  

2 . 3  

2 . 2  

2 . 1 

2 . 0  

1 . 9 

1 .  8 

1 .  7 

1 . 6 

1 .  5 

1 . 4 

1 .  3 

l .  2 

1 . 1  

1 . 0 

0 . 9  

0 . 8  

0 . 7  

0 . 6  

0 . 5  

0 . 4  

0 . 3  

0 . 2  

0 . 1 

0 . 0  

0': 00000 

5 . 69800 

1 1 . 0 1 07 1  

1 5 . 06323 

1 7 . 63322 

1 8 . 92577 

1 9 . 26798 

1 8 . 96 1 35 

1 8 . 24 1 84 

1 7 . 28 1 28 

1 6 . 1 9947 

1 5 . 07702 

1 3 . 96609 

1 2 . 89879 

1 1 . 89339 

1 0 . 95885 

1 0 . 09808 

9 . 3 10 1 2  

8 . 59 1 76 

7 . 93850 

7 . 34529 

6 . 80692 

6 . 3 1 827 

5 . 87453 

5 . 47 1 2 1  

5 . 10422 

4 . 76983 

4 . 4647 1 

4 . 1 8585 

3 . 93060 

3 . 69657 

3 . 48 1 63 

3 . 28390 

3 . 1 0 1 7 1  

2 . 93355 

2 . 77810  

2 . 634 1 7  

2 .  50070 

2 . 37674 

2 . 26146 

2 . 1 5407 

2 . 05392 

�5 K M  

0·: 00000 

3 . 05344 

5 . 77049 

7 . 93467 

9 . 48270 

1 0 . 4621 7  

1 0 . 97262 

1 1 . 1 2380 

1 1 . 01 479 

1 0 . 72675 

1 0 .  32245 

9 . 84866 

9 . 339 1 5  

8 . 8 1 767 

8 . 30041 

7 . 79804 

7 . 3 1724 

6 . 86 1 83 

6 . 43368 

6 ; 03330 

5 . 66030 

5 .  3 1 37 1  

4 . 99225 

4 . 69439 

4 . 4 1 857 

4 . 1 6320 

3 . 92673 

3 . 70767 

3 . 50463 

3 . 3 1 630 

3 . 14 147 

2 . 97902 

2 . 82794 

2 . 68728 

2 . 556 1 9  

2 . 43389 

2 . 3 1 967 

2 . 21 287 

2 . 1 1 29 1  

2 . 01 926 

1 .  93 1 4 1  

l . 84893 

;0 = vertical deflection at the physical surface. 

� 1 0 K M  

0·: 00000 

0 . 48054 

0 . 94861 

1 . 39270 

1 . 80305 

2 . 1 7222 

2 . 49528 

2 . 7698 1 

2 . 99563 

3 . 1 7434 

3 . 30892 

3 . 40326 

3 . 46 175  

3 . 48896 

3 . 48944 

3 . 46747 

3 . 42701 

3 . 37 1 65 

3 . 3045 1 

3 . 22834 

3 . 1 4546 

3 . 05787 

2 . 967 1 9  

2 . 87480 

2 . 7 8 1 80 

2 . 68908 

2 . 59734 

2 . 507 1 5  

2 . 4 1 893 

2 . 33299 

2 . 24956 

2 . 1 6880 

2 . 09082 

2 . 0 1 565 

1 .  9433 1  

1 .  87379 

1 . 80706 

1 .  74304 

1 . 68 1 68 

1 . 62290 

1 .  56661 

1 .  5 1 272 

�5 km = vertical deflection 5 km above the reference surface. 

L = distance from the cone axis (km). 
h = height of the model above the reference surface (km). 

,.. <'.:, 1 5  K M  

0': 00000 

0 . 1 6094 

0 . 3 1995 

0 . 47517  

0 . 62487 

0 . 76749 

0 . 90170 

1 . 02642 

1 . 1 4083 

1 . 24438 

1 .  33675 

1 . 4 1788 

1 . 48792 

1 .  547 1 6  

1 . 59607 

1 . 63520 

1 .  66521 

1 . 68680 

1 .  70068 

1 .  70758 

1 .  70825 

1 . 70336 

1 . 69359 

1 .  67958 

1 .  66 1 90 

1 .  641 09 

1 .  61 766 

1 . 59203 

1 . 56463 

1 . 53580 

1 .  50586 

1 . 475 10  

1 . 44376 

1 . 4 1 205 

1 .  380 1 7  

1 . 34826 

1 .  3 1 648 

1 .  28492 

1 .  25370 

I .  22289 

1 . 1 9257 

I . 1 6277 

�20 K M  

0·: 00000 

0 . 0729 1 

0 . 1 45 3 1  

0 . 2 1 67 1  

0 . 28662 

0 . 3 5461  

0 . 42025 

0 . 483 1 8  

0 . 54307 

0 . 59965 

0 . 65270 

0 . 70206 

0 . 74760 

0 . 78927 

0 . 82704 

0 . . 86094 

0 . 89 1 02 

0 . 9 1 739 

0 . 9401 6  

0 . 95948 

0 . 9755 1 

0 . 98843 

0 . 99842 

1 . 00568 

1 . 0 1 040 

1 . 0 1 278  

1 . 0 1 300 

1 . 0 1 1 25 

1 . 00772 

1 . 00258 

0 . 99600 

0 . 98 8 1 2  

0 . 979 1 0  

0 . 96908 

0 . 958 1 8  

0 . 94652 

0 . 93420 

0 .9 2 1 3 5  

0 . 90803 

0 . 89434 

0 . 88034 

0 . 866 1 2  

1 1 7 

�15 K M  

0"00000 

0 .039 1 0  

0 .07801 

0 . 1 1 658 

0 . 1 546 1 

0 . 1 9 1 96 

0 . 22846 

0 .26397 

0 .29836 

0 . 3 3 1 50 

0 . 363 28 

0. 39 361 

0 .4 2242 

0 . 44965 

0 . 47524 

0 . 4991 6  

0 .  521 39 

0 . 54 1 93 

O . S6078 

0 . 57796 

0 . 59349 

0 . 60742 

0 . 61 978 

0 . 63063 

0 . 64001 

0 . 64800 

0 . 65465 

0 . 66003 

0 . 66421 

0 . 66725 

0 . 66924 

0 . 67022 

0 . 67028 

0 . 66947 

0 . 66787 

0 . 66553 

0 . 6625 1  

0 . 65888 

0 . 65468 

0 . 64998 

0 . 6448 1 

0 . 63923 
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By introducing the height as h1 = - z1 we obtain 

which finally gives 

y (h1 + 4)2 + x/ 

h1 - 2  

C) T { h1-2 ( hJ + 4 
- = 333 -- -=========== 
C) Xj Xj 1/ (hj + 4)2 + Xj2 

Xj 
+ ---============ 

Xj 
cosOA = ---============ 

y (hJ + 4)2 + x/ 

h · -2 ) J + 
l' ( hi - 2 )2 + xp 

J mgal 
y (hi - 2 )2 + xJ2 

X· } 
l' (hj + 4 )2 + Xj2 

(34) 

From these expressions it is possible to obtain the given gravity anomalies at the surface a1d the 
true vertical deflection in space and at the surface since 

(36) 

1 ?J T 'F . = - - -'">) radians (37) 

Table 2 gives the true vertical deflection at the surface of the cone and in space for model No. 2. 
For the numerical application three different types of integrals have to be evaluated 

1 ) 

2) 

3) 

r12 - ro2 ff 6 g  - dS 
4 1t' r· y . .  3 } 'J 

y .2 - r 2 ff hk 1 0 - dS 
4 1t' r ·  , . .  3 J IJ · l ff t 6g* sin w cos IX k' d S 

4 1t' Yj r/ 

Before the numerical integration was carried out the integrals were rewritten in the followfrg way 
(/ and IX are polar coordinates) 

100 7t' 

1 )  
hj ff  6g / d1Xd! 
7t Y/j3 

0 0 

26.4 IT 

2) ..J. - I d1Xd/ 
h •f f h k  
7t' y . . 3 'J 0 0 

(lengths in km) (38) 

(lengths in km) (39) 

(lengths in km) (40) 
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where 
rij = distance between the element of integration and the actual point Pi (km) 
hi = height above the plane (km) 

T 
4. 1 

2 3 ( l + r ) 
k' = - - 8 + - 3 ln<l> r3 r 2<I> 

( l + r )2 - t2 
2<!> = -----

2 
r = rij / (6370 + hj) 
t = 6370 I (6370 + hi) 
ix = azimuth (The vertex of the cone as North-Pole) 

p 
j 

I 
---- 24.6>------1"" 

F i g , 4 ,  

The left side of the fig. 4 shows the princip of integration for a point Pj in space the right side for 
a point at the physical surface. 

Application of the zero order approximation method to model No. 1 
-' By formula (20) /:J.g* was computed in 100 equidistant points, 0-24.6 km from the cone axis. 

Simultaneously residuals were determined in the corresponding points at the surface of the cone 
by the simple formula 

(41 ) 
Beyond the cone /:J.g* was taken equal t o !:J.g. 

From the preliminary solution the vertical deflection was computed by formula ( 1 3) i n 4 1 points 
along the cone slope and at different levels in space. For the determination of the influence of the 
residuals on the vertical deflection it was considered to be sufficient to apply the classical formula 
of Vening Meinesz to the residuals. The final solution was obtained by adding the result from this 
application to the result from the preliminary solution. 

The results from the computations are presented in the following tables and diagrams. Table 3. *) 
and 5. give the vertical deflection from the preliminary and final solutions respectively. In Table 4. 
and 6. the corresponding errors are given. The last row in Table 4. and 6. represents the "standard 
error" s (no statistical parameter) at the actual level defined as 

4 1 
.... , o.P s2 = � -

� 41 
i. =  I 

*) This paper is only part of the complete text published Stockholm 1 966. 

(42) 
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i8t order fit is made in tvo steps . 
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Cc rnpu t< tion by B . G .  Re i ( 19 06) 

1 0 2 0  
Distance from cone axis (km) 

3 0  



a 0 .... 

THE MODEL OP YEREMEYEV-MOLODENSKY SOLVED ACCORDING TO 
BJERHAKMAR 

2 o
th 

ord er f i t  

2.0 

�� LEGEND 

[ \ -- True vertic al d e-
f l e c t i o n  at the l '.I \ s urface of the cone 

\ )( Vert i c a l  d e f l e c t i on 

� from the pre l iminar. 
solution 

+:' 1 5  � Ve r t i c a l  d e flec t i on � (,) Ill � � Ill "CJ 
r4 It 0 .... ... ... CD � 

5 

0 

\ 
.. 

' 

8 from the final 
s o l u t i on 

\ 
\ \ 

t \, )._ ' 

1-; ' 

)t� 
� � � � ' 

-· 

·��f-

1 0  2 0 J O  

Di s tan c e  from c o n e  a x i s  ( km )  

1 21 



1 22 



1 23 

I 



1 24 

where 
c;i = error in the computed vert ical deflection 

(Tn the summation the number in the first row has been excluded . This row was only computed 
as a check of the programming.)  

Conclusions : 

1 :0 For i ll-behaved theoretical models, wi th mass focused between the reference sphere and t he 
physical surface, low order fits give pre l iminary solutions where a considerable part of the 
original gravity anomaly is neglected. 

2 :0 Jn the final solut ions all the gravity anomaly is taken care of. These solutions are in very good 
agreement with the theoretical values. Normally, prel iminary solut ions of high accuracy improve 
the final solution to the l imit of rounding errors. 

3 :0 In space the errors diminish when the height increases. At higher alt itudes the correct ions 
employed do not improve the final results. H owever, at such heights the accuracy of the pre
l iminary solution will probably be sufficient. 

4 :0 In solut ions of very h igh order rounding errors from the numerical processes wi l l  affect the 
solution. These errors can to some extent be avoided by using multiple-precision computations. 

5 :0 In the present study no other l imitations of accuracy have been found than those given by 
the boundary value and the rounding off-errors. 
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About Some Results in the Czechoslovak Test Area 

b y  Milos Pick, /Fan Pola, Prague 

In the H igh Fatras mountains a new Czechoslovak test area has been establ ished. l ts centre 
is Laplace's point Kri2na. I n  the 1 ;.earest surroundings of th is  point a complementary gravity survey 
has been carried out (see Tab. 1 ) :  
For a 50 km square. i n  this test area gravimetric deflections of the vertical and the h eights of the 
quasigeoid have been computed using Molodensky's method . 
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Tab. I 
Distance I Acc uracy 
from the Number of points I initial point I i n  the gravity in the height 

0 i 
20 ± 0,07 mgl ± 0,08 m 

0,25 km 
62 ± 0,05 mgl ± O, l O m 

3 ,5 km 
1 point / better than better than 
5 km2 ± 0,5 mgl ± 0,3 m 

Let us  d ivide the area of integration into two parts : the inner area to the 50 kms from the 
fixed point and the distant zones. The determination of the i nfl uence of the distant zones is not 
difficult .  The effect of the inner area was established in zew, first and second approxiamations 

� = -- - (!ig + G1 + G2) dcr ,  
l r l 

2 n y . r0 

- -- -- /1 g cos A d (j - -- -- G I cos A d (j - - /1 g -- -p" j · 1 p" ;· i p" a H 
2 n y . r02 2 n y r02 y R iJ ff  

- -- -- G, cos A d cr + - - cos A d cr - - G 1 --p" 1 · 1 3 p"f !1 H2 . /ig p" iJ H  
2n y .  r02 - 4 n y r04 y RiJ � ' 

·r," = analogously . 

The magnit ude of Molodensky's funct ions G 1 ,  G2 is evident from the maps. We can also see that the 
used method converges very wel l .  

The results were compared with 6 astro-geodetic deflections of the vertical, and after trans
forming to the common system, the deviations in Tab. 2 were found. 

Tab. 2 

Point I YJ A  - YJG I ;A - ;G 
1 

I 
- 0, 1 8" - 0,95" I I 

2 + 0,02" + 0,451 1  

3 + 0,92" - 0,75" 
4 - 1 , 1 8" + 0,55" 
5 + 0,92" -+- 0,65" 
6 - 0,48" + 0,05" 

I t  has been shown that the procedure used in the High Fatrcis as wel l  as the program prepared 
for the electronic computer is applicable for high mountain territory and that the results are re
presentative and reproducible with a sufficient accuracy. This procedure will be used in the West 
Alps test area as well .  
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The Extension of the Gravity Field in South Australia*) 

by R. S. Mather, Kensington N .  S. W ., Austral ia 

Summary: 
A uniform geodetic gravity network has been compiled from all gravity data available over 

the state of South Australia. Mean free air anomalies for 1;20 x 1;20, 1 0 x 1 0 and 20 x 20 squares 
are computed in all regions where gravi ty data are available. The sample is analysed for the mean 
free air anomaly which best represents each area. The errors of representation computed are in  
general agreement with Hirvonen's values. The extension of  this field to unsurveyed areas is attempted 
using a least squares fit of a two-dimensional trigonometrical series, which is periodic in character. 
The accuracy of the values so obtained is studied. 

Introduction 
Gravity surveys have been in progress in South Australia for over 20 years (Thycr, 1 963). 

The overall control has been provided by the Authority of the Commonwealth of Australia, the 
Bureau of Mineral Resources, Geology and Geophysics (B. M. R.) (Dooley et al, 1 96 1 : Dooley, 
1 965). Subsidiary gravity surveys have been carried out by the South Australian Department of 
Mines, and by various petroleum explorat ion companies. These surveys, some of which are quite 
extensive, are often based on arbitrary datums for both height and gravity and considerable time 
was spent unifying the surveys onto the national datum (Mather, 1 966 b). This nat ional datum, 
established by the Isogai Regional Gravity Survey, was based on the value of 979,979.0 mgal at 
the National Gravity Base Station at Melbourne. 

All available gravity readings in the region bounded by the parallels 260 S and 400 S and t he 
meridians 1 280 E and 1 420 E were considered in  compil ing the sample. The area is reasonably 
flat with a mean elevation of 1 20 meters, the max imum and minimum J O  x 1 0  square mean ele
vations being 565 meters and - 275 meters respectively. (The regions beyond the continental 
shelf area were not considered). The Western half of the state is part of the pre-Cambrian granitic 
shield, extending further westward and is semi-desert in  character. The rock formations are essen
tially sedimentary, being generally cainozoic with some proterozoic formations in the h illy regions. 
The Sample 

The representation of the mean anomaly of a square by the mean value of all the observed 
gravity readings has generally been considered to be unacceptable (e. g. Jeffreys, 1 94 1 )  as any tendency 
for the sample to be unevenly distributed in a square could lead to misconceptions as regards the 
accuracy of the mean anomaly obtained . A more representative sample is obtained by subdividing 
each square into equi-areal sections, representi ng the gravity field in each section by a s ingle anomaly 
and computing the areal mean from these representative anomalies. I n  the present analysis, the 
basic square unit  considered was the 1 ;20 x 1 ;20 square. 0. 1 0  x 0. 1 0  squares were chosen as t he 
basic sub-divisional u ni t  within the 1;20 x 1;20 square as these would be less than 3 t imes the basic 
spacing of gravity stations for normal computations of deflections of the vertical (Rice, 1 952, 289) ; 
(Mather, 1 966a, 1 0) .  

I n  computing the geoid-spheroid spearation using Stokes' i ntegral and the deflections (� & lJ) 
of the vertical using the Vening Meinesz formulae, not only is i t  necessary to compute the 1;20 x 
1;20 square mean anomalies, but it i s  equally important to assess the accuracy of t he quant ity 
computed. This is dependant on t he sample variance (cr2), the sample size (n) and the distribut ion 
of readings over the square. As a result, only about 1 0  per cent of the available gravity data could 
be included in  the sample. I n  addition, l imited geodetic gravity surveys were also carried out using 
the South Australian I nstitute of Tt:chnology's . Worden Geodesist gravimeter (Mather, 1 966 b) .  
The elevations established on this survey by barometric means had a standard error of the order 
of ± 3 metres and the resulting error in the 1;20 x 1;20 mean free air anomaly would be 
± 0.2 mgal if there were no sources of systematic error i n  the final heights. 

*) Presented by Prof. Angus-Leppan. 
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In this manner, readings were chosen to represent t he corners of 0. 1 o x 0. 1 o squares. When 
readings did not quite fall on square corners, representation was adopted instead of interpolation 
(Moritz, 1 966, 1 67). Approximately 4000 stations were incorporated in the analysis, the majority 
being concentrated along the northern and eastern borders of the state (see fig. 2). The area is 
essentially a region of negative free air anomalies (see fig. 3 ), the field being extremely variable 
in the north-west. (see fig. 4). 
Correlation of Mean Free Air Anomalies and Mean Square Elevations 

The regional free air anomaly can be represented (Uotila, 1 960) over limited extents, by the 
expression 

where 

� gr�  c + o. 1 1 1 s h 

h = elevation of gravity station in meters 
� gf = free air anomaly in rngal 

C = a constant over the region. 

( 1 ) 
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This expression implies that the Bouguer anomalies are more regional than positional in 
character. While this expression cannot represent limited extents with any degree of accuracy, the 
evaluation of a constant for larger areas is of relevance in establishing values for regional mean 
free air anomalies to be used in low order harmonic analysis of gravity material. 

A least squares analysis of the data in 9 sub-divisional areas, using 1;20 x 1;20 means gave 
values for C as shown in Table l .  The regional character of C is emphasised when these values 
are compared with the overall mean value of -20 mgal over the entire area, corresponding to a 
regional mean elevation of 1 30 meters. 

This relation was not used to evaluate square means as the variation of gravity with height 
over any limited area in the sample considered was found, in most cases, to be small, compared 
to the variations with position, independent of height, as represented by Bouguer anomalies. 
The Spread of a Sample 

The criterion already defined for the spread of a sample is the "Error of Representation" 
(Es) (Hirvonen, 1 956), given by 

9 
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As n < 25 for 1;20 x 1;20 squares, the denominator used for calculations was (n - 1 )  instead 
of n (Spiegel, 1 961 , 70). The analysis of a high proportion of the South Australian sample shows 
good agreement with Hirvorten's values except, possibly, in the case of 1;20 x 11zo square means. 
This is due to the highly variable field in the North West corner of the state where the free air 
anomalies approach - 100 mgal and the standard deviation of free air anomalies in a single square 
could be as large as ± 80 mgal for a 1;20 x 1;20 square. 
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The Es values in  Table 2 represent values obtained from the analysis of free air anomalies, 
and, in view of the nature of the topography, would apply, with relatively smalJ variations, to both 
Bouguer and Isostatic anomalies. Thus, while the variation of gravity is similar to that of the 
European gravity field over large extents (Hirvonen, 1 956), it can be slightly greater over limited ones. 
The extension of the gravity field to unsurveyed areas 

The extension of gravity fields from limited gravity data to obtain a continuous field has already 
been investigated by Jeffreys ( 1941), Kaula (1 959), Uotila ( 1962) and Moritz (1966). The methods 
of extension used are fully described by the first two investigators and the last. Jeffreys had much 
less data available to him than Kaula and sets out his method of computation exhaustively. He 
worked on a 100 square unit, assuming -0ne value to represent each square and allowing for height 
correlation. A series of observation equations were then fitted for each parallel and harmonic 
coefficients were evaluated to the 4th order. Kaula, on the other hand, used Markov theory to 
interpolate 1 o square means from available values. 1 00 square meaos were then evaluated using 
autocorrelation analysis. Thereafter, a set of low order harmonics (to the 8th degree) was fitted 
by the simple orthogonal method using fully normalised coefficients (Kaula, 1 959, 89). Uotila 
used harmonic analysis by least squares. 

The application of spherical harmonics is obviously unsuited for field extension over limited 
extents and Moritz has used covariance analysis for this purpose. However, both Markovian 
predictions and covariance analysis, when used under economically feasible conditions, tend to 
give overly smoothened fields (Kaula, 1 965, 4) and such field extensions, under adverse conditions, 
give results which are hardly better than direct representation. 

Square A 
sice 

Es t 
-- --

1/20 X 1/20 ± 1 1 60 
-- --

10 x 10 ± 1 2  2 1  
- -- --

2o x 20 ± 21 1 3  

Key to Classes 
Square sice 

2o x 20 

S a m p l e  S i z e ( n )  Hirvo-
Total nen's 

B c D E Sample Value 

Es t Es t Es t Es t Es t Es 
-- -- -- -- -- -- -- --
± 1 1  61  ± 1 1 13  ± 9 1 5  ± 1 0  62 ± 10.1  21 1 ± 9.0 

-- -- --- -- -- -- -- --
± 1 6  26 ± 1 3 10  ± 1 3 7 ± 9 1 2  ± 1 3.5  76 ± 1 2.7 

-- -- -- -- -- -- -- --
± 1 5  1 5  ± 14 6 ± 14 2 ± 1 1 2 ± 1 7.7 28 ± 1 7.6 

TABLE 2 

The Error of Representation Es (mg al) 

A 

0 < n < 5 

O < n < lO 

0 < n < 50 

B c D 

5 < n < 10 10  < n < 15 15 < n < 20 

1 0  < n < 30 ·30 < n < 50 50 < n < 75 

50 < n < 100 100 < n < 200 200 < n < 300 

n >  20 

n > 75 

n > 300 

In the analysis of the South Australian sample, the field extension was performed in two distinct 
stages using a two-dimensional trigonometrical series. The first stage was the extension of the gravity 
anomaly field in a limited uo x uo area in which each single anomaly value represents a vo x vo 

square. (The total number of readings possible in the area (N) is given by N = u2/v2). The anomalies 
used should only have variations dependent on position. Thus Bouguer anomalies were used. If 
free air anomalies are used, a three-dimensional series should be used with the height variable 
introduced into the series. 

The second stage was the extension of wo x wo square means over a large area to unsurveyed 
squares. 
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In  the analysis, it was sought to evaluate the coefficients A;, i = 1 ,n of a series of the forrm 
n 

L A;f; (cl>, 1-) which could be used to predict anomalies using the relation 
= 1  

n 

E {6 g ( <l> , I-)} = L A;f; (<l>, 1-) (3) 
i= 1 

where E { 6 g (<I>, I-)} is the predicted gravity anomaly at the point whose latitude is <I> and bn.gi
tude I-. 

The A1 (i = l, n) are determined by setting up observation equations and minimising the sum 
of the squares of the weighted residuals 

£, Wj r/ = £ Wj [6 gj - £ A;f; (<I>j, A_;)J2 = minimum 
j= I j= 1 i= l  

where Wj(j = l,m) are the weight coefficients, which, i n  the first case, would be equal to u nit). 
The required set of equations for solution are 

f:1 w; [ t; KJ - tl A1 Ji (<!>Jo A1) ]t. t<I>Jo A;) � 0, k � I, n 

These equations, in  matrix notation, will be of the form 

F. A = G , 
where 

Ju !12 /1 3 · · . /1 n 

F= A =  

and 

fi1 = Jj (<l>;, I-;) 
The matrix of residuals (R) is given by 

R = FA - G  
For a least squares solution 

t/2 RT WR = minimum 

where W is the matrix of weight coefficients, given by 

W =  

W1 1 0 0 0 . . . . . . .  0 0 W22 0 0 . . . . . . .  0 0 0 W33 0 . . . . . . .  0 0 0 0 . . . . . . .  Wmm 

G =  

(4) 

(5) 

(6) 

(7) 

(8) 

Substituting for R from (7) in (8), after expansion and differentiation partially with reference to 
A, (8) reduces to 

FT W FA - FT W G = 0 
the solution of which is 

A = (FT W �- 1 FT W G 
The extension of gravity fields in 20 x 20 areas 

(9) 

(10) 
The choice of a suitable trigonometrical series hardly depends on the available computer 

storage but, paradoxically, on the available gravity field. The field extensions obtained from limited 
amounts of data using functions with a high degree of resolution are generally unreliable. The 
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computations in the case of the South Australian data were carried out on a C. D. C. 3200 computer 
and from the point of view of convenience in handling data, u was chosen as equal to two degrees. 
v, as explained earlier was chosen to be 0. 1 0. A number of series were experimented with and a 
general series which gave adequate results was 

a 2 a 
E { Ll g (<I>, :1.)} = � A; cos [rr (<I> - <I>0)i] + L A1 sin [7t (<I> - <I>0) (i - a)] 

i=O i =(a + l )  
3a + L At cos [rr (), - Ai,) (i - 2 a)] 

i=(2a + n  
4a 

+ L A; sin [rr (). - A0) (i - 3 a)] ( 1 1 ) 
i =(3a + I ) 

where <1>0, A0 are the co-ordinates of the SW corner of the 20 x 20 area, and <l>, A are the geo
graphical co-ordinates of the 0. 1 o x 0. 1 o square corner which is represented by the gravity anomaly 
Llg(<I>, A). 

Repeated application to varying sets of dat::i showed that the minimum conditions for a non
trivial solution are : 

(i) at least 5 readings should be available 
in every constituent 1;20 x 1;20 square. 

(ii) at least 1 reading should be available 
in every row and column of the 
20 x 20 array. 

While lesser data have provided seemingly acceptable solutions, the results are subject to 
fortuitous circumstances. Thus 80 well distributed observations can give estimates of the balance 
320 values, i. e., a 1 to 5 extension. 

The value of a in equation ( 1 1 ) governs the degree of resolution of the function and while 
the maximum value is controlled by the available storage, the actual value used would be influenced 
by the amount of gravity data available. In a pilot investigation, it was found that decreasing the 
ratio a : u/v below I/ 2, while requiring much more computer time, did not materially improve the 
accuracy of extensions. Reasonable adequate representation was obtained by setting a : u/v = 1;3 

in the case of well surveyed fields. In regions with inadequate data, better results were obtained 
by reducing a in equation ( 1 1 ) in the range of values· 7 > a > 0 progressively as m in equation (5) 
reduces through the range 80 _2_ m _2_ 1 ,  the extreme case being one of direct representation. 

These conclusions were used to predict values of gravity anomalies to represent unsurveyed 
areas, using Bouguer anomalies. The Bouguer anomaly so predicted was then corrected for the 
height term (Heiskanen and Vening Meinesz, 1 958, 1 53) using the estimated elevation of the 0. 1 0  
square corner. An attempt was made to check the accuracy of field extension by studying comparisons 
between predicted values in areas satisfying conditions (i) and (ii) for non-trivial solutions, with 
gravity data which was available subsequent to the computations. 1 54 comparisons were made in 
6 different 20 x 20 areas and the differences (Predicted-Observed) were found to be normally distri
buted with a standard deviation of ± 7.2 mgal. 

In fitting the two-dimensional series defined in equation ( 1 1 ) to a field with a variable number 
(n,) of gravity stations in it, the error of prediction (ep), given by 

(12) 

was found to increase with n for a. fixed value of a. Table 3 sets out values of M { ep} for a = 7, 
where M { e P} is the mean error of prediction. 

Thus, if the available computer storage limits the maximum possible value of a, it is necessary 
to "normalise" predicted values prior to use, due to the · magnitude of prediction errors in well 
represented fields. This can be effected· either manually using a graphical extension technique or 
by the use of Markov theory (Bartlett, 1 960, 24 et seq), as the accuracy of the predicted value 
obtained is dependent not only on the error of prediction ep at adjacent stations but also on the 
average gravity anomaly gradient (G), where 
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I I - d l::,. g G - -

di 
where d/::,.g is the change in  gravity anomaly over a distance di. 

l/20 x 1;20 squares 20 x 20 squares 

Sample size M{ep} Sample size 
(n) (mgal) (n) 

O < n< 5 ± 4.4 O < n< 20 
5 < n < 10 ± 6.0 20 < n< 50 
10 < n< 15 ± 6.4 50 < n< 100 
15 < n< 20 ± 7.3 100 < n< 200 
20 < n< 25 ± 6.5 200 < n< 300 

300 < n< 400 
Total sample ± 6.5 Total sample 

TABLE 3 
Classification of Errors of Prediction 

(13) 

M{ep} 
(mgaO 

± 1 .8 
± 2.3 
± 4.7 
± 6.7 
± 8.3 
± 8.3 
± 8.3 

Following a procedure similar to that adopted by Kaula (1 959, 9) Jet the couplet c;u be given by 

The expected error or prediction (E{ePi}) is given by 

{ } c; pj� (/::,. 1 ) 
E e . = ----P, p� (/::,. 1 ) )V 

( 14) 

(15) 

where p�u (/::,. 1 ) is the probability of the couplet c;u occurring a distance /::,. 1 away from couplet c1·v; )V 
and suppression of an index denotes summation �ith respect to that index. The mean value of IG I 
was 8.9 mgal/50 km, with maximum, modal and minimum values of 48 6 and 0 respectively. 

The mean comparison error (ec), M {ec}. given by 

(16) 

was ± 3.2 mgal for tlie 1 54 comparisons. 
Field extensions under the above conditions can be expected to have an estimated error of 

± 3 mgal, which is of an accuracy comparable with representation of a single tenth degree square 
by a single reading (Hirvonen, 1 956, 2). Relaxation of criteria at (i) to 3 stations within each of 
the constituent 1120 x 1;20 squares and maintaining those at (ii) gave estimated comparison errors 
of ± 8 mgal, which, on normalisation reduced to ± 6 mgal. 

If these minimum conditions are not satisfied, the error of field extension becomes much larger 
and, unless a in  equation ( 1 1 ) is reduced proportionately, the functional representation becomes 
erratic. This, i n  effect, reduces the resolution of the trigonometrical series, which, in the limit, 
becomes a case of direct representation. 
The extension of the field to lfiO x 1/ 20 square means over a 140 x 1 40 area 

A field extension, similar to the above, can be performed from the 1/20 x 1/20 square means 
obtained from the gravity data available to evaluate estimates of the 1/20 x 1/20 means of areas in  
which no readings occur. The field extensions are made from data not of equal weight (w) as 



(i) the number (n) of readings used to 
evaluate the mean 

(ii) the standard deviation (a) of each sample vary from square to square. 
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While n is dependent on the available gravity field, cr is a function of the variability of the latter, 
which is not dependent on topography alone. 
The weight coefficient 

w =f(n, 1 /cr2) 
In the evaluation of f(n, 1 /cr2), it should be borne in mind that the final weight coefficient 

must reflect the distribution of the sample within the area represented (i. e. , a high sample density 
in a restricted area may give a value for cr which is not a true representation of the variability of the 
gravity field within the square considered). Further, the expression should reduce to 

and 

w = 1 /Es2 
when n = 1 and cr = 0 

N 
w - 

cr2 
where N is the maximum number of readings possible, as n - N. 

(17) 

( 1 8) 

In general, the weight coefficient should be inversely proportional to the variance of the sample 
mean. However, in squares where the sample covers only a small fraction of the total area, the use 
of cr2/n tends to over-estimate the weight coefficient . An expression for the latter, which satisfies 
not only the limiting conditions, but also the general requirements is 

as 

w = - 1 + ----
n { (N - n)2 es2}- 1 
cr2 (N - 1 )2 cr2 

- = - cr2 + -- es2 
1 1 {  [N - n]2 } 
w n N - 1 

(19) 

(20) 

The individual weight coefficients for each 1/20 x 1;20 square were incorporated in Equation 
(5), which was expressed in the form set out in Equation ( 1 1 )  prior to solution. In this manner the 
field was extended to the unsurveyed areas. 

The use of the weight coefficients in the analysis of a given field with considerable local variation 
was found to give rise to a smoothened field, when compared with a similar extension, but with the 
weight coefficients set at unity for all values. The values of E { !::.g (<I>, )..) } so obtained in the weighted 
sofution were normalised as explained earlier, using Equations ( 1 2) to ( 1 5) and the final extended 
value accepted was 

(2 1 ) 
The assumption that the Bouguer anomalies used i n the extension were free from height corre

lation is justifiable as the maximum mean I/20 x 1;20 square elevation in the region considered 
was 803 meters. 

The extended free air anomaly means were then obtained by allowing for the mean Bouguer 
reduction, using the mean square elevation. These extended values were used to supplement the 
observed values in compiling Figure (3). 
The accuracy of the field extension 

The accuracy of the field extension can be checked in one of two ways. Firstly, the extended 
values can be compared with actual values. An alternative method would be the comparison of 
the extended values as obtained from field extensions carried out by more than a single acceptable 
method. 

Let the predictions be required in certain positions of a m x n array of !::.g where certain values 
of !::.g are available. Three distinct cases of prediction of the anomaly !::..g(i, u) are possible 
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(i) Interpolation: 
I n  this case, the readings !::lg (h, u), !::lg (j, u), !1g (i, t ) and 
!1g(i, v) are available ; h < i < j; t < u < v. 

(ii) Interpolation/extrapolation : 

(iii) Extrapolation: 

The circumstance in  which only one of h, j, t, v is zero, on 
adopting the convention that !1g(O, u) = !1g (i, 0) = no reading 
available. 

At least one each of (h, j) and (t, v) is zero. 

A preliminary study showed that the rel iability of the predictions were strongly affected by the 
variability of the gravity field and all predictions were normalised in terms of the average gravity 
gradient in the area using the relation 

where 

N {C} = 
E {C} M {G} 
E {G} N { C} = the normalised prediction 

E { C} = the predicted value 
E { G { = the predicted gravity anomaly gradient 
M { G} = the mean gravity anomaly gradient. 

The normalised predictions so obtained were classified according to 

(22) 

a) the minimum interval ( I;) (j - h) or (v - t). as the case may be for interpolations and 
interpolation/extrapolations. 

b) the minimum i nterval (IE) Ii - h (or j)I or I u - v (or t) I  
in  the case of extrapolation. 

I n  all, four methods of prediction were used : 
a) graphical 
b) Markov theory 
c) trigonometrical series with weighting 
d) trigonometrical series without weighting. 
If the standard deviations of the comparisons between method (c) and the others were crc; 

(i = 1 ,  3), the rel iabil ity l imits were set to the values of Id E) accepted on the basis that 

(crc; - crc i + t )  :::€- K .  M {G} (23 ) 
i = 1 , 3 (if i > 3 ,  then i = 1 )  

where K is a comparison factor. 
For interpolations, in cases where Ji � 6, good agreement was obtained between the crc; for 

each of the different methods of extension. For I; > 6, however, the comparison between the values 
for crc . was erratic (K was generally greater than 0.2). 

I 

l;(E) 
Interpolation 

Interpolation/ 
Extrapolation 

Extrapolation 

Standard deviations of discrepancies in field extension (± mgaf) 
(Numbers in brackets represent sample size) 

I ' I I 1 I 2 3 I 4 

2 (1 5) 5 (22) 5 (22) 5 (45) 

6 ( 2) 5 ( 7) 1 1  (20) 1 8  (37) 

1 0 (29) 1 2  (46) 1 4 (56) 1 5 (6 1 ) 

TABLE 4 
Field Extension discrepancies for 1/20 x 1 ;20 

square means; Case (i) / Case (iii) 

I 
I 5 I 6 

5 (6 1 ) 6 (7 1 ) 

10 (4 1 ) 9 (44) 

1 5  (63) - - -
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In case (ii), no comparison of crc . - crc . --'- 1 could be considered acceptable unless the com-
1 I , 

parison factor was increased to K = 0.4. 
In case (iii) too, the value 0.4 was adopted for K. 
The results in  Table 4 summarise the accuracy of comparisons in  one i nstance, after discarding 

those whose Ii values are large enough to make the resulting extensions unreliable, by the standards 
defined in expression (23), with K = 0.4. 

While the samples are too smal l for definite conclusions to be drawn, it would appear that , 
as a general rule, the weighting of extensions according to 
T nterpolations : Interpolations/Extrapolat ions : Extrapolations : 

1 1 1 
. - - : - : - = l : 0.25 : 0. 1 1  

2 2 2 I 2 3 
is indicated. 

The factors to be considered in estimating the error of the predicted value are 
a) the nature of the extension, i. e . ,  interpolation, interpolation/extrapolation or extrapolation, 
b) the interval from the most reliable value, 
c) the accuracy of this value . 
If the error of representation of the nearest basic square mean is ere/ and the estimated error 

in the extension is eext • the est imated error of prediction (E { ep} ) is given. by 

Conclusion 

[E .I e }F = e 2 + e 2 \ P ref ext 
The value for ere/ is obtained from Equation (20) 

(24) 

The extension of gravity fields using mathematical functions, unless carried out under carefully 
controlled conditions, .could produce results of questionable accuracy. The use of the two dimensional 
trigonometrical series described in Equation ( 1 1 )  is quite sat isfactory for l imited extents, provided 
that the degree of resolution of the funct ion is adequately reduced when a paucity of data occurs. 
In the case where field extension is effected using area means which could be of differing reliability, 
the extension should be performed after adequate weighting. The accuracy of the values so predicted 
is dependent on whether the extension performed was an interpolation, interpolation/extrapolation 
or an extrapolation. Field extensions over intervals more than 6 positions from the nearest available 
value (i. e., Ii, E > 6) were found to be unreliable. For /j, E <  6, the ratios of  the accuracies of  inter
polat ion : interpolation/extrapolation : extrapolation = 1 : 2 : 3 .  

Within this range, the error of the predicted value would not  be materially larger than the 
error of representation of the nearest value used in the extension. 
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The Course of the Plump-Line at the Transit through 
the Physical Earth-Surface, and the Determination of its 

Curvature by Local Gravimetry 

by W. Embacher, Vienna 

This investigation is part of the research program of the Institute of Geodesy and Spherical 
Astronomy (Director Prof. Dr. Karl Ledersteger). 

In order to <-Understand the theoretical course of the horizontal gradient we make use of a 
formula for the infinite rectangular prism as stated by K. Mader. That prism may extend in the 
x-direction from - oo to + oo , in the y-direction from y1 to + oo and in the z-direction from 
z1 to z2. Thus : 

(1) 

0 y 

z 

Figure 1 

Though the formula only applies to the external potential, the horizontal gradient can be 
calculated for any point of the plate, e. g. also for the straight line A B, if we bear in mind that the 
effect of the prism extending in the x-direction from - oo to + ex. and being 2a wide in the y-direc
tion, is compensated in the straight line A B by reasons of symmetfY. Thus, one only needs to compute 
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the effect of the hatched remainder prism. When choosing point A as reterence point z1 is zero, 
and the horizontal gradient has a definite value. However, when taking point B as reference point, 
then z2 is. zero and the horizontal gradient is of the same quantity but of opposite sign. 

A small sloped region of terrain can well be approximated by a stair-model consisting of a 
number of infinitely extended quadrilateral plates. 

I 

( 12)t !5 
( 15 )  18 

E 
(21) 9 21 

0 (35)911 � 
� 

(707Jf07 . ....... 

101. 
0 

101 100m 
0 

98 
0 

93 
0 

(10) �>-13 
( 8>?-13 

Figure 2 

By means of this model the theoretical course of the horizor+al gradient below and above the 
plates may now be analyzed. The steps may have a lenght of 100 m and a height of 40 m. For the 
five plates, one put upon the other as described above, the horizontal gradientes have been computed 
for reference points in the vertical of point I according to the formula mentioned before. We see 
that the horizontal gradient inside and outside the model is pointing in direction differing by 1 800. 

Numerous models also have been computed according to the formulas of Helmert and Prey. 
The following characteristic properties of the gradients became obvious : 

The horizontal as well as the vertical gradients not only depend on the slope but also on the 
cross section of the terrain. 

The horizontal gradients always have opposite signs .and are of equal absolute value. The 
external horizontal gradient always is directed towards the slope. 

H. Bodemilller determined numerous external vertical gradients by observations on towers. 
The agreement of the theoretical models stated above with those pratical measurements is obvious. 
At the bottom of valleys the negative anomalous gradient reduces the free-air gradient, while the 
positive anomalous gradient on top of the slope increases the free-air gradient. The gravity differ
ences l:!.g measured with a gravimeter in the l ine of maximum slope of the terrain can be represented 
by the gradients as follows (n be the height difference of the measuring points and s = n cotg o 
be their horizontal distance, when o means the inclination of the terrain). 

1:1 g = - n Va + s Ha 
(2) 

l:!. g = - n V; + s H1 . 

We are justified to assume that the density within the proximity of station P0 is constant. If 
we then form the gravity differences between P0 and the points P; around P0 in possibly equidistant 
azimuths c.c, the equations (2) take the form 

D.. g + n Va - s (Ha)x cos ex - s (Ha)y sin ex = 0 
(3) 

1:1. g  + n V; - s (H;)x cos ex - s (H;)y sin ex =  0 
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Hence : ( Va + V;) (Ha + H;) (Ha + H;) 
Ll g + n 

2 - s 
2 x 

cos ex - s 
2 Y 

sin ex = 0. (4) 

Both the unknown llz (Va + V;) and l/2 (Ha + H1) with respect to the origin P0 are obtained 
from two measured differences or, in case of over determination, by an adjustment. 

If Va is measured, equation (2) directly gives Ha, and from the adjusted means of the 
gradients we obtain the internal gradients Vi ond H;, and finally the formulas of Bruns 

V; - Va = - 4 7t k2 cr cos2 8 

H1 - Ha = - 4 7t k2 cr cos 8 sin 8 

furnish the ground density twice, thus offering a welcome check. 

(5) 

In a previous paper : "A Comparison of Methods for the Determination of Ground Density" 
(0. Z. f. V. vol . 49, no. 4) I have stated an error equation for the determination of the ground density. 
The determining equation for that error equation is identical with the second equation of (3). It 
could be shown that by neglecting one or the other unknown the existing methods of Nettleton, 
Steiner, Parasnis and Jung can be traced back to the above statement. All these methods also 
presume an average density for a limited working area. 

For further considerations it is significant to find the law, or at least an approximation to 
that law, according to which the horizontal gradients decrease along the plumbline starting from 
the density discontinuity at the transit through the physical surface of the earth. Here the synthetic 
investigation of Helmert about the effect of given masses on the level surface near the ground 
showed the way. 

Again we proceed from the formula for the infinitely extended quadrilateral rectangular prism (1). 
It may extend in the x-direction from - oo to + oo , in the y-direction from y1 to + oo , and in 
the z-direction from z1 to z2• 
Thus 

1 Y12 + z22 - V  = In k2cr yz Y12 + z12 (1 ) 

where a stands for the density, and Vyz for the horizontal gradient in point 0. For simplification 
we choose Y1 = 0 and put z1 = z, z2 = z + c. Thus we get 

1 z2 + 2 c z + c2 - V = In ------k2a yz z2 

which because of c � z transforms to 

_1_ V = In ( 1 + 2
z

c
) 

,.._, 

2
z
c . k2a yz 

( la) 

( lb) 

The gradients along a plumb-line were computed for some models according to Helmert and Prey. 
Now, as a trial calculation, for each of these models c has been determined according to the above 
formula (1 b), and then the other gradients were calculated back. Their values are given in Fig. 2 
in parentheses. The fair agreement proves that the approximate formula for the gradient 

2 c  G = -z (6) 

is feasible. Tbis means that for the determination of gradients any model can be approximated 
by an infinite plane of thickness c. 

Formula ( 1 ) from which the approximation (6) has been derived only holds for the external 
potential, yet the computed models show that the horizontal gradients of outer and inner space 
behave likereflected images, i. e. approximation (6) also is feasible for the calculation of the internal 
horizontal gradient . 

We get the curvature picture of a curve by representing the curvature k in function of the arc 
length z. 



For the circle k = k0 = const, which together with 
dz = R d -r  

leads to 

and 
z 

ll -r = k0 J d z = k0 z = ; 
0 
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(7) 

(8) 

If we assume the plumb-line to be a wide circle (which is certainly the case with the normal curvature) 
we have for an elevation above sea H:  

I I  H I I  G H  " z = H, £l -r = - p = - p . 
R g 

Now the curve shall be analyzed whose curvatore is 
1 2 c  
R g . z  

The curvature picture can be seen in Figure 3 .  

k 

1 
0 

We find 

----- z 

Figure 3 

2 cf dz 2 c  
� 't' = - - = - ln z + C . g z g 

(9) 

( 10) 

(1 1 ) 

The limits of the definite integral result from the reflected height of the center of the gravimeter 
of 0,5 m on the one hand, and by the assumption on the other that at z0 the curvature vanishes 
practically ; e. g. Gz0 , 0,010 mgal/m. If c is not much less than z, the term c2/z2 must not be neg
lected. For determining c use is made of equation (1 a). The mean density a is assumed to be a = 2 ; 
thus k2 a = 1 33,4 . 10- 9. Denoting Vyzfk2 a with A, the equation 

proceeds to 

1 
_ . (z2 + 2 c z + c2) 

-- Vyz - In 
k2 a z2 

In -- + - + 1 = A  
( c2 c ) 
2500 25 
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and 

Further : 

c2 c 
-- + - + l = eA . 
2500 25 

log -- + - + 1 = A log e = A . 0,43429 . 
( c2 c ) 

2500 25 
(12) 

z may be reckoned positively downwards. Hence, in the quadratic equation the negative solution 
must be considered since the internal gradient also has negative sign. The same negative root should 
be used for computing the external gradient since there z becomes negative. 

We obtain z0 from : 

For A "" we get : 

2 c  O,Ol = - ; z0 = 200 c .  
Zo 

2 II 
II c P Zo A T  =-- In - . g 0,5 

(6a) 

(1 la) 

With the measuring results of the gravimeter test field ,,Buschberg" (mean latitude 48040') the 
plumb-line curvature has been computed for 3 fields assuming the curvature laws mentioned above. 
The results are listed in Table 1 .  The first line gives the fields' height above sea level, while the second 
one states the gravity values as measured by gravimeter. The intensity and direction of the internal 
horizontal gradients of line 3 were computed on basis of the gravimeter observations. The fourth 
line gives the value and the direction of the internal horizontal gradients found vectorially by means 
of Bessel's reduction (see fifth line), which only depends on mass anomalies. Line 6 shows the nor
mal Ap11 computed with the formula for the circular arc. 

1 .  H in meters 
2. g mgal 
3. G' intensity 

10- 3 mgal/m 
(direction) 

4. G intensity 
10-3 mgal/m 
(direction) 

5. G normal intensity 
10- 3 mgal/m 
(direction) 

6. A cp11 (direction of 
the osculating plane) 

7. z0 in meters 
8. c in cm 
9. A T11 (direction of 

the osculating plane) 
10. (A �')11 

(A ">:)11 cos cp 

Field I 

398,05 
980863,436 

Table 1 

7,4 (1230) 

7,9 (1290) 

0,8 1 3  (00) 

0'.'068 (1 800) 

203,0 
101 ,5 

0:·451 (1290) 

- 0'."358 
+ 0:'348 

Field Il 

419, 1 3  
980858,972 

1 5,0 (1 300) 

1 5,6 (1320) 

0,8 1 3  (00) 

0:·071 (1 800) 

206,2 
103,1  

0''.460 (1 320) 

- 0'.'378 
+ 0'.'336 

Field 34 

437, 13  
980854,687 

28,5 (1 140) 

29,0 (1 160) 

0,8 1 3  (90) 

0:·074 (1 800) 

21 1 ,5 
1 1 1 ,5  

0'.'467 (1 160) 

- 0:·218 
+ 0:·420 

Assuming a curvature law corresponding to the quadrilateral hyperbola, according to formula (6a), 
the depth z0 has been computed for that place where the curvature vanishes practically. z0 is tabula
ted in line 7. 
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The thickness c of the compensating plate, which with density 2 (about the density of the upper 
ground layers at , ,Buschberg") corresponds to the course of the horizontal gradient along the plumb 
line, can be found in line 8. It was calculated by means of formula ( 12) . 

Line 9 states the curvature computed by the approximate formula (1 la) and wich is crea
ted by the effect of mass anomalies, line l 0 gives the components of the total reduction (�cp')" 
and (� A.')" cos cp, i. e. the reduction of the observed latitude and longitude. 

For an estimate of the rotation of the osculating plane the radius of curvature and its direction 
was calculated for points of the plumb l ines of the principal points of the fields I, 11 and 34 : 

Table 2 

Field I Field I I  Field 34 
Length km Length km Length km 
(direction) (direction) (direction) 

Surface point 124.000 62.500 33 .800 
(1230) (1 300) (1 1 4) 

10 m lower 1 ,530.000 1 ,530.000 755.000 
(260 48') (630 05') (820 25') 

50 m lower 1 ,280.000 1 ,360.000 1 ,330.000 
(40 21 ') (90 1 5') (200 42') 

100 m lower 1 ,240.000 1 ,280.000 1 ,290.000 
(20 04) (40 21') (90 56') 

200 m lower 1 ,220.000 1 ,240.000 1 ,240.000 
(about half the heigth) (1 0 04') (20) (40) 
on the geoid 1 ,200.000 1 ,200.000 1 ,220.000 

(00 30') (00 30') ( 1 0 47') 

Hence, the plumb line curvature and the rotation of the osculating plane can be calculated 
from local gravimeter measurements without consideration of the topography. 

Geodetic Interpretation of the Results 
Resume, already presented at COSP AR. 

by George Veis, Cambridge, Mass. and Athens 

The results obtained for the geodetic parameters adopted . for the Standard Earth provide all 
information needed to establish a universal geodetic datum. 

The spherical harmonics, the 1 4 zonals (Kozai, 1 964) and the 50 tesseral (Gaposchkin, 1 966), 
a total of 1 28 coefficients derived from the satellite-tracking data, describe the generalized gravi
tational field of the earth. From this field, a map of the generalized geoid can be derived as well 
as a map of the generalized gravity anomalies. As reference for the geoid and the gravity anomalies, 
an ellipsoid of revolution of a = 6,378, 1 65 m and f = 1 /298.25 has been used. 

Furthermore, the solution gives precise rectangular coordinates of 1 2 points. The system to 
which the coordinates refer is as close as possible to a geocentric terrestrial system, i. e . ,  the z axis 
is oriented in the direction of mean pole 1 900-1905, and the x axis in the direction of the meridian 
of the mean observation. 

As in all reference systems defined on a theoretical basis but applied in an experimental numeri
cal way, this one - as defined by the coordinates of twelve physical points on the surface of the 
earth - has an uncertainty associated with it. This uncertainty is estimated to about 10 m for the 
origin (or geocentricity), 0'!2 for the directions of the axes,. and a few parts per million for the scale. 
Actually, the scale depends on the adopted value for GM = 3.986032 x 1020 cm3 sec- 2. The 



144 

internal accuracy of the coordinates of each station, i . e. , the accuracy of the relat ive positions in the 
above reference system, is between ± 1 0 and ± 1 5  m. 

Thus, the absolute coordinates of the twelve Baker-Nunn camera stations are given to an ac
curacy of 1 5  to 20 m or approximately 3 ppm. 

Since all twelve stations are connected to major geodetic datums, and their coordinates in those 
datums are known, a simple comparison of the datum geodetic coordinates with the terrestrial 
coordinates will yield the datum shifts as well as the deflection of the vertical for those datums (Veis, 
1 965). When the absolute deflection of the vertical for the different datums has been derived, all 
geodetic coordinates can be converted to this new universal geodetic datum or, in other words, to 
terrestrial coordinates. In addition, local geoids determined geometrically from astrogeodetic 
leveling can be properly oriented and will provide the details of the geoid that satell ite dynamic 
methods cannot provide. 

Once a system for geodetic parameters has been established and the coordinates of tracking 
stations are given in this system, it is then possible to use the so-called navigation method for the 
determinatiorr of new stations. This method consists in the determination of the orbit of a satellite, 
in which are used observations from the known stations. Then, since the geocentric position of the 
satellite can be established for any given time, observations from an unknown station, at known 
times, can be used to determine the position of this station in the same reference system. 

This method has been tested by determining the position of each Baker-Nunn camera station 
separately from a completely new set of observations, and using as geodetic parameters (both dyna
mic and geometric) the values given by the Standard Earth. From this analysis, we conclude that 
a tracking station capable of making observations of an average accuracy of ± 2" in position and 
± 1 msec in time can be tied to the Smithsonian reference system with an accuracy of ± 1 5  m if 
500 observations (on a satellite like Midas 4) can be secured from this station in a period of time that 
the Baker-Nunn camera network monitors this satellite. It would therefore appear that the navigation 
principle can now be used quite efficiently. 
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Ideas and Propositions on Marine Geodesy. 

by Karl Killian, Vienna 

In marine geodesy - that branch of science we up to now know only by name and which 
is just at the beginning but certainly will develop - the problem is to establish fix points on the 
sea bottom, and to measure their mutual position in space and with respect to fix points on the 
continents. 

The fix point for the sea ( . = marine fix point), displayed in Figure 1 ,  is likely to represent a 
feasible proposition. I t consists of a triple-reflector system for ultra-sound ( 1 ), of a tube (2), and of 
a steel case (3) which carries four arms (4) fitted with pointed anchoring plates (5). 

The center of gravity of the whole system lies in the lower part of the steel case (3). Thus, a 
marine fix point lowered from a ship will maintain its axis of symmetry in a vertical position while 
submerging. This is further promoted by fins (6). Ocean currents are small as compared with the 
sinking velocity of the device, especially in greater depths. Underneath the case has a dome-shaped 
center-piece. This serves only for the reduction of the resistance-coefficient when sinking. 
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Currents created by moderate wind and by the tides have a total velocity on the open sea of 
Jess than 0,2 m/sec. Currents produced by wind 1each down only to 100 -200 m. The Gulf Stream, 
the Kuro-Schio and the Agulhas Stream have surface currents of 1 to 2 m/sec. In a depth of 1 000 m 
their velocity also is negligible. 

Hence, the points of the anchoring plates will penetrate the sea bottom approximately in vertical 
direction with considerable cinetic energy. The dropping of a marine fix point is done after preceding 
surveys by echo-sounding profiles in possibly horizontal regioas of the ocean bottom. According 
to the nature of the ocean bottom (methods exist for digging up samples for geological analyses) 
and to the future deep-sea depositions to be expected one will select size (length of the t.ube about 
5 to 1 5  m) and weight of the whole device. Eventually the anchoring could be checked by a tele
vision system. 

The determination of th� spatial position of the anchored marine fix points is done hy means of 
"marine stations". By "marine station" we understand a ship which at "calm" sea is kept fixed in 
a vertical through the center of the triple-reflector as accurate as possible. As previous solutions 
of the problem to maintain a ship in a fixed position the methods of laying deep-sea cables and the 
project "Mohole" (drilling at the sea bottom in a depth of 3600 m) can be claimed. The following 
solution will suit �he present conditions better. 

At the marine station (1)  (Figure 2) a gyro-stabilized platform (2) is necessary. For the stabi
lization we assume about one minute of arc in amplitude and one minute for the period of oscil1a
tion. On the platform an ultra-sound transmitter (3) is fitted. It transmits vertically (accurate to 
about 1 ' ) onto the triple-reflector (5). The reflected ultra-sound waves reach the four receivers (4) 
arranged symmetrically with respect to the transmitter. Both the plotted receivers (4) and the two 
receivers not plotted are hooked up in a bridge cirruit. If equal energies are recorded in any two 
opposite receivers the marine station is in correct position. If this is not the case, automatic pilot 
systems of the vessel should be set to work. Consequently, the marine station is continuously shifted 
about a fixed point. 

As an ultra-sound transmitter perhaps the shaft-eir.itter described in [ 1 2] will be suitable. 
The manowvring of the marine station certainly can be done to a few meters by Voith-Schneider 
propellers [1 1 ]  or by Escher Wyss-adjustable propellers [4]. The ocean depth corresponding to the 
marine station and eventually also the tide lift can be measured. 

For locating a marine fix point and for navigation the fix point should be able to transmit on call, 
and furthermore, the triple-reflector must be cleanseable of depositions before measurements. The 
source of energy necessary for transmitting is stored in the case (3), being either fuel cells [1 ], [3] 
or high-pressure air tanks. Water could also be used by letting it flow in through a small nozzle 
fitted to the upper pru. t of the tube thus driving a small pe/ton turbine. In great depth, of course, 
preceding pressure reduction is necessary. In smaller depths the cleansing of the triple-reflector can 
be accomplished by a jet of compressed air. For greater depths the following device will be useful. 
Figure 3 gives the top view. When not in operation the reflector (dashed circle) is covered by a 
plate (1 ). This plate is mounted on guide rails (2) fitted to the reflector. To the right-hand and the 
left-hand edges of the plate cables (3), (4) are fastened which run over pulleys (5), (6) and carry 
the weights (7), (8). Parts of the weights can be burst off by small explosive charges thus effecting 
the opening anrl. closing of the reflector. The plate has a ridge-roofed top whose ridge is parallel 
to the guide rails. The marine depositions slip off the roof; hence, they cannot increase the weight 
of the movable parts. Marine fix points having become inoperable after years, can be reactivated 
by means of submersed robots. Today submersed robots are in a state of development that one 
thinks about restoring the treasures of the "Titanic" from 4600 m below sea-level. Much sin1pler 
is the following way : the marine fix points are not used till their energy is exhausted but before 
that happens a new fix point is dropped in a distance of about 50- 100 m. Above both fix points 
marine stations arc set up, and their distance and mutual azimuths are measured. 

The main problem is the tying-in of the marine stations by means of stellar triangulation into a 
net of continental stations determined by stellar triangulation. 

At first a global stellar triangulation net may be mentioned, recently proposed by the author : 
this net comprises 31 stations located on the continents or on islands. The net extends round the 
whole equator like a belt. All 3 1 stations are positioned in very favourable latitudes ( ± 1 80 to ± 280) 

10 
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concerning the clouding of the sky. The zenith distances occurring in observations are less than 600. 
As a high target an equator satellite is necessary, orbiting the earth in a distance of 7000 km possibly 
in a circle. Its orbital period with respect to a terrestrial point amounts to about 5,2 hours. We 
presuppose an active satellite, flashing on call. The electric energy created in the satellite by con
version of solar energy is too small for frequent flashing (e. g. project ANNA), and the illumination 
of the satel lite by Laser-pulses is not yet solved sufficiently. However, a thermo-nuclear reactor 
is in a proll'ising state of development for creating electric energy in the satellite. 

It may be pointed out that without entering into the mechanics of the satellite orbit a smoothing 
of the computed positions of the target is possible. Thus the positions of the terrestrial stations can 
be improved. Progressively with every orbit the positions of .the stations and the satellite paths 
can be determined more and more accurate. It may further be mentioned that no time measurement 
occurs in this method of stellar triangulat ion, that not the right ascensions of the stars but only 
their differences enter the calculations, and that for the establishment of this net only a. rather small 
number of sturs, as compared to the whole sky, are necessary whose coordinates and proper motions 
will be determined the more accurately. The error-theoretical analyses and numerical calculations 
of this net were done by P. Meiss!, who will report on this topic separately . 

Stellar triangulation of stat ions outside that belt mentioned above wil l be accomplished by 
satellites with inclined orbits and by rockets. The necessary elevations are less than 3000 km. 

If the positions of marine stat ions are to be determined by stellar triangulation, their dis
placements amounting to a few meters can be considered negligible as the stations are oscil lating 
about a fixed point . However, when using even a small astrograph (f = 1 rn), which needs only a 
few seconds of tracking for photographing the stars, a great problem arises ; the above-mentioned 
oscillation of the gyro-stabil ized platform is a hundred t imes too great. But the use of star sensors [10]  
developed during the last years · (they were developed from photo-electric tracking devices e. g. 
[5] ,  f8], [9] ,  [ 1 3]) promises a solution of our problems, and this opinion is even more true as the 
further development of star sensors is of decisive importance for the progress of astrophysics 
(photography outside the atmosphere). The required accuracy of the stabilization by star sensors 
is stated to be 0, I " . 

Another way is to cut down on exposure times for the star photographs. Thi$ can be accomplished 
by special emulsions and developing methods, and by photomultipliers. The use of short-focus 
cameras also permit short-time exposures ; for they have wide picture angles thus catching brighter 
stars within their regions. As the satellites are flashing only on command, flashes and exposures 
can sufficiently be synchronized. We not only have to deal with inaccuracies due to the short focal 
lenght and to scintillation, but also elimination of refraction effects states a serious problem : the 
angles between the bright stars and the flashes are too wide. 

A further possibility to determine the position of the marine stations with respect to the fixed 
ones is the measurement of distances to the high targets of stellar triangulation. There the oscillations 
of the marine station affect the distances only as small quantities of second order. For instance, 
at different times stellar triangulation observations are executed to three high targets (two targets 
are. represented by different positions of one satellite, the third target is another satellite). Simul
taneously with this observations the distances to the targets are measured from a marine station. 
Thus the position of the marine station can be calculated with respect to the existing net of stellar 
triangulations, provided the scale of the net is known. For the determination of the scale the 
measurement of the distance between any two points of the net (e. g. the distance between an 
arbitrary station and a high target) is sufficient theoretically. 

Electro-magnetic cm- and dm-waves suffer from spatial and temporal variations of refraction 
and velocity in the ionosphere which are difficult to be compensated for. The precision of distance 
measurements by these waves as stated in literature are contradictory. With Laser, however, an 
excellent measuring accuracy has already been obtained (some decirneters). 

If in a particular region an especially dense net of marine fix points has to be established, the 
interpolation of the net will not be done by stellar triangulation. One will rather make use of tri
lateration of the marine stations or of photogrammetric methods. The marine stations floating 
above the marine fix points are illuminated. Then photogrammetric pictures are taken at night 
from air crafts, stratosphere-balloons or rockets. Of course, only those marine stations have to be 
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set up which are in the picture area of the photograph. In the present case a very valuable condition 
results for the analytical aero-triangulation : all points have to lie on a continuous slightly curved 
surface. The effect of refraction is smaller for pictures taken downward from above than it is f01 
those taken upwards from below. The procedure may also serve for the survey of densely clouded 
areas. 

If the marine stations form triangles with side-lenght of only a few kilometers, their position 
fixing can be done solely by ultra-sound. 

Example 1 :  The ocean dephts of the marine fix points P, Q, R may be known. From three 
unknown positions F1 , F2, F3 of a vessel turn by turn the three spatial distances to the three fix 
points are measured simultaneously. As the ocean depths are known the horizontal distandes can 
be calculated (Pythagoras). Figure 4 gives a top-view representation. Wanted are the sides of the 
triangle P, Q, R. A different paper of the author will deal with this geometrical problem (dangerous loci). 

Example 2: The ocean depths of the three marine fix points P, Q, R may not be known. In 
that case two vessels A , B are necessary. From both vessels the spatial distances to P, Q, R are 
measured simultaneously while at the same time the distance AB is recorded electronically. The 
triangles ABP, ABQ and ABR thus known have a common horizontal side AB. We assume the 
triangles to be rotated about that side into the horizontal plane, thus causing the points P, Q, R 
to move in vertical planes p, q, r (in Figure 5 this rotation is plotted only for point P, its unknown 
ocean depth being t). The measured distances determine uniquely the positions of those three planes. 
Both vessels move on, and the above measurements are executed from two more positions A', B' 
and A", B". Thus we have three given systems with three parallel rays each. These systems of rays 
have to be adjusted in such a way that any three corresponding l ines intersect in one point. The 
solution of this problem leads to a quadratic equation. A dangerous locus occurs if the connecting 
lines between both the vessels are parallel to each other in at least two cases. Then two of the 
systems of rays are congruent. The most favourable intersections occur in case the connecting 
lines between two corresponding positions of the vessels suspend angles of 1 200. 

The distance measurements stated in the above examples are executed in sloped directions. 
The refractions and variations in velocity encountered thereby are very large but hardly investigated 
yet, and depend on temperature, pressure and on the saline proportion as well as an plankton [7]. 
It may be mentioned that the temperature rapidly decreasing with depth, and the increasing pressure 
are responsible for the deep-sea sound channel (900 to 1 300 m). In this channel detonations are 
perceivable even in a distance of 1 0.000 km. Trilaterations in the sound channel gave an accuracy 
of 0,3 . 1 0- 4 [2], [6]. 

The soaring world population requires the opening of new sources of nutrition, energy and 
raw materials. 

Apart from some underwater mining near the coast, we have only random samples of the 
gigantic riches of the sea bottom (sea-weed, phosphates, natural oil, iron ore, magnesia, manganese, 
nickel). Now man is about to take possession of them. 

Beyond that, a very significant problem of geodesy could be solved : if points of the surface 
of the ocean as well as points on the continents are determined by stellar triangulation the mutual 
spatial position of all points is uniquely defined. The points of the calm surface of the sea are 
natural points of the geoid which can be determiner/ by stel/ur triangulation in a non-hypothetical 
way. In addition, the points are distributed on a surface twice the area of the continents where the 
geoid cannot be found without hypotheses and dogmas. 

If the problem should arise to determine points of the geoid without marking them by marine 
fix points, the procedure described in Figure 6 might be useful. The method has the purpose to 
stabil ize the marine station MS so that during the observations it can only perform the oscillations 
described at the beginning. The escort vessels 1 ,  2, 3 are anchored by means of the anchoring 
weights 1 ,  2, 3. (4) represents a hollow aluminium buoy. The latter is carrying the triple-reflector and 
is connected with the anchoring weights by thin steel-cables. After completion of the survey the 
hawzers are hoisted, the buoy emerges, and the whole system can be set up again in a desired 
position. Perhaps the escort vessels could be substituted by buoys, and the whole work done by 
a single ship. 

10"'  
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The survey is performed only when the sea is "calm". If in addition it is done in a distance 
of more than 1 00 km off coast the tidal lift is insignificant (less than 1 m). 

The author conceived the above ideas and propositions as part of an American research contract 
(Prof. Dr. K. Rinner, Technical University Graz.). 
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Second Conference (SSG 23) 

Recent Research on Atmospherical Ref raktion for Geodetic 

Purposes 

Part I 

Problems of Atmospherical Refractive Iudex and its Influence 

upon Electro-optical Distance Measurements 

A.  Refraction Effect on Optical Distance-Measurements 

Introduction and Opening by Prof. L. Asplund , 
President of Section I 

Ladies and Gentlemen, 

It is a great pleasure to me to be present here today and a great honour to open now this 
symposium on geodetic refraction. 

Refraction or the refractive power of the atmosphere has always created problems to geodesists. 
The difficulties in determining its influence upon geodetic measurements are in many cases the main 
limiting factor of the accuracy obtainable by geodetic methods. 

This fact was very much stressed when the electromagnetic distance measurement methods began 
to open new possibilities in geodetic technique. In the early discussions of the practical aspects of 
the three-dimensional geodesy, refraction in vertical angle measurements was predominant. For 
such reasons Section I decided at the Helsinki General Assembly 1 960 to propose a Special Study 
Group on refraction, and following this proposal the Association formed the SSG I : 23. 

Fortunately, Dr. Tengstrom, who by that time had started promising research on determining 
vertical refraction by dispersion methods, agreed to lead this SSG. 

Since 1 960, the question of refraction has become still more important due to the increasing 
accuracy of geodetic instruments, for instance for distance measurements. The development of 
satellite methods also has opened a new field for study of the influence of refraction. 

As far as EDM is concerned, a review of the research on refraction problems, was given at 
the EDM symposium at Oxford in 1 965. On that occasion we had the privi lege to have amongst 
us experts on physics, meteorology, and radio-meteorology. They certainly could not present any 
ready-made solutions to our geodetic problems, but they helped in elucidating the full complexity 
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and all difficulties of determining the momentary effect of refraction along a path as used in geodesy, 
due to the large changes with time and space. 

Approach€s to solve the refraction problem have hitherto followed three different lines or 
combinations of these lines. 

The first line is the averaging of a large number of measurements, systematically distributed in 
time with the view to obtaining such a spread of refraction influence, that the average can be 
succesf ully reduced by some normal refraction formula. 

The second line is the collecting of as much information on meteorological data along the path 
as possible and to make these observations as representative as possible. This method is very difficult 
in practice, but maybe in future information obtained by radio-meteorological means might be 
useful . 

The third line is the direct determination of the total effect of refraction along the path at the 
observation moment, an approach used for instance in the dispersion measurement technique. 

Maybe this symposium will show new possiblities. The papers, which will be presented to us 
these two days, will review the latest developments of the various attempts to master the refraction 
problem in geodesy. I am confident, that very much new and promising results will be reported 
and I am sure the discussions will be fruitful and that many new ideas for future development 
will be born. 

Report from SSG 19 to SSG 23 on Matters of Common 
Interest Connected with Refraction 

by E. W. Denison, Feltham, Englund 

1 .  This is a report fromSSG 1 9  to SSG 23, since the overlap of interests of the two groups is 
obvious. This review is therefore intended to draw the attention of members of SSG 23 to work 
which has been reported to SSG 1 9. In many instances members belong to both groups, and there
fore this report is not aimed at them. Indeed, those of them who are about to present papers at this 
conference need not worry that their papers will be forestalled here. 

2. The most recent comprehensive account of research into Electromagnetic Distance 
Measurement is the printed record of the symposium held by SSG 1 9  at Oxford in September 1 965. 
The full record of this symposium has now been printed and is available. (This is in 
accordance with Resolution Nr. 4 of the Final Plenary Se sion of that symposium.) There is no 
need to teach this conference the value of interchanging different aspects of scientific knowledge. 
Perhaps one example may be recalled. There may be some people at this conference who do not 
remember that the whole war-time theory of servomechanisms fell straight out of the theory of 
feed-back amplifiers, - one recalls the many applicat ions of the Nyquist Diagram. By the use of 
feed-back techniques, the rapid progress of Radar came about, because the development of servo
mechanisms allowed the Radar sets to follow the tiniest of signals. Geodesy may directly benefit 
from this, perhaps by equipment intended to lock-follow stars or satellites. Geodesists are likely 
to owe an even greater debt in future to the electronic scientists, because the total effort in money 
and manpower which is going into electronic research is so colossal. This exchange of knowledge 
is therefore the justification for putting before one group a summary of some of the papers which 
were presented to another group. 

3. Many of the subjects discussed at Oxford will not be mentioned here, such as descriptions 
of new equipment, zero errors of instruments, reflection problems, results of trilateration and 
triangulation tests, etc. Quite a lot which is directly connected with refraction remains. Relevant 
papers were : -

4. "Some Aspects of the Meteorology and Refractive Index of the Air near the Earth's Sur
face", by G. D. Robinson, of the Meteorological Office, Bracknell, Berkshire, UK. 

Mr. Robinson pointed out that there is no satisfactory theoretical treatment of the temperature 
and humidity distribution near the ground. Dimensional methods and empirical results have been 
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combined. For instance, in the UK, measurements of refractive index over a 1 6 metre path over 
grass at two heights have given variations 

Light 
Cm. waves 

Height 5 cm 
5 N units 
25 N units 

50 cm 
1 N unit 
6 N units. 

In general, the higher the measurement above the _ground, the more constant the result. At 
night things are better than by day, because the total heat transfer is less. Even so, if the wind falls to 
less than 1 metre/sec., considerable inhomogeneities may develop. The conclusions .are not com
forting. All that the surveyor can do is to choose the best conditions, i. e. times when the flux of 
heat and water vapour is least. This happens at morning or evening, when skies are overcast, and 
with a wind of at least a few metres/sec. Measurements of temperature, etc. should be taken at least 
ten feet above the ground. Even after taking every precaution, results can be bad near disconti
nuities such as coastlines. In fact, meteorologists think that surveyors are extremely lucky to get 
results as good as they appear to be. In the discussion on the paper, Professor Marussi said that 
geodesists relied on statistics, and expected the average of many results to be good. 

5. "The Caithness Base Investigation", by Major M. R. Richards, the Ordnance Survey of 
Great Britain. 

Large numbers of Tellurometer measurements were made on an accurately measured base, 
with meteorological readings taken at both ends of the line, on towers near the ends, and on towers 
near the actual line of the radio rays at intermediate points. There· were so many readings that the 
full analysis of the results has not yet been done (though Mr. Poder may add something during this 
conference). In general, the results suggested that it is best to take the meteorological readings well 
clear of the ground, while keeping the E. D. M. instruments low down in order to reduce the effect 
of reflections. This agrees, of course, with the previous paper by Mr. Robinson. 

6. "Some Results of Microwave Refraction Measurements over Snow and Ice Fields", by 
K. Nottarp, Institut fiir Angewandte Geodasie, Frankfurt am Main. 

Measurements over snow and ice fields struck two difficulties. On some occasions high refraction 
gradients reflected the wave upwards, just as though the earth had an extra surface a few feet above 
the ground, while at other times a cold dense layer of air refracted the wave down into the snow. 
The cure to both troubles was to elevate the (MRA 2) aerials at both stations. 

As a contrast, the author made some measurements in the Libyan desert, where meteorological 
conditions were so regular that errors were easily kept within 2 N units. This shows that there are 
reasonable areas of the world, where the natural pessimism of meteorologists working in the UK 
is not justified. 

7. "The Meteorological Conditions of Electromagnetic Wave Propagation above the Sea", 
by K. Brocks and H. Jeske, Meteorological Institute of the University of Hamburg. 

Mr Jeske is the joint author of a paper due to be presented at this conference on a related 
subject. However, the earlier paper may contain some extra information of value to anyone who 
is measuring distance · or angles over the sea. 

8. "On the Path Curvature of Electromagnetic Waves", by J. Saastamoinen, Division of Applied 
Physics, National Research Council, Ottawa, Canada. 

This paper describes the effect of the curvature of radio waves, and of light, as a function 
of temperature, pressure, and humidity, giving numerous mathematical relations. It suggests that 
if meteorological soundings (radio sondes) are available while E. D. M. measurement is going on, 
then appropriate corrections to the measured lengths should be made. In the discussion on this 
paper, Mr Robinson gave a warning about "do-it-yourself" radio sondes. These instruments are 
tricky, and they tend to smooth out irregularities. 

9. ,,Multiple Wavelength Optical Distance Measurements", by J. C. Owens and P. L. Bender. 
"The Use of Atmospheric Dispersion for the Refractive Index Correction of Optical Distance 
Measurements", by M.  C. Thompson and L. E. Wood. 

These two papers are considered together. Joint authors of each of them will be presenting 
similar papers at this conference. However, they are of such importance that it is impossible to 
avoid mentioning them. The use of dual-wave optical measurements does seem to hold out a real 
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prospect of finding the average refractive index just where it is wanted most. No doubt Mr. Owens 
and Mr. Thompson will bring us up-to-date. 

10. "The Accuracy of a 50 km Over-Sea Geodimeter Distance and a Study of Temperature 
Correction by Means of a Temperature Gradient Formula", by E. Bergstrand, Geographical Survey 
Office of Sweden. 

SSG 23 may be particularly interested in this account of Geodimeter measurements · over 50 km 
of the Baltic Sea. During the measurements, there should have been 5 metres clearance for the sight 
line to the reflector target, but the warm summer sea caused much negative deviation. During one 
whole month the target was seen after sunset over the horizon only once. At other times the re
flector was visible before sunset, and then sank below the horizon. By making use of the dip of the 
horizon, temperature differences were computed, and the average temperature over the line was 
estimated to ± 0.30 C. 

1 1 . "Distance Measurement by Means of a Modulated Light Beam yet Independent of the 
Speed of Light", by K. D. Froome and R. H. Bradsell, National Physical Laboratory, Teddington UK. 

This paper describes a new kind of instrument, the "Mekometer". In it the basic frequency 
standards are cavity resonators, constructed out of Invar, and filled with dry air which is allowed 
to acquire atmospheric pressure and temperature. The radio frequency is used to produce polari
zation modulation, via a crystal of ammonium dihydrogen phosphate (ADP), of a light beam. 
The light passes through a folded path to the distant reflector, and then returns through the same 
crystal, where it is reinforced or diminished in accordance with the phase change of the radio fre
quency. The resulting measurement gives the distance as a multiple of the physical dimensions 
of the invar cavity resonators, and should therefore be independent of the speed of light. The in
strument can hardly be of much use to Geodesists, because its maximum range is about 2 km. 
However, the idea may be of interest to SSG 23. 

12.  "Range and Accuracy of the EOS Electro-Optical Telemeter", by H. Richter and H. Wendt, 
VEB Carl Zeiss, Jena. 

This instrument is similar in principle to the Geodimeter, except that the modulation is pro
duced by the ultrasonic oscillation of a crystal, - which acts as a grating, - instead of a Kerr <;;ell. 
The light transmission of a grating is better, and therefore greater range is claimed. 

1 3. That concludes the brief account of those papers which should be of interest to SSG 23. 
It is by no means complete. For example, Mr Culley's paper on SECOR has not been included, 
but he is due to speak at this conference. At the concluding session of the Oxford Symposium, 
one of the resolutions contained "the lack of sufficient information about refractive index along 
the path of electromagnetic distance measurements is the most serious of the remaining sources of 
error". Perhaps SSG 23 will be able to help ? It will certainly be interesting to learn how much 
farther the dual wave length techniques have been taken during the last few months. 

Recent Progress in Optical Distance Measurement : 
Lasers and Atmospheric Dispersion 

by James C. Owens, Boulder, Colorado 

Abstract 
The development of lasers, new electro-optic light modulation methods, and improved elec

tronic techniques have made possible significant improvements in the range and accuracy of optical 
distance measurements. Accuracies as high as a few parts in ten million appear feasible through the 
use of the dispersion method, in which simultaneous measurements of optical path length at two 
widely separated wavelengths are used to determine the average refractive index over the path. The 
design of a new instrument based on this method, and initial test results, are presented. 

Introduction 
The application of lasers and modern electronic techniques has resulted in,significant improve

ments within the last few years in the measurement of long distances. Both a thorough general re-
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ference on electromagnetic distance measurement ( 1 )  and an excellent survey of the applications 
of lasers to geodetic, geophysical, and astronomical problems (2) have recently become available. 
It now appears that a method has been developed which will permit rapid and convenient measure
ment through the normal, uncontrolled atmosphere of paths several tens of kilometers long to an 
accuracy better than one part per million. 

The most convenient technique for making geodetic distance measurements involves the measure
ment of the transit time of electromagnetic waves over the path, multiplication of this transit time 
by the propagation velocity of the radiation in vacuum, and applicat ion of an appropriate cor
rection for the refractive index of the atmosphere along the path. Because pulse techniques do not 
provide the requisite precision at present and direct optical interferometry is precluded by atmos
pheric turbulence, the transit time is normally found through measurements of the phase of a radio
frequency or microwave signal. This signal may be either propagated directly as an unmodulated 
wave, in which case the refractive inde).{ correction involves the low-frequency phase refractive 
index of air, or used to modulate a light beam, in which case the correction requires the use of the 
group refractive index for the optical carrier wavelength. 

The modern optical method was first developed by Bergstrand (3), whose instrument utilized 
amplitude modulation of the light at 8,3 MHz and a photomultiplier tube for demodulation. Sub
sequent development has been sufficiently successful that although their maximum range is typically 
less than half of that achievable with microwave methods, the Geodimeter and related instruments 
are now routinely used in a large fraction of firstorder surveys. Under good conditions, when suf
ficiently accurate meteorological information along the path can be obtained, these instruments are 
capable of an accuracy of about one part per million over paths of a few kilometers or, at night, 
a few tens of kilometers. Replacement of the conventional tungsten or arc lamp by a gas laser, 
however, and utilization of recently developed UHF and microwave modulation methods (4, 5) 
and of modern phase measurement techniques can result in significant improvements in range and 
precision. By replacing the light source with a helium-neon laser, replacing the Kerr cell with a 
KH2P04 modulator, and using an improved photomultiplier tube, the operating range of an other
wise conventional Geodimeter has been doubled (6). 

The principal limitation to the accuracy of both microwave and optical measurements is the 
uncertainty in the average refractive index over the path due to inhomogeneity and turbulence in 
the lower atmosphere. At present, the average refractive index is usually estimated from measure
ments of pressure, temperature, and humidity made at one or more points along the path. Higher 
accuracy in the point measurements could be achieved by using optical or microwave cavity refracto
meters instead of meteorological sensors, but the fundamental problem of averaging over the path 
would still remain. Very good results can be obtained under favorable circumstances, that is, when 
the path is horizontal and at a constant distance above the ground, meteorological conditions are 
relatively uniform along t-he path and slowly varying in time, several sets of sensors are used, and 
averaging times are sufficiently long. An example of the precision attainable is given by a set of 
microwave measurements over a 1 7 . 1  km path along the coast of Florida using refractive index 
measurement at both end points (7), for which the standard deviation of the mean was found to 
be less than 1 x 10- 6 for averaging times longer than 1 2  hours. Under unfavorable circumstances, 
however, as in measuring the distance between mountain peaks where meteorological conditions 
are Jess uniform and sensors can be placed only at the ends of the path, accuracies much less than 
one part per million would normally be expected. Microwave measurements over a 25.9 km path 
in Hawaii between the peak of Mt. Haleakala and sea level, corrected using refractivity measure
ments at the end points, have shown (8) that a 1 hour averaging time results in a standard deviation 
in path length of 9 x 1 0- 6, while increasing the averaging time to 8 hours decreases the standard 
deviation only to 7 x 1 0- 6. Moreover, even if meteorological conditions and path geometry permit 
the correct spatial average of refractive index to 9e found by this technique, drifts and rapid fluctu
ations in transit time due to atmospheric turbulence provide a background noise which can, under 
unfavorable conditions, severely limit the precision of existing instruments and can even preclude 
their use. 

Although these limitations apply to both optical and microwave systems, the much smaller 
effect of water vapor in the optical region should permit the corrections to be made with somewhat 
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higher accuracy for optical tllan for microwave measurements.  Nevertheless, even using optical 
techniques, rapid measurements or measurements of the highest accuracy will require a direct 
measurement of the average refractive index over the path rather than an approximation obtained 
by sampling. 

Use of Athmospheric Dispersion 

A direct optical method of determining the desired average was proposed by Prilepin in 1 957 (9), 
although the technical feasibility of the method was unclear ( 10). The same idea has recently been 
put forward independently (1 1 )  along with suggestions for its experimental realization ( 12, 1 3) .  
The method i s  based on the fact that the refractive index n of the lower atmosphere is dispersive 
in the visible spectral region, and hence two light signals traversing the same path but having dif
ferent wavelengths will travel at slightly different velocities. Because (n- 1 )  at a given wa\lelength 
is proportional to air density for dry air, the difference in refractive index and hence the difference 
in transit time for the two signals will be proportional to the average air density over the path. 
A measurement of the difference in transit times, therefore, can be used to give the average density 
over the path. From this quantity the average refractive index for either wavelength may be cal
culated, providing the desired correction. 

If L is the geometrical path length between light source and reflector, we may write the one
way optical path as L + S, where S is the additional contribution due to the atmosphere. We define 
the group refractive index by 

nG = c/U 

where c is the speed of light in vacuum and U is the group velocity. Then S is given by 

L 

s = f cnG 
- 1 )  dx. 

0 
If the red 6328 A helium-neon laser line is chosen for one wavelength and the blue 3660 A mercury 
l ine for the other, the extra optical paths SB and SR for the blue and red light, respectively, will 
differ by about 1 0 °� ( ; .!! ) . Because the refractivity of air increases sharply as the wavelength is re
duced, in order to have large dispersion it is desirable to choose the shorter wavelength in the violet 
or r::!tir ultravivlet spectral regions. The ratio A = S Rf(S B - SR), which is known to be essentially 
i1 1de_pendent of air density ( 1 5) and only weakly dependent on atmospheric composition (1 6) (the 
largest effect being due to water vapor), can be determined satisfactorily for most purposes from 
published dispersion formulas for dry air . Since an error of 8 mb in the average partial pressure of 
water vapor (corresponding to a relative humidity of about 50 % at 1 50 C.) leads to an error of 
1 x 1 0- 6 in the ult imate length determination, it will be necessary to have an estimate of the average 
humidity over the path under conditions of high absolute humidity or for highe_st accuracy, but 
this is the only meteorological measurement required. Hence an accurately measured value of 
!::,. S = S 8 - SR can be used to find the desired correction SR to approximately the same fractional 
accuracy. For a 1 5  km path,  � S is about 40 cm and must be measured to 1 . 3 mm (one part in 300) 
to give L to 1 x 10- 6. 

The New Instrument 

A block diagram of the dual wavelength, microwave modulation frequency instrument under 
development at the ESSA Institute for Telecommunication Sciences and Aeronomy in Boulder, 
Colorado, is shown in· Figure 1 .  The basic principles of the instrument are quite straightforward 
and are known to anyone familiar with conventional optical measurements of the velocity of light. 
For light of either wavelength passing out and back through the modulator, the intensity at the 
appropriate detector, averaged over a time long in comparison with the modulation period, will 
be a maximum if the round-trip transit time is an integral multiple of the modulation period. Hence 
observation of this intensity permits measurement of the transit time in terms of the modulation 
period. Measurements at different modulation frequencies permit the resolution of path length 
ambiguity. 
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Two separate light sources are simultaneously used, a helium-neon gas laser and a high pressure 
mercury arc lamp filtered to emit a narrow spectral band centered at 3669 A, because at present 
there is no satisfactory laser which operates in the 3500 -4000 A range. The l ight from the two 
sources is collimated and superimposed, passed through a KDP electro-optic light modulator ( 1 7) 
operating at a frequency of 3 GHz, and transmitted by an 8" Cassegrainian telescope. The light 

Fig. 1 Block diagram of the instrument 

traverses the path to be measured and is returned by an 8" cat's-eye retroreflector, passes through 
the modulator a second time, and is detected by one of a pair of photomultiplier tubes. Because the 
polarization, rather than the amplitude, of the light is modulated, a Wollaston prism may be used 
instead of a beamsplitter to separate the outgoing and returning beams. This prism also polarizes 
the light, combines the beams for transmission and separates them u pon reception, and separates 
the modulated from the unmodulated component of the returning light. Thus one prism replaces 
an array of beamsplitters, polarizers, and dichroic m irrors. The use of a high modulation frequency 
provides the required precision with simpler methods of phase measurement than are possible with 
modulation frequencies of a few tens of megahertz, and thus tends to reduce certain systematic 
errors. This instrument, having a modulation wavelength of 10 cm, will measure the one-way di
stance to a precision of 1 . 5 mm if the modulation phase can be determined to ioo. 

The arrangement for measuring the difference in optical path � S is very simple. The blue light 
is transmitted directly from the modulator to the telescope, but the red light is diverted by a dichroic 
mirror and two prism reflectors around an adjustable supplementary path. A polarization compen
sator corrects for the effects of the prisms. By adjusting the position of one of the reflectors to give 
simultaneous intensity minima for both colors, the optical paths for red and blue are made equal 
(aside from an integral number of modulation wavelengths) and the difference i n  atmospheric 
optical path may be read out simply in terms of the distance the prism is moved from a reference 
position. 

In order to track the fluctuations in optical path caused by changes in refractive index, a servo
control circuit locks the microwave modulation frequency to the optical path length in such a way 
that the path always remains an integral number of modulation wavelengths. This i s  done by mo
dulating the frequency of the microwave oscillator by a small amount at 500 Hz, causing the i:e-
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turning light signal to be amplitude modulated at 500 Hz unless the transit time is an integral number 
of modulation half-periods. The output of the photomultiplier detecting the red light is synchro
nously demodulated at 500 Hz, thus generating an error signal if the average refractive index over 
the path changes and hence the transit time no longer satisfies the half-integral condition. This error 
signal is applied to the microwave oscillator and shifts its frequency until the error is minimized. 
The necessary averaging over the frequency fluctuations is then performed by a counter which 
continuously monitors the microwave frequency. A second servo loop controlling the length of 
the "line stretcher" for red light tracks the changes in dispersion. These servo systems make the 
instrument self-balancing, a convenience when the optical path length is systematically changing, 
as at sunrise and sunset. 

Finally, the effects of scintillation are largely cancelled by automatic normalizing circuits bet
ween the photomultipliers and the synchronous detectors. Rather than using beamsplitters to pick 
off reference signals, the microwave power is applied to the modulator in 1 00-µsec pulses with a 
pulse repetition rate of 1 kHz. The light intensity leaking through the modulator between signal 
pulses is monitored and used to control the gain of the normalizing amplifiers. In this way, optimum 
amplification can be maintained in the servo system without overloading during periods of high 
light intensity. 

Results of Field Testing 
The instrument was tested during August, 1 966, using a 1 .6 km path across Lake Hefner, near 

Oklahoma City. Although this path was too short and too uniform to illustrate clearly the ad
vantages of the dispersion technique over conventional methods, it was chosen because meteoro
logical data from a network of stations around and at the center of the lake and also a continuous 
record of microwave distance over the same path were available for comparison at this site. The 
final measurements were made during a 4-day period of nearly continuous operation at the end of 
the month. From one-minute samples of this data, the corrected distance was calculated using the 
two-wavelength method at 1 77 times. 

The precision of the instrument in detecting optical path length changes for either wavelength 
was found to be about 3 x 1 0- s with an averaging time of 1 0  seconds. This was checked by actually 
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moving the retroreflector in small increments ; a motion of about 50 µm could be detected. It is 
believed that the remaining limitation to precision is primarily due to instrumental noise and to 
amplitude scintillation of the light. 

The temporal variation of optical path length for red light, � (n � L), along with measurements 
of temperature made every half hour at the midpoint of the path, are shown in Figure 2. The diurnal 
variation of these quantities is very evident. The passage of a weather front late on August 29 caused 
the irregularity which can be seen in both curves. As expected, the variations in reciprocal tempera
ture and in optical path length are highly but not perfectly correlated ; the correlation coefficient 
is 0.9 15 .  A slightly higher correlation, 0.923, was found by including pressure variations and com
paring the fluctuations in air density and optical path. The standard deviation of optical path length, 
which would have been the standard deviation of a one-wavelength distance measurement at this 
time and location if no meteorological information were used for correction and there were no 
other sources of error, was 2.2 x 10- 6. 
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Fig. 3. Difference in optical path for red and blue, � s. versus extra optical path for red, SR. 

For the two-wavelength measurements, the correlation between directly observed variations 
in optical path length for red light, SR• and the variations calculated from the difference in optical 
paths for blue and red, � s. was found to be good, the correlation coefficient being 0.89. The data 
are shown in Fig. 3.  The correlation coefficient between the average optical refractive index found 
from the two-wavelength measurement and that found from meteorological measurements at both 
ends and the center of the path is slightly lower, 0.83, as might be expected because of the additional 
error introduced by the point meteorological measurements. 

Unfortunately, technical difficulties prevented simultaneous distance measurements at the two 
wavelengths from being made, thus introducing instrumental errors which reduced the correlation 
and the precision of the corrected distance below the levels which had been expected. The 1 77 values 
of corrected distance found from the data, which are shown in Fig. 4, have a standard deviation 
of 1 .55 mm, slightly better than 1 x 10- 6. This is somewhat less than the precision obtained by 
usiqg meteorological data from both ends and the center of this short path for determination of 
the correction, which gave a standard deviation of 0.75 x 10- 6. Although the precision of the 
dispersion-corrected measurements is lower, it is better than had been expected for sequential 
measurements over such a short path and is highly encouraging, for we expect that the precision 
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of the dispersion correction relative to the meteorological correction will increase with longer, less 
uniform paths and simultaneous measurements. 
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refractive index correction. 

For comparison, measurements of microwave distance were made over the same path during 
the same 4-day period using a new instrument ( 1 8) operating at 9.6 GHz, and corrected using the 
same 3-point meteorological data used with the optical measurements. The standard deviations of 
both uncorrected and corrected microwave measurements, which were 1 0. 5  x 10- 6 and 1 .6 x 1 0- 6, 
respectively, are larger than the corresponding optical results. Finally, measurements taken over 
a parallel path during the 4 days with a commercial microwave instrument, corrected using meteoro
logical data from both ends of the path, had a standard deviation of about 4 x 1 0- 6. 

Averaging can, of course, give a mean value determined to higher precision than the individual 
data points. A conventional autocorrelation analysis showed that the standard error of the mean 
for the entire 4 days of optical measurements was a few parts in 1 01, which is comparable to 
previously reported microwave results. Although the standard error of the mean might decrease 
more rapidly with increasing averaging time if the data were continuous, the desirability of a suf
ficiently accurate measurement of the line integral of refractive index over the path which does not 
rely on long averaging times is clear. 

The absolute accuracy of the corrected length measurements cannot be ascertained from these 
data. The most direct and accurate calibration could be made by taking measurements through a 
long (1 km or more) pipe which could be evacuated. If the position of the effective modulation point 
(the "zero error") and the modulation frequency were known with sufficient accuracy, measure
ments through such a pipe at various air densities could be used to determine the absolute accuracy 
of the correction method, within, the small remaining uncertainty due to variations in  air compo
sition. The same calibration could be made using data taken under a wide variety of meteorological 
conditions over a fixed outdoor path, but a much longer time would be required and the calibration 
would probably be less precise due to additional noise and extrapolation errors. The primary source 
of systematic error with the present instrument is the uncertainty in the effective wavelength of the 
light emitted by the mercury arc lamp, which gives rise to an error in the corrected distance of 
3 x 1o- 7 /A. The use of a narrower optical filter or of a laser instead of the arc lamp would correct 
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this problem. Part of the possible systematic error at Lake Hefner may also be due to the sequential 
measurements for red and blue ; it is expected that an improved optical system, now being built, 
which permits simultaneous measurements wil l give a marked improvement in the precision of the 
corrected length measurements. 

The fluctuations in path length observed over a few minutes with 10-sec averaging were typi
cally less than 0. 1 5  mm, or 1 x 10- 1, much less than one modulation wavelength. For homo
geneous turbulence the root-mean-square value of modulation phase fluctuation is proportional 
to the square root of L, and hence we estimate that fluctuations in modulation phase during such 
short periods will probably be small for paths of a few tens of kilometers. Therefore, the use of 
microwave modulation frequencies on light beams will probably be feasible for quite long atmo
spheric paths, especially when used in instruments of the type described here which include servo 
systems having time constants short enough to track the larger, relatively slow fluctuations. 

Conclusions 

The practical value of lasers as convenient, monochromatic, and optically efficient light sources, 
and the utility of such modem t�chniques as microwave-frequency light modulation in geodetic 
distance measurement are clear. Although it has not yet been actually demonstrated, the use of 
the two-wavelength optical dispersion method is expected to permit the measurement under average 
atmospheric conditions of true geometricalrdistance over paths several tens of kilometers long to 
an accuracy of a few parts in ten million with averaging times less than a minute. The results of 
field tests of a developmental instrument over a 1 .6 km path have demonstrated that a precision better 
than 1 x 10- 7 in detecting changes in optical path for either wavelength and a precision of 1 x 10- 6 
in corrected length have been attained, although systematic errors may still be present. We are 
optimistic that an absolute accuracy of at least 1 x 10- 6 will be attained with averaging times less 
than a minute. 

Acknowledgments 

The assistance of K. B. Earnshaw, who has been largely responsible for building and testing 
�he instrument, and of the members of the Radio Meteorology Section, especially B. R. Bean, R. E. 
McGavin, and R. 0. Gilmer, who provided and analyzed the meteorological and microwave measure
ments at Lake Hefner, are gratefully acknowledged. Discussions with P. L. Bender of the Joint 
Institute for Laboratory Astrophysics during the entire course of the work have been particularly 
helpful. 

This work was partially supported by the Research Institute of GIMRADA, Ft. Belvoir, Vir
ginia, and by the Advanced Research Projects Agency of the Department of Defense. 

References 

1 .  Jordan/Eggert/Kneissl, Handbuch der Vermessungskunde, Band VI: Die Entfernungsmessung 
mit Elektro-Magnetischen Wellen und ihre Geodiitische Anwendung, K. Rinner and F. Benz, Eds. 
(J. B. Metzlersche Verlagsbuchhandlung, Stuttgart, 1 966). 

2. P. L. Bender, "Laser measurements of long distances", Proc. IEEE 55, 1039 - 1045 (1967). 
3. E. Bergstrand, "A determination of the velocity of light", Arkiv Fysik 2, 1 19 - 1 5 1  (1950). 
4. K. D. Froome and R. H. Bradsell, "Distance measurement by means of a light ray modulated 

at a microwave frequency", J. Sci. Instr. 38, 458 -462 ( 1961). 
5. I .  P. Kaminow, "Microwave modulation of the electro-optic effect in KH2P04", Phys. Rev. 

Letters 6, 528 - 530 (1961). 
6. S. E. Smarthers, G. B .  Lesley, R. Tomlinson, and H. S. Boyne, "Preliminary measurements 

with a laser geodimeter", to be published. 
7. M. C. Thompson, Jr., "The effects of propagation on measurements of distance, angle-of

arrival, and Doppler effect in ground-to-ground systems", presented at XV General Assembly 
of URSI, Munich, Sept. 1 966 ; to 1 be published in Progress in Radio Science 1 963 - 1966. 

8.  M.  C. Thompson, Jr.,  H. B. Janes, and F.  E. Freethey, "Atmospheric limitations on electronic 
distance-measuring equipment", J. Geophys. Res. 65, 389 - 393 (1960). 



16 1  

9 .  M .  T.  Prilepin, "Light-modulating method for determining the average index of refraction of 
air along a line", Trudi Tsentral'nogo Nauchno-Issledovatel'skogo Instituta Geodezii, Aeros'
emki i Kartografii, No. 1 14, pp. 1 27 - 1 30 ( 1 957). 

l 0. E. Bergstrand, "The geodimeter system : a short discussion of its principal function and future 
development'', J. Geophys. Res. 65, 404 -409 ( 1 960). 

1 1 . P. L. Bender and J. C. Owens, "Correction of optical distance measurements for the fluctuating 
atmospheric index of refraction'', J. Geophys. Res. 70, 246 1 - 2562 ( 1965). 

1 2. M. C. Thompson, Jr. and L. E. Wood, "The use of atmospheric dispersion for refraction 
correction of optical distance measurements," to be published in Proceedings of International 
Association of Geodesy Symposium on Electromagnetic Distance Measurement, Oxford, 
England, Sept .  1 965. 

1 3 . J. C. Owens and K. B. Earnshaw, "Long-distance optical strainmeters for fault zone instru
mentation", Proceedings of ESSA Symposium on Earthquake Prediction, United States Go
vernment Printing Office, 1 966, pp. 85 -92. 

1 4. B. Edlen, "The refractive index of air", Metrologia 2, 7 1 - 80 ( 1966). 
1 5 . K. E. Erickson, "Investigation of the invariance of atmospheric dispersion with a long-path 

refractometer", J. Opt. Soc. Am. 52, 777 -780 ( 1 962). 
1 6. J. C. Owens, "Optical refractive index of air : dependence on pressure, temperature, and com

position", Appl. Opt. 6,5 1 - 59 ( 1967). 
1 7. I. P. Kaminow and E. H. Turner, "Electrooptic light modulators, Appl. Opt. 5, 1 6 12 - 1628 

( 1 966). 
1 8. R. 0. Gilmer and D. M .  Waters, "A solid-state system for measurement of integrated refractive 

index'', Tech. Rept. IER-40/ITSA-40 (U. S. Government Printing Office, 1 967) (to be published). 

A Radio-Optical Dispersion Technique for Higher-Order Correction 
of Optical Distance Measurements*) 

by M. C. Thompson, Jr., Boulder, Colorado 

A potentially serious error in electromagnetic distance measurements is the method of the 
estimation of the refractive index of the atmosphere. Current practice is to determine index values 
at each path terminal and to use the average to represent the entire path. 

One approach for reducing this source of error exploits the atmospheric dispersion of certain 
regions of the spectrum. The use of this technique has been described previously in several papers 
[Tikhov, 1 954 ; Prilepin, 1 957 ; Bergstrand, 1 960 ; Sullivan and Richardson, 1 965 ; Bender and 
Owens, 1 965 ; Thompson and Wood, 1 965 ; Fowler, Castellano, and Hofmann, 1 966]. Atmospheric 
dispersion over tropospheric paths has been measured in  the cm-mm wavelength region by Sullivan 
and Richardson [ 1965], in the visible spectrum by Thompson and Wood [ 1965], and for the interval 
between cm and visible wavelengths by Thompson and Waters [ 1967]. The values obtained by 
Thompson and Wood were compared with expected values based on Edlen's formula [Edlen, 1 953] 
and local measurements of atmospheric temperature and pressure. The mean values differed by 
about 2 x 1 o- s with an estimated precision of 2 x 1 0- 7. 

In dry air, measurement of the dispersion at two visible wavelengths gives sufficient information 
to estimate the spatial average of air density from which the desired index average can be obtained 
(see references in preceding paragraph). The accuracy of this estimate is determined by the ac
curacies of the measured dispersion and of the laboratory determined coefficients, and is also limited 
because the actual ray paths are generally not straight lines. 

A potential source of error in this approach which, under certain atmospheric conditions, 
can be as large as or greater than those noted above, results from neglecting the presence of water 
vapor in the air. The value of this error calculated from Barrell [ 1 95 1 ] is shown in Table I for sa-

*) A more complete paper giving the detailed analysis is currently being prepared for·publication. 

1 1  
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turated atmospheres at temperatures from 0 to 400 C (and 760 mm Hg total air pressure) [Thompson 
and Wood, 1 965]. The importance of this error is, of course, influenced by the problem requirement 
and by the degree to which the spatial average of water vapor can be estimated from other supple
mentary atmospheric data. 

By introducing a third wavelength in the microwave region, it should be possible to reduce 
significantly the uncertainty caused by water vapor. A system that measures range with a 5790 A 
signal and dispersions between this wavelength and two signals at 4048 A and 3 cm has been analy
zed. The results indicate that to obtain an accuracy of 1 ppm in the corrected distance measurement 
requires an accuracy of better than 0.05 ppm in the 5790 A to 4048 A dispersion, and better than 
40 ppm in the 5790 A to 3 cm dispersion. 

Although a complete three-wavelength system providing direct measurements of the two 
dispersions has not been operated, the elements of such a system have been used separately. The 
variability of the microwave-optical dispersion has been calculated from independent, but simul
taneous, measurements of microwave and optical phase variations over a common 25-km path 
[Thompson and Waters, 1 967]. Instrumentation developed by Thompson and Wood of the Institute 
for Telecommunications Sciences and Aeronomy is being used currently to record variations of 
the dispersion between 3.2-cm and 6328 A signals over a 65-km path in Hawaii ; the dispersion across the 
visible spectrum has been measured using several different techniques [Thompson and Wood, 
1 965 ; Fowler, Castellano, and Hofmann, 1 966 ; and Earnshaw and Owens, 1 967] .  

Based on this experience, noise levels of about 0.5 and 0.05 part per million or better seem to 
be feasible within a pass-band of 0 to 1 Hz over periods of about 1 hour for these respective radio
optical and optical-optical dispersions. The corresponding error in the refraction correction is about 
1 part per mill ion set principally by the uncertainty in t:1e optical-optical dispersion measurement. 
As improvements are made in the necessary instrumentation for measuring the dispersion in the 
optical region, the overall errors should approach the limit from propagation effects. 

The latter 1imit is probably the result of inexact estimat�on of the temperature along the path : 

Calculations were made for a case where one terminal is 3 k m  higher than the other, assuming a 
l inear decrease of temperature with height from 400 C to 1 00 C, and linear variation of relative 
h umidity from 50 % at the lower end to 1 00 % at the upper end. Taking the path temperature as 
the average of the terminal temperatures, an error of about 1 in 1 08 is introduced in t he estimate of 
the refractive index correction for the optical distance measurement. This is about an order of 
magnitude better than one would expect from the two optical wavelength technique, even if the 
average relative humidity along the path were known to within a few percent [Thompson and Wood, 
1 965]. Thus the use of the third measurement in the microwave region appears to give significant 
improvement in accuracy for humid paths. 

Effect of neglecting water vapor in saturated atmosphere at temperature, T, using 
5790 A for the distance measurement and 5790 A and 4048 A for the dispersion. 

T - OC 
0 

1 0  
20 
30 
40 

Table I 

Abstract 

N, - Neale· 
0.77 N-unit 
1 .49 
2.74 
4.8 1  
8.09 

A three-wavelength technique for refraction correction has been
. 
analyzed. Apparently by using 

3 cm, 5790 A and 4048 A signals, the optical range measurement can be corrected for propagation 
effects to a few parts in 1 08 even in  h umid atmospheres. The present instrumentation, however, 
l imits this accuracy to about 1 part in 1 06. 
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Satellite Ranging with a Laser and the Correction for 
Atmospheric Refraction* 

1 .  Introduction 

by C. G. Lehr, L. A .  Maestre, P. H. Anderson 

Smithsonian Astrophysical Observatory, Cambridge, Mass. 

Laser systems I - 3 are useful in satellite geodesy because they can measure distances of the 
order of megameters with a precision of about one meter. Furthermore, the complexity and cost 
of such systems are moderate. The laser systems now in service in Europa and in North America 
use pulsed ruby lasers. At the present time, this type appears to have certain advantages over contin
uous-wave or other types of pulsed lasers. These advantages are the following : 

1 .  The ruby laser generates the peak powers of tens or hundreds of megawatts necessary in measur
ing distances whose lengths are in megameters. 

2. The ruby laser emits its radiation in pulse durations of tens of nanoseconds. These short pulses 
facilitate precise range measurements. 

3. The ruby laser emits its radiation with a high degree of coherence ; consequently, its energy 
can be focused to within a beamwidth of several minutes of arc. This value corresponds to the 
accuracy within which a typical satellite can be located by visual tracking or by prediction 
from computed orbits. 

4. The ruby laser emits its radiation at a wavelength of 694.3 nm, where the retroreflectors on 
satellites currently in orbit are effective and wher ephotomultipiers, although not at their peak 
efficiency, are still more efficient than the other types of detectors that must be used at longer 
wavelengths. 
The accuracy of the laser-range measurements depends on how well the two-way travel-time 

of the pulse can be measured and how well the correction for the atmosphere can be applied. The 

*) This work was supported in part by Grant No. NsG 87 - 60 from the National Aeronautics and 
Space Administration. 

1 1  * 
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error i n  the travel time measurement are not easily calculated from the characteristics of the 
system. The major difficulty arises in the determination of exact points on the leading edges of 
the transmitted and received pulses. It is between such points that the travel time of the laser pulse 
is measured. Small random instabilities occur in the shapes of these pulses and in the electrical 
circuits of the time-interval counter. The round-off error in the counter's last digit also introduces 
an error into the measurement. 

The object of this report is an experimental determination of the error in the travel-time 
measurement. The experiment involves statisticalaveraging : consequently, it determines the minimum 
error that might be expected when the present system is used. The result shows what corrections 
for atmospheric effects will improve the accuracy of the range measurements and what corrections 
will be ineffective because they are dominated by system errors. 
2. The Laser System 

The present laser system was designed and built by the General Electric Company. It was 
designed for an initial experiment following the launch of the first satellite that carried a retro
reflector. Consequently, it does not utilize fully the very latest technology. However, it has operated 
continually since June 1965, and has made well over a thousand precise range measurements, 
some of which have already been used, along with Baker-Nunn camera measurements, in orbit 
calculations. 

Figure 1 shows the laser on the naval gun mount that is used in tracking the satellite. Two 
observers acquire the satellite by cranking in predicted values of azimuth and elevation for the 
start of a given pass. When the satellite comes within the fields of view of their telescopes, they begin 
to track it visually. They continue tracking it to within one or two minutes of arc until it can no 
longer be seen. The characteristics of the laser are given in Table 1 .  

Table 1 .  Characteristics of the laser 

Pulse duration 
Power output 
Beam width 
Diameter of transmitted beam 
Wavelength 

40-60 nsec 
8 Mw 
1 mrad 
l O cm 
694 nm 

The receiver i s  a modified 1 . 5-m searchlight. I t  has a Cassegrain configuration. The search
light's paraboloid is the primary mirror. The secondary mirror produces a beam of parallel rays 
that strike the interference filter in  front of the phototube at normal incidence. Table 2 summarizes 
the characteristics of the receiver. Figure 2 shows the receiver (with a cover that is in place for the 
tests that will be described below, but that is removed in actual operation). Visual tracking is 
accomplished by an observer who ·varies the velocities of the azimuth- and elevation-drive motors 
with a single control. 

Name 

BE-B 
BE-C 
GEOS 
DIC 
DID 

Table 2. Characteristics of the photoelectric receiver 

Effective aperture 
Bandwidth 
Beamwidth 
Quantum efficiency 

Table 3. 

International 
designation 

1 964-64A 
1 965-32A 
1 965-89A 
1 961-l l A  
1 961-14A 

0 .5  m (approximately) 
7 nm 
1 /3 - 1 /20 
3 %  

Satellites with retroreflectors 

Inclination Apogee 
(degrees) (Mm) 

80 1 . 1  
4 1  1 . 1  
5 9  2.3 
40 1 .4 
39 1 . 9  

Perigee 
(Mm) 
0.9 
0.9 
1 . 1  
0.6 
0.6 
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Fig. 1 .  The laser and track ing mou n t  

Fig. 2. The receiver w i t h  aperture covered for t h e  experiment 
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The laser system can range only on those satellites that carry retrorefiectors. These retro
reflectors return the reflected laser energy to the photoreceiver with sufficient concentration to make 
its detection possible. The five satellites with retroreflectors currently in orbit are given in Table 3 .  

The laser system is located at the Smithsonian astrophysical observing station, Organ Pass, 
New Mexico, U .  S. A. The laser, the receiver, and the Baker-Nunn camera are within about 20 m 
of each other. 

The operation of the laser system is governed by the stat ion clock. This clock fires the laser 
every 30 seconds at epochs that are known to within 100 µsec. The clock also provides an accurate 
1 - M Hz synchronizing signal for measuring the travel time of the laser pulse to the satellite and back. 
The timing is done by an electronic time-interval counter, the last displayed digit of which represents 
1 0  nsec. The received laser pulses are presented C?n oscilloscopes. The amplitude of the signal i s  
obtained from their displays. f jgure 3 i s  a block diagram o f  the system. Figure 4 i s  a photograph 
of the time-interval counter, oscilloscopes, and associated equipment. 

3. The Accuracy of the Range Measurements 

Preliminary estimates of the accuracy of the laser-range measurements were obtained in two 
ways. The first involved the use of the range measurements along with the measurements of right 
ascension and decl ination from the Baker-Nunn cameras in the determination of satellite orbits. 
These computations gave a value of 34 m for the standard deviation of 29 range measurements 
on G EOS for the period 20 December 1 965 to 5 February J 966. This standard deviation shows 
to what extent the data from the laser system are consistent with those of the network of cameras. 
The value of 34 m most likely comes mainly from the errors in the Baker-Nunn observations and 
from their imperfect geographical distribution. The errors in the laser system should be smaller. 
A second estimate of the error in the range measurements is a value between 1 . 5  and 4 m. The lower 
figure corresponds to the J O  nsec represented by the last digit of the time-interval counter. The 
higher figure corresponds to 30 nsec, one-half the transmitted pulse lenght (or the greatest error 
that might be expected in timing the reception of the laser signal). This second estimate is probably 
also a high one because the counter is triggered on the pulse's leading edge and because variations 
in the counter's last digit (for a fixed range) pr9bably do not occur randomly, but contain infor-

Fig. 5 .  The target 
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mation that can be used to approximate an additional digit. In order to evaluate these effects for 
the present system, the following experiment was performed. 

Laser-range measurements were made on a fixed target 0.8 1  km from the laser system. This 
target is shown in Figure 5. The receiver was moved along the 10-m tape, which extended toward 
the target. Measured points on the tape were used to position the receiver. The target was painted 
black, the searchlight was covered, and a neutral density filter was placed over the_ photomultiplier 
to reduce the returned signals to values comparable to those received from satellite ranging. The 
cover of the searchlight had a number of small holes drilled in it. Most of these holes were taped 
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• 

900 1000 

up. A few of the others were successively taped and untaped to minimize variations in the returned 
signal as the experiment proceeded. The leading edges of most returned signals were linear. A 
few, like the one in Figure 6, were a bit jagged. 

The experiment consisted of a series of range measurements made with the receiver at a number 
of equally spaced points along the measuring tape. At each point, 20 time-interval measurements 
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were made. The last digit of the counter varied from measurement to measurement ; the average 
of all 20 measurements was obtained for each point. Using the least-squares criterion, the best l i ne 
of slope c- t was fitted to these points. (See Figure 7.) The standard deviation of the measured 
points was then found to be 2.9 nsec, a value that corresponds to two-way travel over a distance 
of 0.44 m. 

If a threshold voltage exists for stopping the t ime-interval counter, i ts  reading for a fixed-range 
and fixed-pulse shape should decrease as the strength of the return signal increases. In such a case 
an empirical relation between the t ime interval and the returned signal strength might be used 
to lower the standard deviation of the measurements. This relation was assumed to exist and to 
be l inear. The curve shown in Figure 8 was then obtained in the following manner. The difference 
between each time-interval measurement and the average of the 20 for the same receiver posit ion 
were obtained. Differences corresponding to nearly the same voltage were collected together and 
averaged (regardless of the receiver position at which they were obtained). The best straight l ine 
( in  a least-squares sense) was then fitted to these data. 

The l inear function of Figure 8 was used to correct each of the original ti me-interval measure
ments and again a best-fitting curve with slope c- 1 was determined. The result is plotted in Figure 9 .  
For this case the standard deviation is 1 . 6 nsec and the corresponding value for the measured 
distance is 0.24 m. 

4. Consideration of the Atmospheric Correction 

The earth's atmosphere affects the transmission of the laser beam in two ways. l t  decreases 
the velocity of propagation, and it bends the beam toward the earth . The bending i ntroduces 
a geometrical effect, whose effect on the measured range is negligible. The change in the velocity 
of propagat ion introduces a small but significant refraction error in the range measurements. 

In the correction for refraction, the atmosphere is commonly considered to have an exponential 
variation with height above the earth. Then the correction can be made of the refractivity at the 
earth's surface is known. Its value is proportional to the barometric pressure and inversely pro
portional to the absolute temperature. The range correction is obtained from the fol lowing equation : 

where 

and 

il R =
.
1 ·

Nds = 
__ N

_
s __ 

1 3 8 .  5 sin �n 
p 

� R is the correct ion in meters that must be substracted from 
range values calculated by using the velocity of light in 
vacuum, 

Ns is the refractivity at the earth's surface, 
�o is the elevat ion angle of the satellite, 

P i ncl udes all points within the atmosphere along the path 
of the laser beam. 

( 1 )  

The retroreflectors on satellites now i n  orbi t  become ineffective at low elevations. With our system, 
no returns below elevation angles of 1 60 have been observed. Consequently, the use of Ns = 292 
(for standard temperature and pressure) in eq . ( 1 )  shows that 6. R  is 2. 1 m at zenith and 7.7 m at 
minimum elevation. 

The variation of this correction with changes in local weather may now be considered. Assume 
that Ns is proportional to p/T, where p is the local barometric pressure, and T is the local absolute 
temperature . Assume that corrections less than 0.24 m are not significant because, as shown above, 
they are dominated by errors in the system. Then the temperature and pressure variat ions should 
be considered in mak ing range corrections when the standard deviation in the temperature i s  greater 
than 

0 .  24 :::,. T = 273 > -- = 8 . 50 C ' 7 .  7 



or the standard deviation in the pressure is greater than 

0 .  24 
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The Effect of the Atmosphere on Precise Satellite Ranges 
Obtained by a Laser 

by K. Bretterbauer, Vienna 

A) Introduction 

Recently a method has been developed which will help to establish a uniform world triangu
lation net of a precision never known before. This method concerns electro-optical distance measure
ments to artificiai satellites. American and French scientists have reported on first results [ 1  ], [2], [3] .  
The range is obtained by measurement of the t ime a Laser pulse needs to travel from the ground 
station to the satellite and back. The resolution power of the t ime interval counter stated in [3] was 
+ 1 0  nanosec, which corresponds to an error of ± 1 ,5 m in the distance. We are j ustified to assume 
that the technique will be further improved and that finally a resolution of a few tenth of a meter 
will be feasible. Perhaps a combination of the pulse method with a phase measuring technique 
would serve this purpose. In such a system the pulse component could provide the coarse distance 
needed for the phase measuring technique. 

A 

F ig. I 

(1 
110� 

0f A 
0,3 d -::::=---.-oc:=:-----..,--

Fig. 2 

\ 

The intensity of the Laser not only renders possible the direct measurement of ranges, but 
also is capable of illuminat ing a satellite fitted with retro-reflectors so that it can be photographed 
against the star background . Thus, a passive satellite becomes an active one. If the satellite is photo 
graphed by several stat ions, synchronism of the observation is guaranteed. With the photography 
obtained by Jongfocus astrographs, as is proposed by the Austrian scientist K .  K i llian [4],  a final 
accuracy of 0, 1 "  in the determination of the satellite with respect to the star background seems 
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possible. For a satellite in a distance of 1 OOO km this amounts to a linear displacement of ± 0, 5  m 
which is just the order of magnitude we have named desirable above. Hence, direction and range 
measurements can perfect each other in an ideal way, as can be seen from Figure 1 .  A ranging 
error of station A corresponds to a directional error of station B. Thus, one station can check the 
other. 

In ranging geodetic satellites we are confronted with facts never encountered before in con
ventional electro-magnetic distance measurements : the beam of light passes the entire terrestrial 
atmosphere. Despite this fact, the effect of the atmosphere is surprisingly smal l. However, in order 
to maintain the accuracy of the ranging as stated above, it is necessary to study the constitution 
of the atmosphere. 

The refractive index is defined as the ratio of the velocity of light in vacuo (c) to that one in 
air ( v) :  

c 
n = - = I + N . 1 0- 6 ;  

v 

c 
v = · -- -· = c ( I - N )  . 

l + N 
( I )  

The distance between ground station and satellite consists of two parts, namely s 1  = path in the 
atmosphere and s2 = path in free space. Thus (vide Figure 2) : 

where 

t (vs 1 + cs2) -
__ t

_ 
c ( l - N )s 1  + cs2 = 

(' -
t
-
(

1 
Ns i) , 

S = S l + Sz = -
2
-

S I  
- · - - -- = S + 6 S 

+ Sz 2 S J  + S2 2 S 

s '  = c - and 
2 

6 s = - N S 1 . (2) 

Since N is a function of the density of air, we understand N to be the integral mean along the path s 1 ,  
hence 

S J  
I 1 · N = -- N (s) d s 

s 1 .  
0 

(3 )  

Equation (2) shows that the atmospheric correction is  independent of the distance of the satellite , 
but only a function of the height of the atmosphere and of the zenith distance of the satellite. 

s1 is obtained by the rigorous equation : 

s 1  = - R cos z + l 'R2 cos2 z + 2 R H +  H 2, R = 6378 km 

As H � R, we may expand (4) into a binomial series. After some neglections we arrive at 

H 
S t = -- ,  

cos z 

(4) 

(5) 

i .  e. we have substi tu ted the spherical earth by a plane one. All authors make use of formula (5), 
and j ustifiably so as even for H = 50 km and z = 600 the approximation gives s 1 = I 00 km as 
compared with 98,85 km of equation (4). 

The connection between N and the density of air p is defined by [5] : 

n - 1 = N = k p .  (6) 

k is nearly constant in air, and depends only slightly on the wave length used. This dependency 
on wave length is responsible for the variation of N from 290 to 298 . 10- 6 within the region of 
the visible spectrum. The dependency of the refractiv� index on wave length is well known [6] .  
Thus, with "A = 6941 A,  i .  e .  the wave length of  the  Laser used by the Smithonian I nstitution [3] . 
N0 = 29 1 . I 0- 6  for normal conditions (t = oo C, p = 760 Torr). The surface value of N is accessible 
to observation via pressure and temperature of the ambient air according to the formula 

The effect of water vapor is negligible. 

t 
l + -· 

273 

p 
760 

(7) 
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B) The Atmospheric Reduction on Basis of Hypothetical Atmospheres 
When advancing hypothetical theories on the structure of the atmosphere we have to consider 

a few physical laws. First, to heavy gases in aerostatic equilibrium the equation applies : 

d p  
d U = -

p 

U = potential, p = pressure, p = density. 

(8) 

Equation (8) states that the equipotentials are surfaces of equal pressure and of equal density. 
Further : 

d U =  - g dh (9) 

h = altitude, g = gravity. Finally there is the law of Gay-Lussac : 

P = Po (l + 
2
;

3
) ( 10) 

Together with the boundary conditions t = t0 , p = 1 for h = 0, and p = 0 for h = H (H = height 
of entire atmosphere), the above equations provide the correlation between any two of the four 
variables t, p, p and h. 

The first and simplest theory was stated by Cassini in 1 662. Though physically absurd the 
atmospheric model is capable of representing all refraction phenomena surprisingly accurate. 
Cassini assumed density and gravity to be constant. From (8) and (9) follows at once after intro
duction of the usual units of measure : 

.&L 
p = (H - h) = 0, 12514 (H - h) (1 1 )  lo .&Hg 

H and h in km, .&L = 0,001293 density of dry air at 00 C and 760 Torr, with respect to water, .&Hg = 
= 1 3,596 density of mercury, /0 = 7,6 . 1o-4  km length of the mercury column at normal pressure. 

For h = 0, p = 1 the height of the atmosphere results to 

H = 7,991 km . ( 12) 

The temperature gradient also is constant and equal to - 340 per km as results from (10), i. e. a 
multiple of the adiabatic gradient. Since in Cassini's homogeneous atmosphere the density is constant, 
the same holds for N which can be verified by introducing the pressure and temperature gradients 
into equ. (7). The atmospheric reduction of the path length then results from the formulas (2), 
(5) and ( 1 2). Table 1 gives the reduction for various values of pressure, temperature and zenith 
distance. 

I z = oo I z = 300 I z = 600 

t =  oo + 1 00 + 200 oo + 100 + 200 oo + 1 00 + 200 

p = 760 2,33 2,27 2,21 2,69 2,61 2,55 4,66 4,53 4,42 
740 2,25 2, 1 8  2, 1 3  2,60 2,52 2,46 4,50 4,37 4,26 
720 2 , 17  2, 1 1  2,06 2,50 2,44 2,37 4,33 4,22 4, 1 2  

Table 1 
All values in meters 

The values deviate only slightly from those of other authors. Immediately we shall use this simple 
law to test the effect of an error in N on the reduction : 

� s = - S1 N ;  d � s = - S1 d N ;  

for dN = ± 1 .  10- 6 we get d�s = =t= 8 mm for z = 00, and =t= 1 6  mm for z = 600. 
The next step in approximating the true atmosphere was done by Tobias Mayer ( 1760) [5 ]. 

He prescribed a linear decrease of density with increasing altitude : 
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h 
p = l - - . H 

Again we get from (8) and (9) together with the boundary conditions : 

p = l - fo;Hg (h - 2

h:) . 

( 1 3 )  

The height of the total atmosphere is H = 1 5.982 km. The temperature gradient again is  constant 
and equal to - 1 7, l O C  per km. Thus, the funefion· N = N(h) also is linear 

N � N, ( 1 - ;) � N, ( !  - 0,0626 h) , h in km. 

Hence, the mean value becomes N = Ns/2 and the reduction of the path length !is = - Ns1 
renders exactly the same values as the model of Cassini (vide Table 1 ). 

Contrary to the above hypotheses which give too great a lapse rate of temperature, Newton 
suggested a model atmosphere with constant temperature (t = 0). For the density distribution 
and thus for the refractive index an exponential law follows : 

R h 
N =  Ns e- 7•99 1 (R +h) ,  R = 6378 km , 

We may write accurately enough 

N = Ns e -0• 1 25 h, h in km . ( 14) 

There the refractive index theoretically vanishes only at infinity. Hence, the integration should 
be extended up to the satellite itself. However, the e-term diminishes very rapidly after a few tens 
of kilometers so that 

and 

H 

N = - e - . 1 2s h d h = - ---- Nsf 0 Ns 
H 0, 1 25 H ' 

0 

Ns !i s = - ----

0, 125 cos z 

which formula again leads to the values of Table 1 .  
Formula ( 14) formally agrees with that one derived by G. Veis [7], only that Veis uses the 

numerical parameter - 0, 1 385. As shown above, it is superfluous to adopt an exponential law 
for the lapse rate of N as such a law in practice gives the same values as the simple assumption 
of Cassini. 

The preceding theories are contradictory to the observed facts concerning the temperature 
decrease with increasing height. In the case of the linear law the gradient was too great, in the case 
of the exponential law it was zero. The truce is somewhere in between. The idea is obvious to try 
a connexion of a linear and an exponential density law. We make the statement : 

N = Ns ( 1 - :) e - � . ( 1 5) 

For h = 0, N = Ns, and for h = H, N = 0. Since the real variable of equ. ( 1 5) is the ratio h/H, 
t he integral mean proves to be independent of the assumed height of the atmosphere. Actually the 
integral gives� 

H 
_ Nsj( h ) _ !!_  Ns 
N = H 1 -

H . e H d h = -; , e = 2, 7 1 83 

0 
( 1 6) 

But in order to be able to calculate the correction in path length we have to dispose of H. Here 
we use no theoretical assumption, but suppose we had succeeded in  obtaining the atmospheric 
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conditions in  a particular height, for instance by a weather aircraft . With Ns. h and Nh known, 
we get at once H from equ. ( 1 5) and thus the correction of the path length 

Ns H 
6 s =  

e cos z 
( 1 7) 

I n  the following example we make use of the !CAO-Standard Atmosphere [8] which is defined in 
that way : surface values p = 760 Torr, t = 1 50 C, gradient 6 t/ 6 h = - 6,50 C per km, and constant 
temperature of - 56,50 C from 1 1  km on. This gives : Ns = 276 . 1 0- 6, N1 1  km = 73,5 . 1 0- 6, 
h - 276 

- = 0,542, H = 20,3 km and N = - = 10 1 ,6 . t 0- 6. Table 2 states the path correction thus 
H e 
obtained. For collation purposes we also give the corresponding values of the homogeneous atmo
sphere. 

Table 2, all values in meters. 

Z =  oo 300 600 

6 s = - 2,06 - 2,38 - 4, 1 3  
6 s = - 2,21 - 2,55 - 4,42 

!CAO-Standard Atmosphere 
homogeneous atmosphere 

C) Model Atmospheres oh a Statistical Basis 

We have arrived at model atmospheres which are not based on theoretical considerations 
but on statistics of the results of radio-sonde ascents. Besides the !CAO-Standard Atmosphere 
already mentioned, several other model atmospheres are in use, e. g. the CRPL Exponential Refer
ence Atmosphere [9] which is defined by : 

Ns 
N = Ns e - ceh , Ce = log nat - 6 N = 7 ,32 e 0,005 577 Ns. 

Ns - 6 N  
( I  8) 

Being formally identical with Newton's hypothetical atmosphere, it offers the advantage of having 
a variable parameter which can be adapted to prevailing conditions. 

Purely empirical atmospheres also exist, being based on average results of numerous sounding 
balloon ascents [ 10] .  Table 3 gives the average values of the atmosphere in temperate latitudes 
for summer and for winter. 

Table see next page. 

We can recognize clearly the well-known fact that the density of air in the troposphere is greater 
in winter than it is in summer. In the stratosphere, h wever, the density i n  winter is smaller than 
it is in summer. 
For the reduction of electro-magnetic distance measurements often parabolically stratified atmo
spheres are used [9]. The general law of their refractivity reads : 

N = Ns + a h + b h2 ( 1 9) 

The parameters of ec, u .  ( 1 9) usually are determined by way of a least square adjustment. But most 
of these atmospheres are defined only for the region 0 < h < 10 km, which makes them useless for 
our purpose. If we want to derive the parameters of such a parabolic law, we have to dispose of 
H, and to determine the coefficients in  such a way that N vanishes at the boundary of the atmo
sphere. The integral mean is : 

a b 
N = Ns + - H + - H2 . 

2 3 
(20) 

As an example the parameters have been derived for both the atmospheres of Table 3, but without 
an adjustment. We obtained the following formulas : 

Summer : N = 277 - 1 8,68 h + 0,294 h2 ; N = 60 . 1 0 - 6 ; H = 40 km 

Winter : N = 290 - 1 9,75 h + 0,3 1 3  h2 ; N = 62 . 1 0- 6 ;  H = 40 km 

(21 )  
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Table 3 
Summer Winter 

h km /0 c Pmm N .  10- 6 hkm /0 c Pmm N .  I 0 - 6  

0 + 14,8 762,6 277 0 + 1 ,7 763,4 290 
1 + 1 1 ,8 677,2 249 1 0,6 674,1 259 
2 + 6,3 600,3 225 2 4,2 594,4 23 1 
3 + 1 ,0 530,8 203 3 9,1 523,0 207 
4 4,3 468,2 1 82 4 1 5,3 458,9 1 87 
5 9,9 41 1,9 164 5 22,2 401 ,3 167 
6 16,3 361 ,3 147 6 29,3 349,6 150 
7 23,3 315,8 1 32 7 36,6 303,3 134 (\) 

i... 
(\) 

8 30,8 275,0 1 18 8 43,6 261,9 1 1 9  ..0 0.. 
9 38,3 238,4 106 9 49,6 225,4 106 

rn 0 0.. 
1 0  44,9 205,8 94 10 54,3 193,2 92 0 

i... r-< 
1 1  50,1 177,0 83  1 1  56,8 165,2 80 
12  52,9 1 5 1 ,8 72 12  57,2 141 ,1  68 
13 52,8 130,1 62 1 3  56,3 120,6 58  
14 52,4 1 1 1 ,6 53  14 56,5 103,0 50 
1 5  52,0 95,7 45 1 5  57,1 88,0 43 
1 6  5 1,6 82,0 39 16 57,3 75,2 37 e 

(\) 
17  5 1 ,1 70,3 33 17 57,6 64,2 3 1  ..0 0.. 
1 8  50,2 60,3 28 1 8  57,6 54,9 26 rn 0 ..... 
19 49,6 5 1,7 24 19 57,6 . 46,9 23 � 

i... ..... 
20 49,0 44,4 2 1  20 5 7,6 40, 1 20 r;/) 

25 20,6 10 25 1 8,3 9 
30 9,6 4 30 8,4 4 
35 4,5 2 35  3,8 2 
40 2,1 1 40 1 ,8 1 

The resulting atmospheric corrections of the path lengths (for z = 0) are listed below. For collation 
purposes we also state the corresponding values for the homogeneous atmosphere as well as those 
obtained by a graphic integration : 

Summer Winter 

Parabolic density law : 6. s = - 2,40 m - 2,48 m 
Homogeneous atmosphere : 6. s = - 2,22 - 2,32 
Graphical integration : 6. s = - 2,33 - 2,35 

Table 4 

Hitherto we have tacitly assumed that the ray path is a straight line. But in fact it represents 
a spatial curve with negligible torsion and continuously decreasing curvature, provided the density 
also decreases continuously. We may presume that the entire curve runs in a vertical plane. Then 
its curvature can easily by stated and we shall estimate the error caused by neglection of the curvature. 
The curvature is [9, p. 548] : 

1 d N  x = - =  - - sin z 
r d h  

For obtaining dN/dh we use the parabolic law, and get from (19) :  

1 x = - = - (a + 2 b h) sin z . r 
Hence, the integral mean along the total path is : 

(22) 



- 1 
x = = = - (a + b H) sin z . 

r 
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According to (2 1 )  the approximate values for the parameters are a = - 20 . 1 0- 6 and b = + 
1 

+ 0,3 . J 0- 6. Thus for z = 600 x = = = (20 - 0,3 . 40) 1 0 - 6 . 0,866 = 7 . 10- 6, and r = 1 ,4 . 105  
r 

km. The difference between an arc and the corresponding chord is 

H 

s3 d s = --
24r2 • 

and with s = -- = 80 km, and r = 1 ,4 . 105  km we get the effect of curvature on path length : 
cos z 

ds = 1 , 1 . I0- 6 km = 1 mm. 

Hence, the path curvature may be neglected in any case. 

D) Conclusions 
The actual constitution of the atmosphere certainly will deviate more or less from the above 

model conceptions. The deviations are caused primarily by temperature anomalies, the so-called 
inversions. At night always surface inversions build up, because of radiation, especially in winter. 
At higher levels especially strong and extensive inversions, so-called free inversions, are frequently  
observed. Inversions are responsible for  an  even more rapid decrease of  the refractive index. Of 
course, the results of radio sonde ascents will always be made use of, as far as available. Perhaps 
even special ascents should be arranged for the satellite observation. In order to test their value, 
the results of some radio ascents have been analysed according to different points of view. A detailed 
discussion in this paper would lead us too far. However, in any case the mean refractive index 
could be determined with sufficient accuracy by one of the model atmospheres discussed above. 
The correct determination of the surface value of N is much more significant. This is in analogy 
with the astronomical refraction. True, there is a fundamental difference between both these 
atmospheric phenomena : in case of angular measurements to celestial objects the curvature of the 
ray path near the observation station is of prime interest, and the effect of anomalies decreases 
with increasing distance. In  distance measurements, however, all sections of the ray path are equal
ly significant. Yet we have to bear in mind that only the lower parts of the atmosphere are subject 

to anomalies, and that the higher levels behave very regularly. Besides, any anomaly affects N only 
at the ratio of its linear extension, to the total magnitude of the atmosphere. With the height of 
the effective atmosphere being about 40 km, an anomaly even of 1 0 . 10- 6 in N affects the mean 
value only by 0,5 . 10- 6, provided the extension of the anomaly is 2 km. 

There might be one more possibility of improving the determination of Ns by means of vertical 
angle measurements, as has already been proposed before [ 1 2],  [ 1 3 ] .  The knowledge of accurate 
geographical coordinates of the Laser-station provided, we could measure zenith distances of stars 
in nearest vicinity of the satellite. From the difference between computed and observed zenith 
distances, we can derive the refractive index : 

Ns · ,, z comp. - z obs. = r = --:--
1

,, tan z, N! = r sm 1 cotg z .  
sm 

Finally a word on the velocity of l ight in vacuo. The American scientists use the value c = 
= 299 792,8 km/sec, the value of the IUGG is 299 792,5 km/sec, while Karolus [1 1 ]  states 299 792, 1 
km/sec. Even if we assume we were in possession of a definite value with a standard deviation of 
only ± 0,2 km/sec as Karolus affirms for his value, this uncertainty would create an error in a 
distance of 1000 km of ± 0,67 m, which is a multiple of the uncertainty of the atmospheric reduction. 

Summarizing, we may say that we are able to master the problem of the atmospheric reductions 
in satellite ranging even for the highest demands on accuracy. Since the same applies to the photo
graphic position fixing of satellites with respect to the system of stars, the combination of both 
methods at last represents a geodetic procedure which is sufficiently free of the unfavourable 

1 2  
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effects of the atmosphere. The border line of accuracy is drawn by the present state of instrumental 
techniques and of researches concerning the determination of the velocity of light. 
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B .  Refraction Effect on Distance Measurements, Using 

Radio Wave Propagation 

Atmospheric Corrections to Tellurometer Measurements 

by Knud Poder, Copenhagen 

The subject of this paper are the corrections applied to Microwave Distance Measuring (MDM) 
equipment used for measuring distances (in the troposphere) between stations in ordinary geodetic 
networks (i. e. stations with distances up to 1 00 km). 

As the troposphere is a non-dispersive medium (except for some discrete frequencies where 
strong molecular or atomic energy absorption occurs), the dual frequency method, which is very 
promising both for light-waves in the troposphere and microwaves in the ionosphere, cannot be 
used. 

It should be added, that a dual frequency technique or rather a multifrequency technique is 
used for this type of measurement for a quite different reason. There will in general be more than 
one "propagation path" due to the wide beam transmitted and received, and it is possible to separate 
the information from the "reflection'' path(s) from the "direct" path if several carrier frequencies 
are used in turn. MDM equipment with shorter wavelengths than mostly used to day may be useful 
for reducing these multipath effects both by narrow beamwidths and more diffuse reflection. 

After all these pessimistic remarks, we should note that the well-proven geodetic technique 
of reiterated measurements for "randomizing" errors is possible in a much higher degree than with 
optical methods, because MDM can be executed in almost any weather and is not restricted to a 
special weather situation, which gives sufficient visibility. 

The problem therefore is limited to 
1 .  Establishment of a model of the atmosphere by means of which the reduction formulae may be 

found. 
2. A method for determining the parameters of the atmosphere model. 
3. Estimate of errors, number of measurements for randomizing errors, design of network types, 

which can be brought to agree with accuracy specifications. 
1 .  Atmosphere Model and Reduction Fomulae. 
1 .  1 .  Fundamental Assumptions and Formulae. 
1 . 1 .  1 . The instrument indicates the transit time 8 multiplied with some constant (mostly a multiple 
of a modulation frequency, which is assumed to be known with sufficient accuracy). If more than 
one propagation path is possible, we assume that it has been possible to detect the direct one. 
1 . 1 .2. The concept of propagation paths and rays in general is permitted, when 

(1 . 1 ) 

1 )  the radius of curvature of the surface of equal phase must be larger than the local wavelength 
and 

2) the variation of the refractive index with height, dn/dH; must satisfy 

dn f.. 
- - cos z � l  
d H 2 rr  ' 

where z is the zenith distance of the ray (APPLETON, 1 946). 

1 2 * 
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1 . 1 . 3 .  The transit time may be expressed by 

( 1 .2) 

where 
ds is an element of the propagation path, 
c is the velocity of the waves at the path element ds, 
cv is the vacuum velocity of electromagnetic waves, 
n is the refractive index at ds. en = Cv 
The integral is evaluated along .the propagation path of the length S, which gives a minimum 
of e. 

Reference is made to MORITZ, 1 961 , who solves the problem in a very elegant way by integration 
along the straight line (station chord) between the two terminals of the line. 
1 . 1 .4. The atmo�phere is assumed horizontally stratified. This means that the refractive index 
can be expressed as 

( 1 .3) 
d n  

n = n0 + H - ,  
d H  

where H is the height over zero level. This model of the atmosphere has two parameters only. 
Objections against this simple approximation will be discussed later Sec. 1 .6. 
1 . 1 .5 .  The refractive index is given by the formula of ESSEN and FROOME. 

where 

With 

(n - 1 ) 10- 6 = 1 03 . 49 P/T - 1 7 . 23 e/T + 495822 e/T2, 

P is the total air pressure in mm Hg 
T is the air temperature in KO 
e is the partial pressure of water vapuor, in mm Hg 

M = (n - ns) . 106 

ns = 1 .000 308 6 

T0 = 3 1 30 K, 
the formula can be simplified to 

M = 103 . 49 P/T + 4 . 904 10s e/T - 308 . 6 

where the error is 
1 7  . 23 (T0 - T)e/T2, 

(1 .4) 

(1 .5) 

(1 .6) 

(1 .7) 

(1 . 8) 

which never exceeds 0. 1 5  inside the range of validity of the formula. ESSEN and FROOME, 1952. 
1 . 1 .6. ln the propagation path the relation 

(R + H)n sin z = constant (1 .9) 

is valid for any point. (In fact the differential relation defining the path can be derived from this 
relation, which is well known from general refraction theory). From (1 .9) it is easy to find the ratio 
of tangent angular variation to displacement on the path, which defines the curvature. The curvature 
is 

d n  sin z d n  
- -- -- � - --

d H  n = d H  
( 1 . 1 0) 

The simple approximation on the right hand side has an accuracy of better than 2 per cent 
for 800 < z < 1 000. 

The curvature may be related to the curvature of the earth R by the factor k used for trigono
metric levelling as 



d n  k 
- -- = -

dH R 

The k used here differs from that used for light. In general k = 0.25 - 0.30. 

1 8 1  

( 1 . 1 1)  

1 . 1 .7. The method used for deriving formulae for trigonometric levelling gives for the height of 
one terminal H2 expressed by the height of the other terminal Hi 

Hz = Hi + S cos z1 + s2 (1 - k)/(2R), ( 1 . 1 2) 

where S is the length of the station chord, which may be replaced by the path length with an error 
less than S 10- 6. 

The error in H2 may amount to 3 meters for a difference of height of 4000 m, but is below 
0.2 m for differences of height less than 1 000 m. 

From (1 . 1 2) the height H of a point P on the propagation path at a distance s from the terminal 
with height H1 is given as 

H = H1 + s cos z1 + s2 ( l  - k)/(2R) ( 1 . 1 3) 

= [H1 (S - s) + Hzs]/S + s (s - S) ( 1  - k)/(2R), 
as cos z1 can be eliminated by means of (1 . 1 2). 
1 .2. The Length of the Propagation Path. 

From ( 1 . 1 3) the height needed in ( 1 .3) for expressing n is given. Thus the integration of ( 1 .2) 
along the propagation path is simple. 

6 � :, [ n,, S + f (- �) [(H1 (S - s) + H2 s)/S + s (s - S) (l - k)/(2 R)] d s] 
= - n0 S - - - (Hi + Hz) S + - S3 (1 - k) 'k -

1 [ 1 k . 1 1 ] 
· Cv 2 R 1 2 R2 

If the values of the refractive index at the terminals are n1 and n2, ( 1 .3) gives for n0 

6 = � [nm S + � S3 ( 1 - k) k/R2] 
Cv 1 2 

1 S = Cm O - - S3 (l - k) k/R2 
1 2  

( 1 . 14) 

(1 . 1 5) 

( 1 . 16) 

(1 . 1 7) 

The second term in ( 1 . 1 7) represents the total effect of the "dip" of the propagation path into 
lower layers of the atmosphere,*) (and not only the partial effect of the pressure). The derivation 
rests on the assumption of an average gradient ·of the refractive index, but it seems better also to 
include the contributions from the temperature and the humity even if these effect may be varying 
strongly, than just to put these effects equal to zero and consider only the pressure effect. 
1 .3. The Length of the Station Chord. 

The curvature of the propagation path is k/ R. Consequently the length of the station chord 
K becomes 

1 
K =  S - - S3 k2/R2 

24 

1 
K = Cm e + 

24 
S3 (k2 - 2 k) ' 

( 1 . 1 8) 

where S on the right hand side of course may be replaced by cm e or almost any other approximated 
value. 

*) The dip correction is the ,,zweite Geschwindigkeitskorrektion" given by HOPCKE, 1964. 
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The method shown by MORITZ, 1961 gives with one step directly the station chord, but here 
the two steps have been preferred in order to show the effect of the "dip" of the path. 
1 .4. The Length of the Ellipsoid Chord. 

The reduction here is pure geometry and not related to refraction. I f  one should work with 
three-dimensional geodesy the station chord of course is the reduced observation. However, the 
reduction from ellipsoid chord to ellipsoidal distance completes the reduction term in a neat way. 
1 .5. The Ellipsoidal Distance. 

The correction term from the ellipsoid chord of length E to the ellipsoidal length L is 

1 
L = E + - L 3/R2 

24 
( 1 . 19) 

With the approximation L ,...., K ,._, S ,....._, cm e in the small correction terms, the reduction from 
observed transit time to ellipsoidal distance becomes 

( 1 .20) 

where g is the reduction from station chord to ellipsoid chord. This expression is basis for the general 
rule-of-thumb used from the early days of radar propagation theory that all curvature effects, 
i. e. ( 1 )  dip of the path, (2) curvature of the path, and (3) curvature of the earth can be corrected 
for by assuming the path plane and the earth having a radius of curvature of R/( 1 - k), which 
mostly is 4 R/3. 
1 .6. Possible Improvements of the Model of the Atmosphere. 

It follows directly that the value of the gradient - if it remains constant - used in ( 1 . 3) only 
is of importance for the curvature terms. This means that if a reasonable value is selected, a standard 
value will suffice, at least for small differences of height. For large differences of height it may be 
necessary to introduce a second order derivative d2n/dH2, which will result in a term 

(1 .21)  

(See PODER, LEHN, and ANDERSON, 1 960 or PODER and ANDERSEN, 1 963) 
As d2n/dH2 is most difficult to determine, it seems most sensible to avoid long lines with 

large difference of altitude, and instead break them up in shorter sections, thereby reducing the term 
to be negligible. 

A constant horizontal gradient along the line will of course not affect the results, if no is found 
from terminal measurements, (due to the symmetry) and a horizontal gradient perpendicular to 
the l ine will give a curvature term of the form ( 1 . 1 8), but as horizontal gradients are magnitudes 
smaller than vertical gradients, the effect is negligible. 

The height used in ( 1 .3) is the height over the ellipsoid, and not the height over the ground . 
This is most unfortunate, if the observations are made near the ground or if a large part of the line 
is running near the ground, because the gradients here will deviate strongly from the gradients 
of the more "free" atmosphere. A better knowledge of these effect might lead to better corrections 
in general. 

1 .7 Practical Modification of the Reduction Formula. 
The reduction formulae shown here all have the term Cm e, where Cm is found from 

( 1 .22) 

where Cv is the vacuum velocity of EM-waves and nm is the mean of the refractive indices at the 
terminals (measured directly or indirectly by more or less cunning methods.) 

Some instruments give 2 e, others Cs e, where C3 is some standard velocity. The standard re
fractive index 1 .000.308 6 gives with the accepted vacuum velocity 299 792.5 km/sec the convenient 
standard velocity 

Cs = 299 700 km/sec = 300 000 (1  - 1/ 1000) km/sec 



1 83 

With this value multiplication becomes so simple that manual calculation is easy. With this value 
Of Cs, Cm 6 becomes ( ns - nm ) Cm 8 = Cs 8 1 + nm 

= c5 8 (1 - M l 0- 6) , 

where M is given by (1 .8) with n = nm. 
2. The Determination of the Refractive Index. 
2. 1 .  Determination with Refractometers. 

Several reports on refractometers have appeared recently, and practical refractometers have 
been available even before geodetic EDM equipment existed. The accuracy is sufficient, but it is 
rather important that the indications are integrated over a reasonable period corresponding to a 
natural measuring period, e. g. for a set or for a measurement, and the reading of the refractometer 
must then be in accordance with this rythm in the measurement. 

It is evident that such integration considerations are highly important if refractometers are 
sent on sampling missions in aircrafts during the measurements. 
2.2. Determination with Meteorological Instruments. 

The determination of the refractive index via the elements found in the formula of ESSEN and 
FROOME has hitherto been used most for geodetic purposes. 

A differentiation of (1 .8) gives 

O M 
aP = 0.36 

O M ---aT = - 0.96 - 0.047 e = - 1 .4 

O M  
a

-;-
= 5 . 9  

P = 760 mm Hg 

T = 2880 K 
(2. 1 ) 

e = l O mm Hg 

These values show how errors of the three elements P, T, and e affect M. For visible light the 
corresponding coefficients are respectively 0.36, - 1 ,  and approx. 0. Microwaves thus have almost 
the same dependency of the pressure and 1 .4 times higher of the temperature and more than 50 
times higher dependency of the humidity. Estimates of errors due to non-representative measurements 
must be based on these figures. Estimates of errors due to the met. instruments must be based on 
quite different figures, because in most methods temperature and humidity measurements are 
correlated. 

If the measurement of e is made with a dew-point hygrometer, all three elements are independent. 
A dew-point hygrometer measures e as 

e = E(td), 

where E is the saturated vapor pressure at the temperature td . 
With a crude approximation 

and thus 

From this 

E(t) = 4 exp (t/1 6), 

dE 
- = E/ 1 6 .  
dt 

O M 
(} Id = 3 .6 . (At e = 10 mm Hg) 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

No hygrometers of this type for field use and with sufficient accuracy are known to the author. 
Aspirated hygrometers give e as 

e = E(v) - c P(t - v), (2.6) 
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where v is the wet-bulb temperature and t is the dry-bulb temperature, c = 0.00066 for water and 
c = 0.00055 for ice. E and P have the same meaning as hitherto. The measurement of M now shows 
a correlation of P, t, and v. The expression ( 1 . 8) may be written as 

M = 103 .49 P/Tp + 4.904 E(v)/T2 - 308 .6, 
where Tp the "parameter temperature" is given as 

(2.7) 

f 

I 
Tp = T/(1  - 3 .  24 d/T "' T + ( 10i3) d, 

d = t - v. 

(2.8) ( 
(2.9) 

For ice 3 . 24 is replaced by 2 . 70. The value 1 0/3 for 3.25 serves two functions, viz. easy calculation 
and better general approximation for larger values of d. 

The derivatives of M now are 

a M  ---;rp = 0.36 

aM ---;ft = - 0.96 (1 + 3 .25) - 0.047 e = - 4.5 

a M . � = - 0.97 (-3 .25) + 3 .6 = 6 .9 

r P �  760 mm Hg 

t = 1 50 c 

e = 10 mm Hg 

These derivatives are used for estimates of the effect of met. instrument errors on M, while 
(2. 1 )  shows the effect of non-representative measurements of P, t, and e, e. g. by selection of a bad 
observation site. 

The thermometers consequently must be calibrated with an accuracy of 0. 1 o C if the general 
scale error of the network is to be kept below 1 p. p. m.  

On the other hand, if the met. observations e .  g. are made in a site, where the temperature 
deviates by 1 o C from that of the line but the humitdity happens to be the same as for the line, then 
the resulting error will only be - 1 . " p. p. m. (from 2 . 1 )  which shows how M depends on the air 
temperature). In this case v would differ from a v observed in a more representative site. 

Reference is made to BULL, 1 946 for a very general discussion of derivatives of M for various 
types of instruments and several sets of P, t, and e, and to MITTER, 1 962 for a discussion of 
psychrometer formulae and constants. 

The concept "parameter temperature" is very useful for pointnomographs for the comput
ation of M. One nomograph can have the arguments P and Ip ( = Tp - 273), whilst the other can 
have the arguments t and v. The sum of the two functions then gives M. 
2.3.  Practical Precautions for the Measurement of M. 

The required accuracy of the pressure is so modest, that almost any aneroid barometer may 
be used. A calibration of the scale "zero" with intervals is necessary, e. g. by means of a mercury 
barometer or a boiling point hypsometer. The "mean barometer" formed of the barometers used 
by 3 - 5 parties may be used over 2 - 3 months as a standard. In fact, reading errors are much more 
likely, but this can easily be overcome by using a barometer with dual scale (e. g. in mm and inches) 
and always reading both scales. As the heights of the terminals are known a check of their pressure 
differences is possible as well. 

The measurement of temperature and humidity should be done with a very careful positioning 
of the instrument in order to get a good, representative sample of the atmosphere. The instruments 
should be at the wind-side of the station or better on a pole or in a tower, unless the l ine really is 
running very near the ground. Psychrometers of the Assmann type should never be suspended verti
cally, but rather tilted somewhat with the intakes against the wind, as the air speed in the tubes 
otherwise might be too low. This air speed may exceed the critical speed (2 m/sec) by more than 
5 times without any sensible change of the psychrometer constant, but if it drops below critical 
speed, the results will be useless. 

Regular checks of the air speed in the psychrometer tubes are important. In the field this can 
done by measuring the time for one revolution of the winding screw, which is given with the certi
ficate of the psychrometer. 
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The calibration of the thermometers is only required with long i ntervals and must be done 
by a laboratory. The thermometers are matched by the manufacturer for a good determination 
of the humidity, but as calibration errors give a general scale error of the net, it is wise to make 
every effort to reduce this effect. 

The accuracy of the reading of the thermometers is of much less i mportance, as this error is  
a random error, a first order side will in  general have 1 6 - 24 readings of each thermometer, so even 
a reading to nearest half degree would suffice. In practice reading is made to oo 1 C. 
2.4. The Vertical Gradient of the Refractive Index. 

The vertical gradient may be determined from (1 . 3) by means of the measurements of n at 
the terminals. The curvature term, where it is used, will only exceed 1 p. p. m. when the distance 
exceeds 30 km, and the distance is 50 km before i t  reaches the magnitude of the random observation 
error 3 .  p. p .  m. If the difference of height is small, dn/dH (more correctly o n/d H) will be most 
uncertain due to observation errors and horizontal gradients. Large differences of height may 
give good values of the gradient, but the second order derivative may be needed if the line is a long 
one, which thus introduces a fresh unknown. For l ines shorter than 30 km a standard value - either 
constant or calculated from the observed values of P, t, and e assuming a standard atmosphere -
is preferable. See BEST, 1 946 for suggestions. 

Long over-water lines measured under conditions with high curvature require special consider
ations, but ordinary l ines should never be so long that curvature effects become important. 

For this reason it is suggested, that a standard value is used for al l ordinary l ines, dn/dH = 

= - 0.040 . 10- 6m- 1 . 

2 .5 .  The Use of Intermediate Meteorological Observations. 
It has frequently been suggested, that meteorological observations "in the propagation path" 

would be useful. It is evident that the possibility of testing the atmosphere model increases by this, 
especially if the measures are able to check the gradient as well. 

But if the intervening ground permits, i t  would be far more advantageous to devide the line 
and measure in sections, not least because the curvature effects are reduced considerably, thus 
requiring very little accuracy of the atmosphere model. The question actually reduces to add an 
MDM instrument to the met .  instruments brought to the intermediate site. 

3.  Estimate of Errors. 
3 . 1 .  Errors of the MDM Instrument. 

Measurements o n  short ranges 200 - 1000 m, where refractive index errors are less than 1 cm, 
show that the interval i nstrument errors have a magnitude of 1 - 2 cm (such errors as cyclic errors 
found with some instrument types must be included in the necessary corrections). 

Measurements of the modulation frequency under field conditions show that this error has a 
magnitude of 0. 1 - 0. 5 p.  p. m. 

This means that for distances exceeding 20 km, errors exceeding 1 p.  p. m. must arise from the 
propagation. Reflections from the ground is one of the possible sources, but for an individual side, 
reflections will generally produce the same effect, at least for l ines over land. 

For these reasons the variations of the measurements of one side must have errors of the 
refractive index as their source. (The variations of the 1 0 - 1 2  sets forming a measurement have 
mainly reflections (grou nd swing) or instrument swing as their main source, and this variation 
is useless for estimates of the accuracy). 

3 .2. Refractive Index Errors. 
From the difference of the refractive index measurements executed before and after each 

measurement of distance, an estimate of the compound effect of short time ( 10  minutes) variation 
of refractive i ndex and indication and reading errors of barometers and psychrometers can be found. 

From 1 50 measurements of distance (600 det .  of. refr. index) in the Danish first order network 
a value of 2 p. p. m. was found. This magnitude may be explained from 002 C of reading and 
indication error for each thermometer. 

900 measurements of 1 50 sides (the entire first-order network) show, however, 2.6 p. p. m. 
for one measurement of a side as the internal agreement. The sides have in general been measured 
6 times, which will give I p. p. m. for the mean sq. error of the mean. 
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An adjustment of the network jointly with Laplace azimuths and ordinary angular measurement 
(the latter with a m. sq. e. of 0·:2 for a direction-mean of 1 2 -24 sets) gives a m. sq. e. of 0'.'4 or 
2 p. p. m. for an observed direction or side, respectively. 

From this it is estimated that the observed mean values of the sides may have errors of 2 p. p. p. m. 
not randomized by the reiterated measurements. There may even be larger errors hidden, as the 
measurements of the sides of a triangle have some correlation, because neighbouring sides fre
quently are measured with short time interval and a gene:r;al scale error will not be shown by the 
"comparison" via the angles. 

It seems Jhat 6 measurements spread over 3 days with at least one intermediate day between 
the measurement-days is more than necessary because the interval aggreement is too "optimistic". 
On the other hand the increase of the m. sq. e. from 0·:2 to 0:·4 was also found when the angles 
were adjusted separatly. 

The error of the refractive index therefore must exceed 2.6 p. p. m., and 4 - 5 p. p. m. is a more 
realistic estimate. 

These measurements have been executed in a lowland with a windy, humid climate. The 
assumption of horizontal stratification therefore is well stratified, but the high humidity is of course 
a disadvantage. 
3.3.  Conclusions. 

MDM can be used for measurements of sides in geodetic networks with an accuracy of 2 p. p. m. 
, provided the sides are not too long, i. e. less than 50 km. For sides exceeding this length, the curvature 

effects get increasing importance. 
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Investigations of Refraction Correction in Tellurometer 
Measurements 

by Teuvo Parm, Helsinki 

Finnish Geodetic Institute measured with tellurometers the Vihti enlargement net in May -June, 
1 965. It was intended to calibrate the institute's tellurometers type MRA 3 MK II Serial No. 574 
and 726 and simultaneously to investigate refraction correction. 

The base-line of the net was measured with tellurometer five times, four other sides four times 
and the other six two times each. On the base-line the instrument 574 was used three times and the 
instrument 726 two times as master. The measurements on the other sides were equally divided 
among the instruments. As a rule the measurements with both instruments were carried out one 
after the other. 
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Assman-type psychrometers were used for temperature and humidity measurement and 
Thommen barometers for the measurement of the atmospheric pressure. The dry and wet bulb 
temperatures were observed on the endpoints of each side close to the tellurometer i. e. in towers 
of heights 1 0 -24 m and at 1 . 5 - 2  m above the ground at the foot of towers. In addition to this 
these meteorological observations were made near the middle of the side, where the dry and wet 
bulb temperatures were observed at the altitudes of 1 . 5 - 2  m and 1 0 - 1 7  m above the ground. 
The air pressure was observed at end stations in towers and in mid-stations on the ground. 

Assuming that the surfaces of constant temperature and of constant humitidy are parallel 
with the earth's surface, the temperatures [ 1 ] and the pressure of water vapour [2] were transferred 

Results : 

I s (S - Sm)/ 1 km (S - S;)/1 km 
No Side M aster 

I m mm mm 

1 Hky - Rot 574 6 049. 8 14 + 6 -
2 Rot - Hky 726 + 6  -
3 Hky - Rot 574 + 5 -

4 Hky - Rot 726 - 4  - 5  
5 Rot - Hky 574 - 2 - 2 

6 Rot - Kio 726 6 769.224 + 9 + 1 3  
7 Kio - Rot 574 0 - 1 
8 Kio - Rot 574 - 1 - 8 
9 Rot - Kio 726 + 7 + 5 

1 0  Klo - Hky 726 8 220. 1 28 + 1 - 2  
1 1  Hky - Kio 574 - 1 2  - 1 5  

1 2  Hky - Kmk 574 9 435. 1 82 - 1 -- 1 1  
1 3  Kmk - Hky 726 - 3  - 8  
1 4  Kmk - Hky 574 - 3 - 6 
1 5  Hky - Kmk 726 - 4  - 8  

1 6  Kmk - Rot 574 9 749. 1 38 - 2 - 8 
1 7  Rot - Kmk 726 - 2  - 4  

1 8  Kmk - Fa 574 20 293 .070 - 3 - 3 
1 9  Fa - Kmk 726 0 - 5  
20 Ro - Fa 574 29 1 1 4 . 1 37 - 2 - 4 
2 1  Fa - Ro 726 -- 2 - 7  
22 Ro - Fa 574 - 3 - 4 
23 Fa - Ro 726 - 2  - 4  

24 Kio - Kmk 574 1 5  9 1 3 .840 - 4 - 1 1  
25 Kmk - K io 726 - 3  - 1 1  

26 Kmk - Ro 574 1 7  4 1 2.094 - 6 - 1 1  
27 Ro - Kmk 726 - 7  - 1 3  
28 Kmk - Ro 726 - 3  - 6  
29 Ro - Kmk 574 - 7 - 1 6  

30 Ro - Kio 574 1 9 1 97 . 1 86 - 2 - 2 
3 1  Kio - Ro I 726 + 1 - 9  

32 Klo - Fa 574 1 0  456.478 - 2 - 6 
33 Fa - Kio I 726 - 1 - 5  

Mean value 1 3  847.0 - 2.3 - 0.4 - 7 .2  - - 4.6 
Mean error ± 1 .0 ± 1 . 1 ± 1 .2 ± 1 .7 



1 88 

logarithmically to the altitude of 1 5  m at both ends and in the middle of the side. It was confirmed 
that these values were consistent. The mean deviation of the arithmetical mean of the end stations 
and the mid-station was ± 0.30 C only, which corresponds to ± 0.4 . 10- 6 in refraction index. 
The corresponding values for the water vapour pressure are ± 0. 14 mm Hg or ± 0.9 . 10- 6 in 
refraction index. The mean value of the all three 1 5  meter values was transferred correspondingly 
logarithmically to the different heights. Using so computed values of temperature and water vapour 
the integrating temperature and the integrating water vapour were determined for each observation. 
The mean air pressure along the path was computed from the mean pressure_of the endpoints and 
the mid-station and corrected with the additi,onal pressure caused by the earth curvature and by 
the curvature of the ray. The standard error of one value of the air pressure is on the average 
± 0.3 mmHg or ± 0. 1 · 10- 6 in refraction index. 

With the obtained values of T, e and p the refraction indices were computed with the formula [3] 

(n - 1 ) .  106 = (p - e) + -- 1 +-- . e 
103 . 49 86 . 26 ( 5748) 

T T T 

The results are collected in the table. There is S the side length from the classical triangulation. 
Sm is the corresponding length, when the refraction correction is computed with arithmetical 
mean of n1eteorological values observed directly on the endpoints. S; is the side lenght, ·when re
fraction correction is computed by the numerical integration explained above. 

The base-line of Vihti enlargement net, Hky-Rot, has the lenght 6049.8 1 3 5  ± O.QOlO m or 
1 : 6 OOO OOO measured with invar wires and the main net side, Fa-Ro, has the lenght 291 14. 1 372 
± 0.0573 m or 1 : 500 OOO according to the triangulation. It is seen in the table that S - Sm is 
(- 2.3 ± 1 .0)mm/km and ( -0.4 ± 1 . l ) mm/km for the instruments 574 and 726 correspondingly. 
The results of the integration for these instruments differ more, ( - 7.2 ± l .2) mm/km and 
(- 4.6 ± l .7)mm/km from side lenght from the classical triangulation, what is just the opposite 
as it would be expected. The mean deviations of these mean values have increased, too. 

References: 

[l ]  Jordan/Eggert/Kneiss/: Handbuch der Vermessungskunde Band VI p. 255 
[2] " " Band VI p. 26 1 
[3] " " Band VI p. 217 

The Effect of Meteorological Factors on the Accuracy of 
Tellurometer Measurements 

by Seppo Hiirmiilii, Helsinki 

1. Observation Technique of Meteorological Data 
In order to establish the refractive index of the atmosphere, the temperature and the vapor 

pressure are measured. Usually the observations are made at both ends of the line, at the beginning 
and at the end of the distance measurement. Only gross errors in the measuring of the air pressure 
can have a ml;ljor effect on the final result, so they will not be taken into regard in this connection. 

The temperature and the vapor pressure have generally been measured with a psychrometer 
by observing the readings of the ventilated thermometers. The readings of the dry thermometer 
are used as observations of the air temperature as such, whereas the vapor press\:ll'e can be derived 
from the readings of the dry and the wet bulb thermometer applying the Sprung formula 

e = E' - 0 50 (t - t')  !!__ ' 775 

In the formula e is the vapor pressure (mm), t the reading of the dry andf the reading of the 
wet thermometer (O C) and p the air pressure (mm). The pressure of the saturated vapor in the 
temperature t' is E'. 
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It is important that attention be paid on the right observation technique. The sleeve of the 
thermometer bulb must be absolutely clean and only distilled water may be used to moisten it. 
The sleeve must not have too much water because in that case the water temperature might affect 
the readings, but on the other hand, it must not get too dry. It has to be watched there is no bridge 
of water between the frame and the sleeve. Moreover, the speed of the ventilating air should be 
right and disturbances such as exhaled air must not affect the psychrometer. 

By meteorological observations the fluctuation has to be taken into account and eliminated 
as well as possible. The readings should be recorded only when the effect of the fluctuation has been 
eliminated from the readings watched for some minutes. 

In order to investigate the accuracy of meteorological data at one station the sample C of 
the table I has been used. The general course of the temperature and the vapor pressure are assumed 
to be linear between three succesive observations. From the deviations the mean square error of 
a single observation has been computed with a result m1 = ± 0,280 C and me = ± 0,25 mm Hg. 
The mean square error of the average from four observations would be half of these numbers. 

Even after careful meteorological observations the data at both ends of the line may differ 
from each other more than the distribution at one station implies. This is due to two different factors. 

The local disturbances and the microclimate produce errors which may be eliminated by setting 
up more meteorological stations. This source of error may be dominant at stations close to the 
ground. 

On the other hand, the differences between the stations at the ends of the line may be due 
to the general weather gradient along the line. In this case the mean from the two stations eliminates 
the most of the difference. 

In order to get an idea about the agreement between the ends of a line three different samples 
have been taken to the table I. The circumstances of the samples differ remarkably from each other. 
The sample C meets best the methods and circumstances of the field works of National Board of 
Survey. The table I shows the number of sides at the sample, the number of meteorological obser
vations at each end of the line and · the stand of the instrument. The elevation of ground stations 
is about 1 ,5 m and that of tower ·stations is 1 5  m in the average. The method of the ventilation 
has been mentioned and so has the average temperature and the average vapor pressure and finally 
the mean square error for the mean from the ends computed from the distribution of differences 

Table I 

sample n 1 ni stand whirled t e m, me 

A 62 2 ground manual + 22,20 c 1 2,6 mm Hg ± 1 ,06 ± 0,28 
B 30 2 tower manual + 1 8,9 8,0 ± 0,56 ± 0,37 
c 49 3 tower motor + 1 3,2 7 , 1  ± 0,37 ± 0,25 

As the differences from two stations are much greater than the inner accuracy of one station 
would imply another attempt has been made to find a solution between alternative explanations. 
The data of the table VI represent a case where two intervening meteorological stations have been 
established as is shown in figure 1 .  The mean square errors m, and me for the average of the end-

Table II 

Day m, d, me de 

7. - 8.  7 .  ± 0,32 ± 0,30 ± 0,26 ± 0, 1 9  
2 1 .  - 22. 7. 0,52 0,08 0,33 0, 10 

4. - 5. 8 .  0,59 0, 1 2  0,9 1  0,3 1  
1 8. - 1 9. 8 .  0. 1 9  0, 1 5  0,27 0,20 
8. - 9.  9. 0,41 0, 1 1  0, 1 5  0, 1 4  
2 .  - 3.  1 1 .  0,56 0, 1 1  0,36 0,07 
1 .  - 2. 1 2. 0,52 0,26 0,29 0, 1 3  

average ± 0.47 ± 0, 1 8  ± 0,43 ± 0, 1 8  
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stations have been computed from the differences between them. Then the difference between the 
average of the end stations and the average from all four stations has been developed to a cor
responding mean square error d. If the differences between the end stations were due to random 
disturbances of stations, d would be equal m/(2 . In that case the average d1 at the end of the table 
II would be d1 = ± 0,33 and de = ± 0,30. 
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The data of  the table II  show that in this material a great deal of  the difference between the 
ends of the line will be eliminated from the mean. Without the intervening stations the mean square 
errors m1 and me would affect the distances by mean square errors of ± 0, 7 mm/km and ± 2, 1 mm/km 
or combined ± 2,2 mm/km. The corresponding values from the sample C of the table I are 
± 0,5 mm/km, ± 1 ,5 mm/km and combined value ± 1 ,6 mm/km. It is difficult to tel l  how much 
these results could be improved by using the intervening meteorological .stations. In view of the 
figures of the table II and of the other sources of error the use of intervening stations does not seem 
to offer any remarkable advantages. 

2. The Systematic Errors of the Meteorological Observations 
The accuracy of meteorological observations has been dealt with above in view of the distri

bution of erroi::s between different observations. There may be, however, such systematic errors 
in the meteorological observations which are included to all observations and do not alarm therefor�. 
There is an example of this in figure 2. A distance of 43 km between first order points 275 and 277 
was measured every hour of the clock with the result that a great systematic and a strong periodical 
error were revealed. The great systematic error occurred in all of the other first order sides which 
were measured during those days, too. As interesting as it would have been to build up a brand 
new meteorological theory based on the phenomenon, the simple truth was found out at the cali
bration of the psychrometer. 
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The importance of a good care in the meteorological observations was emphasized above 
already. As a matter of fact, perhaps not so much inner agreement is obtained doing it, but it has 
a great effect in decreasing the systematic error of the psychrometer. The proper calibration of 
psychrometers may be added there as a very important point of the procedure. 

Other sources of systematic error are the bending of the ray in the atmosphere, the adjoining 
systematic changes of the refractive index along the path and the influence of the neighbourhood of 
the ground on the refractive index. 

3. The Path of the Ray in the atmosphere. 
The path of the ray may be computed by applying variation calculus. The total time of the 

propagation between the ends of the line is 

+ a  + a  
1 1 · 

v-- 1 J T - - n (r) 1 + y'2 d x = - f (x, y, y') d x 
Co Co 

- a  - a  

The equation of the path is an extremal curve representing a solution of the Euler differential 
equation 

I I fy - fyl X - y' fyl )' y = ��---��-! Y1 Y1 

Assuming that the ends of the path have the same height and that the refractive index has a 
geocentric symmetry 

- Z (h - h0) 
n (r) = 110 e 

the solution of the Euler equation will be the function 

1 (cos z x) 
Y = - l n  --

z cos z a 

It can be easily shown that the result can be simplified by substituting the curve with a circle 
connecting the ends of the path and the vertex. This does not cause any remarkable error. Now 
the total time of the propagation is obtained. 

T =  
no [2 a  - � (2 a)3 + � (2 a)3] 
c0 24 r2 1 2 r2 

In this formula 2 a means the chord between the ends of the path. Then i t  is easy to compute 
the length s of the curve connecting the ends of the path and following the curvature of the ellipsoid. 
The arc s will be then 

c0 T (1 - k)2 
s = -- + s3 

n0 24 r2 

This final formula is exactly the same which was derived by Saastamoinen with less work. 
The symbols of the formula are 

s arc connecting the ends of the line 
n0 refractive index at the ends of the line 
c0 velocity of the radio waves in vacuo 
T total time of the propagation 
r radius of curvature of the ellipsoid 
r' radius of curvature of the ray 

dn 
k = r/r' = - r 

dh 

I dn 
z = 1 /r = - -

dh 
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The second term of the formula above may be called the curvature correction. It includes 
the geometric correction to the shape of the ellipsoid and the systematic change of the refractive 
index along the path of propagation. 

Assuming the coefficient k = 0,25 for the radio waves and the radius of the curvature of the 
ellipsoid r = 6390 km, the value of the curvature correction will be 

k, = 0,574 x s3 m, where the unit of s is 100 km. 

The coefficient of k, varies remarkably. The examination of the different factors will give 
an idea about the extent of its variation. The gradient of the atmo'spheric pressure is the main term 
and fortunately its variations give only slight changes to the value of the curvature correction. 

The long term observations made in England are very valuable in estimating the variations 
of the meteorological factors, especially those made by Best, Knighting, Pedlow and Stormonth . 
The temperature and the vapor pressure had been registered every hour for three years at the 
elevations of 1 , 1 ,  1 5,2, 47,2, and 1 06,7 m. The extremities of the gradients could be used to find 
out the greatest errors but the average values are still more important for practical observations. 
The table III shows the average values of the coefficient k during the different months and the 
table IV the hourly variation of the coefficient k as an average from different months from May 
to September. 

Table III k = r/r' 

Olh 02h 03h 04h 05h 06h 07h 08h 

1 ,1- 1 5,2 m + 0,330 + 0,244 + 0,210 + 0,169 + 0,368 + 0,848 + 1,352 + 1 ,526 
15 ,2- 47,2 + 0,537 + 0,481 + 0,440 + 0,425 + 0,426 + 0,551 +0,600 + 0,466 
47,2-106,7 + 0,331 + 0,320 + 0,287 + 0,293 + 0,282 + 0,294 +0,329 + 0,276 

09h l Oh 1 1 h J 2h J 3h J 4h 1 5h J 6h 1 7h 

+ 1,421 + 1,355 + 1,337 + 1,344 + 1,308 + 1,349 + 1,294 + 1 ,326 + 1,305 
+ 0,422 + 0,429 +0,436 + 0,440 + 0,418 + 0,375 + 0,394 + 0,415  + 0,459 
+ 0,245 + 0,218 + 0,236 + 0,236 + 0,230 + 0,250 + 0,239 + 0,228 + 0,250 

Table IV 

1 8h 

+ 1 ,318 
+ 0,510 
+ 0,268 

J 9h 

+ 1,191  
+ 0,553 
+ 0,311  

+ 0,875 + 0,662 
+ 0,586 + 0,615 
+ 0,313 + 0,328 

22h 

+ 0,541 
+ 0,604 
+ 0,351 

23h 

+0,463 
+0,565 
+0,348 

mean 

+0,354 +0,937 
+ 0,542 + 0,487 
+ 0,338 + 0,283 

I II 

k = r/r' 
III 

1 , 1- 15,2 m -0,314 + 0,123 -0,294 
15 ,2- 47,2 + 0,371 + 0,300 + 0,185 
47,2-106,7 + 0,264 + 0,25 1  + 0,224 

IV 
+ 0,251 
+ 0,184 
+ 0,234 

v 
+ 0,868 
+ 0,479 
+ 0, 191 

VI 

+ 1,400 
+ 0,484 
+ 0,209 

XI XII mean 

1 ,1- 1 5,2 m 
15,2- 47,2 
47,2-106,7 

VII 

+ 0,671 
+ 0,754 
+ 0,244 

VIII 

+ 0,900 
+ 0,479 
+ 0,337 

IX 

+ 0,400 
+ 0,375 
+ 0,343 

x 
-0,048 
-0,002 
+ 0,352 

+0,094 -0,017 
+ 0,015 + 0,038 
+ 0,232 + 0,213  

+ 0,336 
+ 0,305 
+ 0,25 8  

The tables III and IV reveal the instability of the coefficient at the lowest layers of the atmo
sphere. However, the coefficient gets more stabile at heights more than 1 5  m above the ground 
and at height more than 47 m above the ground the influence of temperature and vapor pressure 
is rather small compared to the influence of the atmospheric pressure. 

After all, the total value of the curvature correction never seems to be great, it seldom exceeds 
1 0  cm at a distance of 50 km. In addition, the long distances, where the errors could be great, are 
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Table VI 

Diurnial variation of the teUurometer measurements 

The distances have not been reduced. The first line of each day gives the length in addition of 29 1 10 m. The second line gives the temperature and the third 

line the vapor pressure. 

1 8h 2 1  0 3 6 9 

7 . - 8. 7. 4,844 4,841 4,848 4,842 4,837 4,862 
+ 1 8,0 + 1 5,6 + 1 3, 1  + 1 1 ,2 + 1 1 , 1  + 1 6,0 

7,8 8,6 8,4 8,5 8,5 8,3 
2 1 . - 22. 7. 4,832 4,845 4,876 4,860 4,808 4,724 

+ 1 8,6 + 1 5,8 + 1 3,2 + 1 3,8 + 14,7 + 1 6,5 
1 1 ,3 1 1 ,5 1 1 ,2 1 1' ,7 1 2,3 1 2, l 

4. - 5. 8 .  4,823 4,939 4,843 4,87 1 4,870 4,769 
i- 1 6,4 + 14,2 + 1 2, 1  + 1 2,2 + 1 1 ,9 + 14,8 

7,7 9,2 9,5 1 0,4 10,0 1 1 ,3 
1 8. - 1 9. 8. 4,867 4,874 4,81 3  4,81 4  4,8 1 3  4,809 

+ 1 3,6 + 1 2,9 + 1 1 ,4 + 1 1 ,0 + 1 1 ,0 + 1 1 , 8  
8,5 8,2 8,4 8,8 9,3 9,4 

8 . - 9. 9. 4,824 4,884 4,9 1 8  4,878 4,892 4,896 
+ 1 1 ,2 + 9,8 + 10, l + 10, 1  + 9,9 + 10,4 

9,2 8,3 8,5 8,6 8,4 7,9 
2. - 3. 1 1 .  4,962 4,972 4,954 4,947 4,976 4,908 

+ 6,3 + 6,8 + 7,4 + 7,6 + 8,2 + 9,0 
7 , 1  7,4 7,7 7,8 8,2 8,6 

1 . - 2. 1 2. 5,063 5, 1 50 5,095 5, 1 1 3  5,084 5,088 
- 3,3 - 1 ,9 - 0,8 0,0 + 0,3 - 0,5 

3,4 3,8 4,1 4,3 4,3 4, 1 
Mean 4,888 4,929 4,907 4,904 4,897 4,865 

+ 1 1 ,5 + 10,5 + 9,5 + 9,4 + 9,6 + 1 1 , 1  
7,9 8,1 8,3 8,6 8,7 8,8 

1 2  1 5  

4,899 4,834 
+ 1 8,5 + 1 9,5 

7,9 7,7 
4,809 4,792 

+ 17,0 + 17,5 
1 3,4 1 3,4 

4,988 4,88 1  
+ 1 7,6 + 17,9 

8,9 8 , 1  
4,836 4,8 1 0  

+ 1 3,6 + 14,4 
9,8 9,8 

4,901 4,829 
+ 12,9 + 13,0 

7,5 7,4 
4,864 4,882 

+ 9,4 + 9,5 
8,9 8,9 

5,045 5,086 
- 0,6 - 1 ,2 

3,9 3,7 
4,906 4,873 

+ 1 2,6 + 12,9 
8,6 8,4 

1 8  

4,'868 
+ 19,4 

7,8 
4,837 

+ 1 7,5 
1 1 ,0 

4,837 
+ 1 5,6 

8,3 
4,790 

+ 14,5 
9,6 

4,850 
+ 1 1 ,6 

7,5 
4,9 1 5  

+ 9,3 
8,8 

5,023 
- 1 ,6 

4,0 
4,874 

+ 12,3 
8 , 1  

Mean 

4,853 m ±0,007 
+ 1 5,80 c 

8,2 mm Hg 
4,820 m ±0,0 1 5  
+ 16, l O C 

1 2,0 mm Hg 
4,869 m ±0,021 
+ 14,80 c 

9,3 mm Hg 
4,825 m ±0,021 
+ 12,70 c 

9, 1 mm Hg 
4,875 m ±0,009 
+ 1 1 ,00 c 

8, 1 
4,93 1 m ±0,0 13  
+ 8,20 c 

8, 1 mm Hg 
5,083 m ±0,01 4  
- 1 , 1 0  c 

4,0 mm Hg 
4,894 m 
+ 1 1 , 1 0  c 
8,5 mm Hg -

\J:) 
w 
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generally measured so h igh above the ground that t he curvature correct i on is probably not very 
far from the average val ue. 

4 .  The Error Caused by the Vertical Gradient and the Distance from the Ground 

There is another source of error in addit ion to t he curvature correct ion which is caused by 
the vertical grad ient of the refractive index. The vertical gradient is infl uenced more or less by the 
distance from the ground. Actual ly, some part of the vert ical grad ient of t he refract ive index 
depends on the elevat ion only, another part fol lows the shape of the ground. The final result  is 
a combination of t hese two componen ts. 

1f the grad ient of the index i s  determined it  wil l  have some connection to the measured distance 
even in case of extrapolat ing the gradient . The observat ions of the variation of the grad ient and 
the distance at t he same l ine should reveal the correlat ion . 

A test was established in order to investigate the correlation between the measured distance 
and the grad ient of the temperature and the vapor pressure above the ground . The s ide between 
t he first order tr iangu lat ion points 27 and 29 was measured in three hour intervals around t he clock .  
The meteorological observat ions were made at  t he ends of the l ine and a t  two i n tervening stat ions 
(figure 1 ). At  al l  t he meteorological stations the readings were taken on the top of a t r iangu lat ion 
tower (in average 19 m) and at  a height of 1 ,5 from t he ground. The read ings at  the tower and at  
the ground were arranged symmetrically i n  order to avoid systematic errors of t he measured 
gradients. The total procedure was repeated on seven d ifferent  days as described in the table V.  

The average a i r  pressure, temperat ure and vapor pressure are incl uded. 

Table V 

day p e wind weather 

7 .  - 8 .  7 .  999,4 m bar + 1 5, 80  c 8,2 mm H g  1 -- 2 h c lea r 
2 1 . - 22. 7 .  995,9 + 1 6, 1  1 2,0 3 - - 5 111 i:·; t ,  ra in 
4. - 5 .  8 .  994. 1 + 1 4, 8  9,3 I - - 3 rai ny 

1 8 . - 19 .  8 .  999, 3 + 1 2,7 9, I 4 - 5  ra1 11y 
2. - 3 .  1 1 . 1 004,0 + 8,2 8,2 I ·- 2 mis t  
1 .  - 2. 1 2 . 1 006, I 1 , 1  4,0 1 - 3 clear 

The results from the measured distances and meteorological data are col lected to the table V J .  
The distances included to the table are means from four successive measurements and the inner 
accuracy of the mean is ± 0,029 m in average. Unfortunately, the crystals of the instrumen ts gave 
ome trouble and their cal ibrat ion wa omewhat unsat i factory at t hat t ime. E pecially t h i  concern 

the last day of the table V, and the crystal frequency of that day remained somewhat uncertai n .  
The measured distances and temperature grad ients and vapor pressure gradients were sub

mitted to an orthogonal regression analysis. As a result from th is  t he correlation coefficient between 
the distance and temperature gradient was 0,8 % and that between the distance and vapor pressure 
gradient was 0,3 %. The significance cri teria showed that the correlat ion was in both cases far below 
the significance level . So the resul t  from the test was then t hat t he measured gradients had noth ing 
to do with the variat ion of the distance. 

The derived result does not exclude completely the possibi l i ty of a connect ion between the 
distance and the gradients .  Unfortunately the test did not include a sufficient number of warm,  
sunny days. Besides the l i ne was somewhat shallow. Figure 2 shows a case w here there seems to 
be a close connect ion between the grad ients and the distance. Anyway, i t  is not sure that t he psy
chrometer error was completely el iminated and even then the d ifferences from t he mean are not 
great for a distance of 43 km.  The circumstances in the test favoured the appearence of the period ical 
error in every way. Weather was cloudless and warm and the l ine very h igh . 

The variation of the temperature gradient would appear i n  the result  of a day and night test 
more easy than the variation of the gradient of the vapor pressure. The former h as a diurnal vari
ation of the lapse rate and the inversion whereas t he latter has a lapse rate only. Therefore it would 
be i mportant to investigate the influence sti l l  more with long distances which are known up to a 
very h igh degree of accuracy. 
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The tests of the table VI  were carried out at a first order triangulation side. In addition, the 
length of the side was determined by measuring a base l ine and connecting it to th is side with a 
base extension net. In order to secure the accuracy, the angles of the net were observed again i n  
the next year. So the length o f  the side 2 7  - 29 has the following values. 

base extension 1 96 1  
base extension 1 962 

combined base extension 
from first order net 

29 1 14,085 ± 0,059 
29 1 14, 1 83 ± 0,08 1 

29 1 14, 1 37 ± 0,057 
29 1 14,256 

The same side from the determinations of the table VI and reduced to the same level gives 

a value 
tellurometer 29 1 14, 1 76 ± 0,035 

It is rather difficult to tell now anything about the possible systematic errors of the tellurometer 
measurements. Moreover, tellurometer seems to give the most plausible result of all. In addition, 
the deviation of the tellurometer distance from the triangulation side makes - 2,7 mm/km and the 
average deviation presented at the appendix makes - 2,9 mm/km. 

One of the main troubles when investigating tellurometer measurements is the fact, that there 
are no adequately accurate long reference distances in the world. As they are lacking it is very 
difficult to come to any really reliable results about the effect of meteorological factors. Until 
now every investigation on the accuracy seems to have lead to the accuracy of the reference distances. 

5. The Agreement of the Practical Measurements 
The i nvest igat ions and tests described above have lead to some rules in  the practical tel luro

meter work of the National Board of Survey. 
1 )  A careful check of crystal frequences has been established. The crystals are calibrated several 

t imes a year. I n  addition, every distance is measured from both ends of the l ine and so every 
change of the crystal is noticed immediately. 

2) The meteorological observations are made at both ends of the l ine three t imes and the d istance 
measured between the meteorological readings. All possible care is given to the observation 
technique. No additional stations are established. 

3) Preference is  given to psychrometers which are whirled electrical ly so that the speed of air 
is always constant. No psychrometers whirled by hand are accepted. 

4) Psychrometers are calibrated under circumstances when the air conditioning allows a large 
range of temperatures and vapour pressures. 
From the results obtained this way the following can be mentioned. The so-called main order 

nets have been observed among other triangulation work. There the average distance makes about 
30 km. The agreement of these nets has been good as described by M. Jaakkola. Residuals exceeding 
1 0  cm are rare. Anyway, i t  is too early to tell about the systematic error because until now the 
junctions have been to temporarily adjusted points. In the nearest future will, however, the final 
adjustement be carried out. The number of the measured main order sides makes nearly 300. 

In connection of other observations some first order triangulation sides have been measured. 
The comparison between tellurometer measurement and the value from first order net may be a 
good test to the results of the applied methods. A comparison is made at the app6ndix. There the 

. material includes 1 1 6 sides. The material was presented partly previously by P. Heikkila, but now 
a new adjustment of first order net has been carried out and there exists a better basis for a com
parison. 

The comparison is made in regions. A region has been bordered around a base l ine of the first 
order net. The general systematic difference has been computed in every region. When the systematic 
difference has been substracted the mean square difference has been computed i n  every region. 
An average systematic error of - 2,89 mm/km has been found. The mean square difference between 
tellurometer measurement and the first order side is ± 0.077 m in average for a distance of 30,7 km. 
How the mean square difference should be distributed between the different sources and what 
the reason for the systematic difference is, are still unanswered. In spite of these open questions 

1 3 * 
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there seems to be enough knowledge to state that the era of base Jines is now over and the 
electronic distance measurement has matured. 
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Appendix 

Comparison of T ellurometer Distances and First Order 
Triangulation Sides 

The sides have l5een divided into groups surrounding the base lines of the net. 
At the end of each group is the number of sides, their added length and average length, the sum 

of differences and the average systematic difference between the tellurometer measurement and 
the known val ue. Finally there is the mean square random difference between these two distances. 

side tell urometer triangulation differ. residual 

II Hanko 
1 07 - 1 05 37 907,092 37 907,272 -0, 1 80 +0,003 
1 06 - 1 04 28 494,936 28 494,978 -0,042 +0,096 
1 04 - 105 26 686, 1 5 1  26 686,352 -0,201 - 0,072 
1 05 - 1 03 26 307,857 26 307,932 - 0,075 +0,052 
1 04 - 1 03 26 161 ,726 26 161 ,845 - 0, 1 1 9 +0,007 
1 04 - 1 02 36060,698 36060,8 1 6  -0, 1 1 8  + 0,056 
1 03 - 1 02 26 1 58,26.5 26 1 58,444 -0, 1 79 -0,053 
103 - 1 6  30021 ,743 30022,054 -0,3 1 1 -0, 1 66 
1 02 - 16  34235,892 34236, 1 1 2  -0,220 -0,054 
1 5 - 1 6  1 8 996,980 1 8 996,969 +0,01 1 +0, 103 
1 5 - 12  30 687,486 30687,6 14 -0, 1 28 +0,020 

1 02 - 21  22 831 ,630 22 83 1 ,7 1 5 -0,085 +0,025 
2 1 - 24 30 972,862 30972,964 -0, 1 02 +0,048 
22 - 24 27 778,3 1 3  27 778,432 -0, 1 1 9 +0,0 15  
22 - 25 30860,655 30860,930 -0,275 -0, 126 
24 - 25 24 1 25,927 24 1 26,008 -0,08 1 +0,036 
27 - 29 29 1 14, 1 29 29 1 1 4,256 -0, 1 27 + 0,014 
29 - 1 94 32238,880 32239, 148 - 0,268 -0, 1 1 2 
29 - 30 33 780,727 33 780,880 - 0, 1 63 +0,010 
30 - 32 32 392,7 1 2  32392,772 -0,060 + 0.097 

20 sides 585 8 1 4,661 585 8 1 7,493 - 2,832 m = ±0,075 
29 290,733 -4,83 mm/km 
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side tellurometer triangulation differ. residual 

I I! Lapptrdsk 

38 - 39 25 829,477 25 829,48 1 - 0,004 +0,063 
38 - 4 1  24 33 1 ,844 24 33 1 ,9 1 6  -0,072 - 0,009 
38 - 42 37478,032 37 478, 1 86 - 0, 1 54 - 0,057 
39 - 40 26702,202 26 702,433 - 0,23 1 - 0, 1 62 
3 9 - 42 27 997,972 27 998,0 1 8  -0,046 + 0,026 
42 - 43 30 1 65,333 30 1 65,429 -0,096 - 0,01 8  
43 - 45 34 743,633 34 743,588 + 0,045 + 0, 1 35 
45 - 44 28 8 1 2,828 28 8 1 2,882 - 0,054 + 0,020 
44 - 4 1  27 4 1 7,304 274 1 7,341 -0,037 +0,034 
44 - 207 1 9 934,60 1  1 9 934,740 - 0, 1 39 - 0,088 
4 1 -207 26625,5 1 5  26 625,44 1 +0,074 +0, 1 43 
4 1 -208 3 1 327,855 3 1 327,952 -0,097 - 0,01 7  

207 -208 26 7 1 0,2 1 2 26 7 1 0,35 1  - 0, 1 39 -0;070 

1 3  sides 368 076,808 368 077,758 -0,950 m = ± 0,085 
28 3 1 3,60 1 - 2,58 mm/km 

V Maaninka 

2 1 3 - 2 1 5 45 88 1 ,46 1 45 8 8 1 ,729 -0,268 -0,072 
2 1 4 - 2 1 5  42 369 .. 969 42 370,2 1 5  -0,246 - 0,065 
2 1 4 - 2 1 6  39 520,745 39 520,746 -0,00 1 +0, 1 67 
2 1 6 - 72 36885,398 36 885,442 -0,044 +0, 1 1 3  

72- 70 38 595,950 38 596,008 -0,058 +0, 1 07 
70 - 67 30 1 45,804 30 1 45,977 - 0, 1 73 - 0,044 
66 - 68 2402 1 , 1 78 2402 1 ,238 - 0,060 + 0,043 
68 - 69 324 1 5,855 3241 6,099 - 0,244 - 0, 1 06 
69 - 1 92 34006,895 34007,024 -0, 1 29 + 0,0 1 6  
7 1 - 1 93 37 474,062 37474,453 - 0,39 1 - 0,23 1 
7 1 - 73 38 364,590 38 364,798 - 0,208 -0,044 
73 - 75 26 974,478 26 974,63 1 - 0, 1 53 - 0,038 
75-23 1  24 325,944 24 325,964 - 0,020 +0,084 

23 1 - 234 34 703,922 34 703,926 -0,004 +0, 144 
234 - 1 82 35 560,809 35 561 ,035 --0,226 -0,074 

1 5  sides 521 247,060 52 1 249,285 -2,225 m = ±0, 1 09 
34 749,804 -4,27 mm/km 
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side tellurometer triangulation differ. residual 

VII Viljakkala 
1 94 - 1 96 26933,4 1 4  26 933,495 - 0,08 1 -0,073 
1 95 - 1 96 32 84 1 ,808 32 84 1 ,893 - 0,085 -0,075 
1 95 - 1 97 23 798,086 23 798, 1 46 -- 0,060 -0,053 
1 96 - 1 97 26 1 90,760 26 1 90,797 - 0,037 - 0,029 
1 96 - 1 98 3 1 438,035 3 1 438,044 - 0;009 +0,00 1 
1 97 - 1 98 38084, 1 70 38 084, 1 58 + 0,0 1 2  + 0,024 
1 97 - 1 99 24000, 1 90 24 000, 1 55 + 0,035 + 0,042 
1 98 - 1 99 24207,29 1 24 207,268 +0,023 +0,03 1 
1 99 - 1 26 22 985,422 22 985,4 1 4  -/- 0,008 + 0,0 1 5 
1 98 - 1 26 30038,024 30037,990 +0,034 +0,043 
1 98 - 1 24 23 383 ,696 23 383,594 + 0, 1 02 +0, 1 09 
1 25 - 1 26 24479,340 24479,293 + 0,047 + 0,055 
1 24 - 1 26 28 0 1 9,597 28 0 1 9,536 � 0,06 1 +0,070 
1 24 - 1 25 33 439,067 33 438,99 1 +0,076 +0,086 
1 23 - 1 25 3 5 977,420 3 5 977,373 t-0,047 + 0,058 
1 23 - 1 24 29 724,532 29 724,509 !- 0,023 +0,032 
1 22 - 1 24 35 522,466 35 522,600 -0, 1 34 -0, 1 23 
1 22 - 1 23 32 798,582 32 798,74 1 -0, 1 59 -0, 1 49 
1 2 1 - 1 23 3 1 790,448 3 1  790,37 1 +0,077 - f- 0,087 
1 2 1 - 1 22 3 1 290,869 3 1 290,858 +0,01 1 f-0,02 1 
1 08 - 1 1 0 26207, 1 72 26207, 1 59 + 0,0 1 3 + 0,02 1 
1 06 - 1 08 3495 1 ,41 8 34 95 1 ,623 - 0,205 -0, 1 94 

22 sides 648 1 0 1 ,807 648 1 02,008 - 0,20 1 m = ±0,080 
29459, 1 73 -0, 3 1  mm/km 

VIII Otava 
1 36 - 137 27 9 1 7,278 27 9 1 7,374 -0,096 +0,009 
1 37 - 1 39 22 637,953 22 638,095 -0, 1 42 -0,570 
1 39 - 1 4 1  34 867,449 34 867,623 -0, 1 74 -0,043 
1 4 1 - 1 43 25053,733 25 053,792 --0,059 + 0,035 
1 43 - 60 32 569,856 32 569,932 - 0,076 - !-0 046 
1 39 -2 1 2  3826 1 ,772 3826 1 ,894 - 0, 1 22 + 0,022 
1 39 ___:___ 2 1 3  37366,6 1 3  37366,7 1 6  - 0, 1 03 +- 0,037 
1 41 - 2 1 2  20 354,5 1 6  20 354,574 -0,058 +0,0 1 8  
2 1 2 - 21 3 28 776,6 1 9  28 776,822 -0,203 -0,095 
2 1 2 -2 1 4  26 793,044 26 793, 1 02 - 0,058 +0,043 
2 1 3 - 2 1 4  3 1  790,43 1 3 1  790,565 -0, 1 34 -0,0 1 5 

1 1  sides 326 389,264 326 390,489 - 1 ,225 m = ±0,047 
29 67 1 ,75 1 - 3,75 mm/km 

IX Soanlahti 

60 - 62 30 758,93 1 30 759,086 - 0, 1 55 -0,027 
62 - 64 36976,376 36 976,472 - 0,096 + 0,058 
64 - 67 3 1 341 , 1 9 1  3 1 341 ,222 - 0,03 1 + 0, 1 00 
65 - 1 45 26 873,848 26 874,060 - 0,2 1 2  -0, 1 00 
65 - 66 36 580,599 36 580,783 -0, 1 84 -0,03 1 

5 sides 1 62 530,945 1 62 5 3 1 ,623 - 0,678 m = ±0,079 
32 506, 1 89 - 4, 1 7  mm/km 
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side tellurometer triangulation differ. residual 

Xl Kuhmo 
1 92 - 1 91 30 549,394 30 549,442 -0,048 + 0,022 
1 93 - 1 90 28 563,768 28 563,852 -0,084 - 0,0 1 8  
1 91 - 1 89 30 590,751 30 590,898 -0, 1 47 - 0,076 
1 90 - 1 88 24 555,538 24 555,67 1 -0, 1 33 - 0,076 
1 89 - 1 87 35 392,567 35 392,555 +0,0 12  +0,094 
1 88 - 1 86 25 703,3 1 8  25 703,333 -0,01 5 +0,044 
1 86 - 1 84 28 652,61 6  28 652,739 -0, 1 23 -0,057 
1 84 - 1 82 27 688,960 27 689,077 - 0, 1 1 7  - 0,053 
247 - 248 34 3 1 4,568 34 3 1 4,732 -0, 1 64 - 0,085 
1 87 - 248 23 625, 1 52 23 625,233 -0,08 1 -0,027 
1 85 -248 29 387,362 29 387,390 -0,028 +0,040 
1 85 - 247 20 737,596 20 737,658 -0,062 - 0,01 4  
248 - 246 3 1 620,058 3 1 620, 1 44 -0,086 - 0,0 1 3  
247 -245 23 547,503 23 547,572 -0,069 - 0,01 5 
247 - 246 35 430,768 35 430,838 -0,070 +0,0 1 2  
245 -246 2 1 730,01 2  2 1  730,043 - 0,03 1 + 0,019 
246- 244 24 7 1 9, 1 82 24 7 1 9, 1 74 -t-0,008 + 0,065 
245 - 244 27 1 1 2,405 27 1 1 2,487 -0,082 -0,0 1 9  
245 - 243 35 936,053 35 936,093 -0,040 +0,044 
244 -243 28 603,445 28 603,41 8  +0,027 +0,092 
244 -242 34 309,202 34 309,256 -0,054 +0,025 

2 1  sides 602 770,21 5  602 77 1 ,605 - 1 ,387 m = ± 0,053 
28 703,344 - 2, 3 1  mm/km 

XI V Laani/a 
268 -275 34 897,053 34 897, 1 69 -0, 1 1 6  - 0,059 
268 - 274 42 307,085 42 307,053 +0,032 +0, 10 1  
274 - 275 33 9 1 6,250 3 3 9 1 6,23 1 +0,0 19  +0,075 
274 -276 28 950,835 28 950,95 1 - 0, 1 1 6 -0,069 
275 -276 42 569,886 42 569,93 1 -0,045 +0,025 
275 - 277 43 249,257 43 249,442 -0, 1 85 -0, 1 14 
275 - 278 46 970, 1 50 46970, 1 75 -0,025 +0,052 
276 -277 33 649,454 33 649,520 -0,066 - 0,0 1 1 
277 - 278 44027,41 4  44027,486 -0,072 0,000 

9 ·  sides 350 537,384 350537,958 -0,574 m = ± 0,071 
38 948,598 - 1 ,64 mm/km 

Abstract of the Comparison 
region sides added length difference systematic random difference 

mm/km m mm/km 
Jl 20 585 8 14,66 1 -2,832 -4,8 ±0,6 ±0,075 ±2,6 or 1 : 390000 
JU 13  368 076,808 -0,950 - 2,6 ±0,2 0,085 ± 3,0 1 : 33 1 000 
v 1 5  521 247,060 - 2,225 -4,3 ±0,8 0, 109 ± 3 , 1  1 :  3 1 8 000 
VII 22 648 1 0 1 ,807 -0,201 -0,3 ±0,6 0,080 ± 2,7 1 : 367000 
VIII 1 1  326 389,264 - 1 ,225 -3,8 ±0,5 0,047 ± 1 ,6 1 : 636000 
IX 5 1 62 530,945 -0,678 -4,2 ± 1 , 1  0,079 ±2,4 1 : 41 0 000 
XI 21  602 770,2 1 5  - 1 ,387 - 2,3 ±0,4 0,053 ± 1 ,8 1 : 544000 
XIV 9 350 537,384 -0,574 - 1 ,6 ± 0,6 0,07 1 ± 1 ,8  1 :  547000 

1 1 6 3 565 443,388 - 1 0,075 -- 2,82 ±0,077 ±2,5 1 : 399000 
30736,58 1 
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Some Recent Measurements of Atmospheric Limitations to the 
Precision of Microwave Distance Measuring Equipment*) 

by M. C. Thompson, Jr. ,  and H. B. Janes, Boulder, Colorado 

The inherent internal precision of present electronic distance measuring instruments is quite 
high. For example, an instrumental noise level equivalent to 1 micron can be obtained for ranges 
of tens of kilometers. Unfortunately, this instrumental precision is seriously degraded when the 
equipment operates under field conditions in the real atmosphere. 

Basically, all systems (Geodimeter, Tellurometer, Electrotape, etc. )  measure the transit time 
of an electromagnetic signal over the path being studied. Conversion of this time measurement to 
an equivalent distance depe�ds on some means of approximating the propagation velocity of the 
wave along the path [Thompson, Janes, and Freethey, 1 960].  At present, the overall accuracy of 
path measurements from 1 to 50-km is essentially the accuracy of this velocity estimate. 

In the simplest method, measurements of temperature, humidity, and barometric pressure are 
made at one or more points located in the vicinity of the line to be studied. From these data, the 
propagation velocity of the wavelength being used is calculated. This value is then assumed to apply 
over the entire path, and the transit time observations are converted accordingly. In some cases 
[Thompson, Janes, and Freethey, 1 960 ; Richards, 1 965], additional stations along the path have 
been used to improve the effectiveness of the process. 

Since 1 954, the Central Radio Propagation Laboratory of the National Bureau of Standards 
(now the Institute for Telecommunication Sciences and Aeronomy of Environmental Science Ser
vices Administration), performed several experiments and gathered the following data : 

1 .  Variations in transit time for 9.4 GHz radio signals propagated over various paths. 
2. Variations in propagation velocity near the path terminals. 
3. General meteorological conditions in the area of the path. 
The transit time data (obtained by a phase-measuring technique) were taken continuously 

and were recorded (on magnetic tape) in analog form, with an overall frequency response up to 
about 10 Hz, with a precision of about 1 -mm equivalent distance. The velocity data (described in 
terms of refractive index) were obtained at each terminal from psychrometer and barometer obser
vations that were made at 1 /2-hour intervals, and had precision of a few parts per million. 

To illustrate the results, the phase (transit time) records were read at times corresponding t o  
meteorological observations. Variations of the corrected range, Re, were obtained from variations 
in the observed range, R0, and the corresponding refractive index, n0 • If we express the change of 
Re in parts per million of R0, the variations in the corrected value are obtained by subtracting the 
corresponding changes in refractivity, N0, where N0 = (n0 - 1 )  x 1 06 .  For this purpose, it is suf
ficient to know R0 only to the order of 1 %, which is easily attained. 

The results from three different paths are given. The first path was 1 5-km long over relatively 
flat terrain near Boulder, Colorado, a dry climate. Each terminal of the path was located at the edge 
of a mesa with steep, sloping foreground. The second path was 1 7-km long and passed over both 
land and water in a sub-tropical climate near Florida's east coast. This location needed towers to 
raise the paths above the dense vegetation. The third path was almost entirely over water, with two 
terminals on Eleuthera Island, British West Indies. In all cases, the paths were nearly horizontal . 

Figures 1 ,  2 and 3 show plots of variations in the observed range, the observed index, and the 
corrected range, using the end-point index data both separately and averaged. 

Figures 4, 5, and 6 show effects of time and space averaging. In these plots, the corrected ranges 
from Figs. 1 ,  2, and 3 were averaged in the following combinations : 

1 .  The terminal measurements of index were used both individually and averaged to correct 
the observed range. 

2. The standard deviations of the average values were computed for periods, T, ranging in 
length from 3 to 96 hours. 

*) This report is based on a more complete paper by the same title and authors scheduled for 
publication in the Aug. 1 967 Bulletin of the Seismological Society of America . 
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Figure 4 shows the 1 5-km path near Boulder, Colorado, in October 1 95 8 ;  the index, as measured 
at the south terminal, appears much better correlated with the measured path length than that at 
the north terminal. In this case, the best combination of correct ions gives an accuracy (of the mea
sured change in path length) of about 0.9 ppm of the path length. If no "a priori" knowledge existed 
concerning the difference in effectiveness of the two terminal measurements, however, they would 
probably be weighted equally giving an accuracy of about 2 ppm for the same averaging time. 

Figure 5 also shows some difference in the relative effectiveness of the data from the two ter
minals, but indicates that the equally weighted mean is better than either mean taken separately. 
On the 1 7-km path in Florida (:iuring October-November 1 959), the accuracy using 48-hour 
smoothing (the same used in the �receding instance), is better than 0.5 ppm. By increasing the smoo
thing time to 96 hours, this i_:, improved to about 0.3 ppm. 

The 47-krn EleuthP- ... Island path over water gave results (Fig. 6) similar to those in Florida 
but roughly twice as large. As in the preceding example, there is some difference in effectiveness of 
the correction data from the two ends of the path,  but the simple average is better than either mean 
alone. 

Figures : 

Fig. 1 Long-term variations of apparent range and related varibles 
Fig. 4 Standard deviation of corrected range versus length of averaging period, 

Green Montain - TabJe Mesa path, Boulder, Colorado: 15 ,2-km, Oct . 1958  
Fig. 2 Long-term variations of apparent  range and related variables 
Fig. 5 Standard deviation of corrected range versus length of averaging period, 

Cape Kennedy - Cocoa path, Florida: 17 , 1 -km, Oct.-Nov. 1 959 
F ig. 3 Long-term variations in apparent range and related variables 
Fig. 6 Standard deviation of corrected range versus length of averaging period, 

Eleuthera Island path, Bahamas: 47,3-km, Nov. 1 962 

Summary 

In  the field, the precision of microwave distance measurements is currently limited by the pro
pagation effects of the normally turbulent atmosphere. Field measurements from three paths using 
a 3-cm wavelength system have been analyzed to find the effects of sample length and the spectrum 
of the propagation-induced fluctuations in measured distance. These analyses indicate residual, 
propagation-induced fluctuations of measured distance, after correcting for atmospheric refractivity 
using meteorological data from both path terminals, of from a few parts in 1 07 to a few parts in  
1 os are attainable. 

Abstract 

The use of end-point meteorological data for correcting microwave range measurements over 
three paths is discussed. The paths have widely different terrain and climatological features. The 
effects of using correction data from one or both terminals are shown as well as the effects of ob
servation length.  

References 

Richards, M. R., Multiple meteorological observations applied to microwave distance measure
ment (a paper presented at the Int. Assoc. of Geod. Symp. on E lectromag. Distance Measure . ,  
Oxford, England, 1 965). 

Thompson, M. C., Jr. ,  H. B. Janes and F. E. Freethey, Atmospheric limitations on electronic 
distance-measuring equipment, J. Geophys. Res., 65, No. 2, 389 - 393 (Feb. 1 960). 



205 

Refractive Effects of Radio Ranging on Artificial Earth Satellites 

by Frank L. Culley, Mark Sherman, Washington, D. C. 

Presented to Special Study Group No. 23, Section I of the 
International Association of Geodesy, Vienna, March 1 967 

The use of electromagnetic waves for direction or distance measurements necessitates cor
rections for refractive effects of the atmosphere if true values are obtained from observations. 
Geodesists are familiar with uncertainties of elevations determined by vertical-angle observations. 
They have blamed these mostly on refraction of the atmosphere, but have also come to suspect 
that part of these uncertainties is due to differences in deflections of the vertical at different survey 
points. Horizontal angle measurements over long lines in precise surveys are usually made at night 
when refraction is  at a minimum. The effects of uncertainties due to refractive effects are quite 
obvious with electromagnetic-wave distance-measuring methods in both the optical and radio 
portions of the spectrum. 

A study of the refractive effect on ranges obtained from use of electromagnetic waves i n  the 
radio spectrum is more necessary than one on ranges obtained from the use of light waves. In  the 
optical track ing of satell ites, the reflected light from the satellite and the l ight of the stars pass 
through the same atmospheric media of the earth .  The satellite's direction i n  space can be determined 
easily from the k nown positions of stars in its angular proximity. No range is measured. However, 
ia radio ranging on a satellite (as in the SECOR system), ranges, and not directions, are measured, 
and there are no known distances with which to compare directly the observed ranges. The radio 
waves are bent and their velocities are changed much more than the light waves, because refraction 
increases inversely with frequency. The corrections for humidity and t-emperature in terrestrial 
measurements of distances are on the order of 50 times as great for the radio as for the optical 
spectra. 

The electromagnetic waves used for terrestrial distance measurements pass only through the 
troposphere while those used for satellite geodesy also pass through the ionosphere. In satellite 
geodesy we have to consider the refractive effects of both the troposphere and the ionosphere. 

Tropospheric Refraction Corrections 

The refractive effect in the troposphere causes the electronically measured distances to be 
greater than if the measurements were made in a vacuum due to retardation and to bending of the 
path of the measuring wave. One can arrive at corrections for conditions of humidity, temperature, 
and barometric pressure, and then prove them by comparing electronically measured distances 
(radio ranges) over the same l ines measured with invar tapes, assuming that most of the errors 
from tape measurements (due to tension, temperature, crosswind, etc.) are practically eliminated . 
Or, they can be compared to Jong triangulation lines expanded from base l ines if the angular errors 
also can be eliminated. 

Neglecting the ionospheric refraction; Figure 1 shows schematically the effect of tropospheric 
refraction alone.  Actually, there is no further effect where the ray is outside of the troposphere. 

The measured radio range from ground station to satellite is 

Re = C T  ( 1 )  

where -r i s  the time of travel between the two points and c = the velocity of an electromagnetic 
wave in a vacuum. 

The index of refraction is 

c 11 = - (2) 
v 

where v is velocity of the electromagnetic wave in the atmosphere. j•R 
Re = 0 n d R (3) 
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F ig ur e  1 .  The t r o po s phe r ic r e f rac t i on c o ns ide r ing t h e  ionos phe r ic 
r e frac t io n  to b e  z e r o . 

The error caused by tropospheric refraction, neglecting all other errors, is J'R 
� R, = Re - R0 = 

0 
n d R - R0 

The two refractive effects can be seen if we write 

Then 

J•R (R /'R 
Re = n d R = ( l  + n - 1 )  d R = R + (n - 1 )  d R 

o • n • o 

f 
•R 

Re - R0 = R - R0 + (n - l )  d R 
• 0 

(4) 

(5) 

(6) 'R 
where R - Ro is the geometrical effect of ray curvature and / (n - l )  d R is the retardation 

. 0 
effect of decreased velocity. 

Several authors, includ ing Bean and Thayer [ 1 ] , show the curvature effect to be negl igible 
above � 60. No ranges are measured at elevations, less than 50. The retardation effect must be 
taken into account. This amounts approximately to 20 meters at 60 e levat ion and 2 meters at 900. 

Two formulae are used in reduction of SECOR data to find the corrections for t ropospheric 
refraction. The first is the one suggested by the Cubic Corporat ion [2] and i s  

Ti ( l  _ e - ZITa) 
� R = -----

(T2 cos �0) + s in � 
(7) 

\ 



where Ti  is t he refract ive correction i n  meters at 900 elevat ion 
T2 is the horizontal -scal ing correct ion = 0.0236 
T3 is  a constant (scale height) = 7,000 meters 
f:l 11 is t he elevat ion angle 
Z is the height of the satel l i te (meters) .  
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Since t he exponent ial  term is negl igible at satel l ite heights, we have a correction based on the 
eleva t ion . The Cubic formula  gives t he fol lowing val ues : 

�o 6. R (meters) �o il R (meters) 

oo I 1 4 .4 1 300 5. 1 9  
3 35 .62 45 3 .77  
5 24.4 1 60 3 .08 

1 0  1 3 .7 1 85 2. 7 1  
1 1 .45 1 2 . 1 6  
1 5  9.64 90 2 .70 = T i  

The other, more soph isticated, tropospheric model takes into account  the changes i n  temperature, 
humid i ty, pressure,  and geographic locat ion . 
I t  is 

J 0 - 6  Ns . 
6. R = ____ q 

C s in  �n (8) 

where N5 is the surface refract ivi ty which is a funct ion of temperature, pressure, and content of 
water vapor at t he surface 

C is  a parameter varying w i t h  locat ion and seasonal and other factors 
':J" is a correct ion factor used when the elevation is below I oo, but is considered u n ity above I oo . 

l t  is a function or C, range, and �o-
Usi ng the present val ues of T i ,  T2, and T3 of equation (7), t here is very l i t t le difference between 

form u lae ( 7 )  and (8) in the South Pacific area. l n  desert areas or in extremely h umid areas, neglect ing 
atmospheric condit ions may resu l t  in errors at low elevat ions amount i ng to as much as 2 .5 meters 
for 1 00 .  

Wet- and dry-bu lb temperat ures and pressure are measured a t  each stat ion before each sate l l i te  
track .  The surface refract i vity is compu ted from 

where P is total pressure in mi l l ibars 

7 7 . 6 ( e )  N5 --..,.- T P I 4,8 1 0  T 

e is par t ial pressure in mi l l ibars of water vapor 
T is  absolute temperature. 

(9) 

�o can be calcu lated to sufficient accuracy for u ncorrected ranges. Without sounding measure
ments in the atmosphere at a part icu lar locat ion, C can only be approx imated and may resu l t  in 
error in 6. R. 

Ionospheric Refraction Corrections 

The major refract ion occurs in the ionosphere. I t  varies accord i ng to  t he ion izat ion effect 
of sunl ight on the atmosphere and, t herefore, varies with t i me of day, with season of the year, 
with lat i t ude, and wi t h  sunspot act ivity. Dr . Friedrich Rohde fou nd the max i m u m  ionization to 
occur at 1 4,0 hours and t he m in imum between one and two hours before sunrise (see Figure 2).  

I n  order to determ ine the effect at the i nstant of range measurements with the SECOR system, 
the highest one of four modulating frequencies is ret urned from the satel l ite to t he ground stations 
on carrier frequencies of 449 and 224.5 megacycles per second. Al l  modulat ing frequencies are 
sent on a 420.9-megacycle carrier from ground station to satel l i te, and returned on 449 megacycles. 
T h is gives the val ue 

( I  0) 
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where f 1 = 420.9 megacycles per second 
fz = 449 megacycles per second 
/3 = 224.5 megacycles per second, which permits calculation of range correction tl. R1 = 

= K (D1 - I C) where I C  is the range component of the highest modulating frequency on the 
224.5- megacycle carrier. 

M I DN I GHT 

SUNR ISE 

4 
\ 

8 
I 

NOON 

�14 

I 20 \ 1 6 

SUNSET 

Figure 2 .  E l ectron density profile  around the earth, 

SUNRAYS 

---

D1 is the range component of the highest modulating frequency on the 449-megacycle carrier. 
Interference on the low-frequency carrier had made it impossible sometimes to get a range 

measurement on that frequency. Using samples of ionospheric refraction data measured during 
operations in the Pacific Ocean area, an analytical model was developed. This gives an educated 
guess at the ionospheric correction. The formula is 

when 

40 . 3 
tl. R = -- S (<l>) F (X, R*) 

f 2 . 

H = scale height Zs = satellite height 

[ (Zs - Zm) (Zm) ] H tan - 1  
H 

+ tan- 1 
H 

1 
cos2 £ ( Zm)2 

1 + p 

Zm = height of maximum electron density 
P = mean radius of the earth 
E = elevation angle of the satellite relative to the horizontal tangent plane 

S (<l>) = function of the earth's magnetic field 
<I> = effective magnetic latitude 

( 1 1 )  



• 

f = frequency in megacycles per second 
F(X, R*)= sun zenith angle function 

X = the effective sun zenith angle 
R* · function of satellite height 

2()<) 

All facfors except S(<l>) can be found and put into the program. S(<I>) is a function of three unknown 
coefficients . 

S(<I>) = Ct <l>O + C2<l>l + C3<l>2 where <I> is effective magnetic latitude. These parameters are 
obtained by fitting this linear function to the measured data and to the rest of the model. After the 
parameters are obtained, they are inserted in the model which can be used to predict measured 
values in cases where the particular coefficients apply. 

When measured ionospheric correction data are not available from all stations, coefficients 
are fitted to available data. The model is physically significant ; therefore, the parameters are con
strained and are significant when applied to stations without data. 
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Addendum 

This addendum is provided in response to �umerous requests for information dealing with 
scale height. 

The scale height is a parameter that arises in the ionospheric model. It has the effect of changing 
height units into units of scale height. It is similar to the scale height that arises from the vertical 
distribution of density or pressure in the atmosphere, ( h - h0 ) 

scale height 
P = Po e 

14 
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where 

p = density or pressure 

h = height 

o indicates a reference level. 

1 
Note that when the height difference is equal to the scale height, p has decreased to - of its . e 

reference value. Thus scale height represents a thickness of the atmosphere over which p changes 
a certain amount. 

I n  our case the scale-height term originates as a parameter in an empirical model of the electron 
density of the ionosphere. It represents 1 /2 the effective thickness of the ionosphere. More precisely, 
it sets the upper and lower effective bounds at which the electron density has decreased to 1 /2 its 
maximum value. 

The empirical formula for the vertical distribution of electron density that we use is 

where 
N max = maximum electron density 

Z = height 
Zm = height of Nmax 

H = scale height. 
When Z is H units above or below the maximum level, N (Z) is 1 /2 its maximum value. 
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Part II 

Refraction Effect on the Determination of Directions 

A.  Use of Relationships Between Different Effects 

of Refractive Index 

The Calculation of Refraction Angles by Means of the Refractive 
Index and of the Radii of the Curvature of the Refractional Curve. 

by C. Sc. Ing. Pelikan M., Praha 

1 .  Introduction 

The basic member being introduced into the calculation is the refraction coefficient k or any 
other member aggregately representing the atmospheric properties of the environment in which 
the measurements are being carried out. The complicated form of the spatial refraction curve is, 
as a rule, replaced by a simpler plane curve, the equation of which enables an easier numerical 
assessment of the refraction angle. For the numerical ass_essment of the values of the refraction 
angles the meteorological values in the end points of the line of sight are usually known. 

Also in this consideration, we start, solving the problems of the vertical refraction, from the 
following basic assumptions, the definitions or formulation of which is to a certain degree abandoning 
the conventional procedure, trying at the same time to apply the results obtained in the latest 
theoretical as well as empirical research work. Moreover it regards the possibilities of utilizing 
more perfect technical means and methods applicable for measurements. 

2. A new procedure in calculating the refraction angles 

For the numerical assessment of refraction angles are in practical measurements up to now 
primarily used the refraction coefficient k summarily expressing the meteorological values of the 
atmosphere according to the line of sight. The calculation of the refraction coefficient k and the 
numerical assessment of the values of the refraction angles performed in such a way, we can, for 
instance find, in its whole range in the theory of Jordan-Eggert in the publication / 1 /. 
2. 1 The refractive index of air as the basic element of the calculation 

The explosive development of electronic measuring methods involves also the necessity of 
expressing as perfectly as pos_sible the refractive properties of the environment for determining the 
physical reduction. After long years of verification were by the sessions of the UGGI and IAG 
approved resolutions which recommend the application of certain formulae for assessing the 
refractive index for diverse geodetic surveying. From these recommended formulae we can make 
use for the calculation of the refraction angles of Sears-Barrell's formula derived for monochro
matic unmodulated light in the form of 

273 p 273 
n1,p - 1 = (n - 1) - . - - - . 5,5 e .  10- s , 

T 760 T 
( 1 )  
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where 
n - 1 = (2876,04 + 1 6,288 1.-2 + 0, 1 36 ).- 4) .  10- 1 . 

In these equations represents p the air pressure in Torr, T the air temperature in OK, e the air 
humidity in Torr and J. the wave length of visible light in µ. For the mean value of the wave length 
J. = 0,55µ and with regards to the imperfect monochromatics of light we can after the calculation 
mentioned in the publication /2/ arrange the formula ( 1 )  to the form of 

105,62 p - 1 5,02 e 
(n1 ,P - 1 )  . 106 = 

T 
(2) 

By nieans of the optical refractive index nt,p• expressing at present according to the adopted 
conclusions by the sessions of UGGI and IAG the most perfect condition of the environment 
and its refractive properties, we are going to try now to express the refraction angle. 
2.2 The derivation of the formulae for the calculation of refraction angles 

The derivation of formulae for the calculation of refraction angles by means of the refractive 
index n is based on the following assumptions : 

The curvature of the refraction curve s is from a certain altitude in the environment of the earth 
atmosphere incessantly, combinably diminishing and is, with the increasing distance from the earth, 
converging to zero. The curve of such a quality can be replaced in a limited interval by the simple 
equation curve which . would be meeting the mentioned _conditions, i. e. for instance tbe hyperbola 
in the simple form of 

y2 = A x2 + iJ x . (3) 

The coordinate system for the equation (3) has been selected in such a way, that the tangent of 
the curve s in the point 1 is the coordinate axis y (Fig. 1 .) .  
Let's assume that we know the radii of  the curvature of  the curve s in  the point 1 (p 1 )  and in the 
point 2 (p2). The oblique distance D' as well the horizontal distance D is known too. The radii 
of the curvature in the points 1 and 2 we can calculate according to the law of the geometrical 
optics defining the radius of the curvature in' dependence upon the refractive index n, upon the 
m. s. I .  h and upon the zenith distance z in the differential form of 

n 
p = - --

d n  . 
- . sm z  
d h  

(4) 

Antidpating we know in the points 1 and 2 the m. s. 1 .  h1 and h1, the zenith distance z, the mete
orological value and thus also the refractive index n1 and n2, we can define then the course n = f(h) 

between the points 1 and 2 by any equation with two parameters a, b, which we eliminate by cal
culating from two equations n = f(h) written for the points 1 and 2 . 

. Assuming a linear dependence n = ah + b, we should obtain dn/dh constant and thus also p =constant. 
The refraction curve would be the circular line which is merely a special case of the refractional 
influences and we are not going to employ it furthermore. The dependence n = f(h) in the standard 
atmosphere (Fig. 2) implies that this dependence could, in a certain final interval h, be defined 
for instance by the equation 

n - l = b . ea h . (5a) 

By means of the equations (4) and (5 a) we are thus able to define the radii P1 and p2 of the curve s 
in the points 1 and 2 

P t = 
sin z1 

P2 = 
sin z2 

• 
ni  - 1 

(n2 - l ) l n -

n2 - 1 
(4a) 

In the further solution we eliminate by means of the equations of the curvature radii written for 
the curve (3) in the points 1 and 2 the parameters A , B  of the curve (3) and after some arrangements 
and slight simplification (see /2/) we obtain the general formulae for the refraction angles �1 and �2· 



ni  - 1 � t = 
1 + t g z . t g r.p/ 2 

n2 - 1 
�2 = 

l + t g z . t g r.p/2 

n 1 - 1 
l n ---

n2( - 1 ) . t g z , 

1 + 
ni - 1 l/3 

. 
n2 - 1 

ni  - 1 
l n ---

n2( - 1 ) . t g z 

1 + 
n2 - 1 1/3 

ni - 1 
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(6a) 

(6b) 

The forms of the equations imply that it is possible l.o calculate the refraction angles only for the 

finite value D' = i2 due to the fact that in the infinite n2 - 1 = 0 and the expressions in the frac
tions of the equations (6) are becoming thus for this case undefinable. 

In the numerical assessment of the refraction angles, while calculating the terrestrical refraction, 
it is possible to attain a substantial simplification as in the zenith distance z · 900 and in the equation 
it is possible without minimizing its accuracy to insert also sin z -�- 1 .  The same is valid for the 
refractive index n · 1 .  By these simplification and assuming moreover the displacement of the 
refraction curve s in the points 1 and 2 by means of the osculating circular l ines K1 and K2 of 
the radii p 1  and p2 (see /3/), we are to obtain for the refraction angles in calculating the terrestrical 
refraction very simple relationships 

D (d n) �1 = 2 d h 1
' (7a, 7b) 

If we work out dn/dh from the equation (5 a) eliminating the constants a, b and inserting them 
into the equation (7 a,b), we are to obtain for the refraction angles in the point 1 the formula 

and in point 2 

D ni  - 1 �I  = -- (n 1 - 1 )  I n  --
2 � h n2 - 1 

D n i  - 1 
�2 = -- . (n2 - 1 )  I n  . 2 � h n2 - 1 

(8a) 

(8b) 

If we should, instead of the exponential dependence (5a) assume a similar dependence for in-
stance 

b 
n - 1 = -

a + h ' (5b) 

we should obtain the formula for calculating the refraction angles without the function of the 
natural logarithmus 

D n 1 - 1 � t = -- . (n1 - n2) , 2 � h n2 - 1 

D n2 - 1  
�2 = -- . (n 1 - n2) --

2 � h ni - 1 

(9a) 

(9b) 

Comparative calculation described in the next chapter proved that the formulae (8 a, b) and 
(9 a, b) yield in the field of the terrestrial refraction virtually the same results. The difference of 
the refraction angles �1 - �2 worked out from the equations (9 a, b) is slightly larger than the 
same difference of the refraction angles derived from the equations (8 a, b ). 

The values of the optical refractive index n in all equations (6 a,b), (8 a,b) or (9 a,b) we work 
out from the equation (2). 
2.3 Comparative calculations 

The newly worked out formulae (8 a, b) and (9 a, b) for the calculation of the refraction angles 
in the terrestrical refraction have been verified by the comparative calculation on larger sets 
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o f  measurements performed by foreign authors as well as on a specially selected set o f  measurements 
performed by· the author of this paper. By comparative calculations were judged the mean values m 
pertaining to the difference of the refraction angles which had been measured as well as calculated. 
The results of the comparative calculations are listed in the tables 1 .  to 4. (The values of the various 
refraction angles measured and calculated at various times of the day are quoted in full detail in /3/ .) 

In the tables 1 ,  2, 3 the calculations derived from Jordan-Eggert's formula and from the 
newly worked out formula (8 a, b) are compared. In column A are l isted the mean values mJ- E of 
the d ifferences of the refraction angles measured and calculated according to / 1 /. In column B then 
are listed similar values m(S) worked out by means of the formulae (8 a, b). In table 1 you can find 
the calculation applied for the set of measurements published by Bauernfeind /4/, in table 2 for 
the set of measurements published by Levallois-de 'Masson /5/ and finally in table 3 for the set 
of measurements performed by the author h imself over a densely built up area /3/. The table 4 
comprises a comparative calculation worked out from the formulae Leval lois-de Masson /5/ 
(column A) and from the formulae (8 a, b) (column B). The calculat ion is being applied for the 
set of measurements published in /5/ during the period from 28th till 30th June 1 950 and further 
similar values applied for measurements also in /5/ performed during the period from 20th till 27th 
June 1 950 which were not worked out in the quoted publ ication. 

Line of sight 

Hohensteig - lrschenberg 
lrschenberg - Hohensteig 
Hohensteig - Kampenwand 
Kampenwand - Hohensteig 
Irschenberg - Kampenwand 
Kampenwand - Irschenberg 

Line of sight 

Goult - Luberon 
Luberon - Goult 
Goult - Oppede 
Oppede - Goult 

Line of sight 

Strahov - Vidoule 
Vidoule - Strahov 

Line of sight 

Goult - Luberon 
Luberon - Goult 
Goult - Oppede 
Oppede - Goult 
Goult - Murs 
Murs - Goult 

I 

I 

I 

Table 1 
I I  i m J-E 
1 2, 1  
9,3 

1 3,2 
3,3 

1 1 ,6 
6,6 

Table 2 
I I  I m J-E 
20,3 
26, 1 
1 2,4 
1 6,9 

Table 3 

5,2 
6, 1 

Table 4 

I I  m (8)  
1 1 ,0 
8,8 

1 0, 1  
3,0 
6,7 
5,7 

m(s) 
1 5,8 
25,0 
1 0,2 
1 6,8  

3,9 
5,8 

I Distance I Diff. in  level 

1 7,238,46 m 269,63 m 

20,445,80 m 1 ,08 1 ,97 m 

34,038,22 m 8 1 2,34 m 

I Distance I Diff. in level 

1 9,065,4 m 865,57 m 

8, 1 38,3 m 454,84 m 

Distance Diff. in level 

3,047,56 m 39,845 m 

28 th - 30 th June 1 950 I 20 th - 27 th June 
m" 1s1 A I m"<s> B m"1s 1 A m" (s) B 

7,5 1 9,5 28,0 20,0 
1 5,4 24,0 4 1 , 3 2 1 ,0 
3,2 1 0,4 1 6,4 8,4 

1 6,6 1 7,2 30,8 20,4 
5,0 2 1 ,8 1 7,9 1 6,5 

5 1 ,2 64,4 49,8 44,0 

An analysis of the results listed in the tables 1 - 4 proves that the newly worked out formula 
(8 a, b) furnishes as a whole better results than those derived from Jordan-Eggert's formula. I n  
comparing i t  with the formula o f  Levallois-de Masson the formula ( 8  a, b) proved t o  be more 
suitable during the period from June 20th till June 27th 1 950 when the temperature with regards to the 
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data relating to wind strength in /5/ was by far more mixed than during the period from June 28th 
till June 30th 1 950. In the latter time period from June 28th t ill 30th, 1 950, when in the forenoon 
hours occured temperature inversions quite to midday Levallois-de Masson's formula is giving 
markedly better results. 

I t  was not the aim of this comparison to bring about the preference of a certain formula over 
another since there may always occur a certain set of measurements in which the proved preference 
of certain formula is to be overshadowed by another formula. The main aim of the comparison 
performed was to prove that the formula (8 a, b) comprising the refractive index derived from the 
formulae recommended by the UGGI and IAG, is in the quoted sets of measurements in the entire 
range discernibly better matching the refractive properties of milieu, than the formula comprising 
the refractive coefficient determined according to Jordan-Eggert. 
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2.4 Particular cases in calculating refraction angles 
The history of trying to express in a more accurate way the refractive effects shows that not 

even rather ingeniously compiled symplifying assumptions concerned with the atmospheric conditions 
or any suitably selected approximations of the refraction curve cannot possibly in greater distances 
or in greater d ifferences in level of the line of sight fully satisfy the complexity of atmospheric 
influences of the milieu. Provided we make an effort in order to obtain the most accurate calculation 
of the refraction angles there seem to be all in all the best means for reaching this aim today if we 
gain meteorological values in several points of the line of sight. It goes without saying that for 
the calculation of the refraction angles the most significant value is the air temperature, the attain
ment of which by means thermistores in loose or fixed meteorological sounds does not cause any 
difficulties whatever. If we try to evaluate now, how this possibility of knowing meteorological 
values in several points of the line of sight, would manifest itself in the formulation of the formulae 
derived in the last chapter. Let's assume for the sake of simplicity that in addition to the meteoro
logical values in the end points 1 and 2 we should also be familiar with the meteorological values 
in the centre of the line of sight S thus also with the refractive index ns. Since we know now for 
the course n = f(h) three conditions, we can analogically choose according to the equations (5 a, b) 
the dependence with three parameters for instance 

n - 1  = -----

a h2 + b h + c 

After eliminating the parameters a, b, c from the equations (5 c) written for the points 1 , 2, S  and 
after inserting dn/dh into the equations (7 a, b), we obtain for the refraction angles in the point 1 

the formula 

and in point 2 

�1 = -- (n 1 - 1 )  4 - - 3 
D ( n 1  - I n 1  - 1 ) 

2 � h ns - 1 n2 - 1 

�2 = -- (n2 - 1 )  3 + - 4 . 
D ( nz - 1 n2 - 1 ) 

2 � h n 1 - 1 ns  - 1 

( lOa) 

( lOb) 

By means of a simple numerical example we may verify how the knowledge of the meteorological 
values in the ,centre of the l ine of sight can affect the calculation. If we take e. g. the first line of 
sight from the series of measurements between the stations of Hohensteig-Irschenberg /3/ we are 
to obtain refraction angles worked out from the formula (8 a ,  b), i .  e. merely from the values of 
the temperature in the end points �H = 64,4" and �1 = 62,2". If we should find out by measure
ments the temperature in  the centre of the l ine of sight S to be by 0, 1 50 C lower than the average 
temperature determined from the end points and should take then the barometric pressure with 
the humidity into the calculation as the mean value from the end points, we obtain by the calculation 
from the formulae ( 10  a, b) the refraction angles �H = 60,8" and �1 = 66,0" .  

We can see that the formulae ( 10  a ,  b)  are correcting at a slight change of  temperature the values 
of angles rather markedly and that it is possible to determine in such a way on the lower station H 
the lower value of the refract ion angle than on the higher station I. This result can correspond 
with reality, since for instance on lower stations were actually rr:easured on all lines of sight quoted 
in the sets of measurements in /4/ as well as in /5/ during the afternoon hours, values of refraction 
angles which were smaller than those on higher stations. 

The increasing number of members in the equations ( 10  a,b) implies, that while calculating 
the refraction angles, providing we know the meteorological values in several points, the formula 
would become relatively complicated. For such cases a formula was worked out in /2/ expressing 
the resulting refraction angles as the function of .the sum of various refraction angles calculated for 
the parts of the line of sight between the points in which the meteorological values had been known . 
If we know these values in the points 0, 1 ,  2, 3, . . .  , k , being in the same distance from each other, 
we can read off the resulting refraction angle according to /2/ from the relationship (see Fig. 3) 

k · �o + (k - 1 )  �01 + (k - 1 )  � I  + (k - 2) � 1 '  + · · · · + �' k - 2 + �k - I 
� 0 - k = - ( 1 1 )  

k 
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We calculate the angles !J.0, !J.'0, /J. 1 ,  . . .  , !J.k -2, !J.k-1 for the different sections from the simple 
equations (8 a, b) and (9 a, b) respectively , in which we determine again the values of the refractive 
index from the formula (2). (Note : the coefficients k, k - 1 ,  k - 2, . . .  are not inserted as the weights 
of the various angles, but are resulting from the simple calculation of the geometrical dependences 
between the various angles /J.; . See /2/2/.) In case the distance of the points with the known mete
orological values is not the same one, it is possible to calculate according to /2/ the refraction angles 
from the formula derived again from the geometrical dependence one trio of points 

( 1 2a) 

(1 2b) 

The values for the different symbols are being demonstrated in Fig. 4. 
The angles /J.0- 1 ,  /J.1 -0, /J. 1 - 2 then we work out from the formulae (8 a, b) or (9 a, b). The calulation 
of the refraction angles from the formulae ( 1 1 )  or ( 1 2  a, b) is very recommendable for those cases 
in which the l ine of sight is based over a very unhomogeneous new wood terrain at a terrestrical 
refraction, or while calculating the satellite refraction when the object observed is at a height 
H < 50 k m·, i. e .  in  the region of the atmosphere where the greatest deviations from the standard 
course are to be expected. 
3 .  A note relating to the calculation of the satellite refraction 

Analogically as with calculating the satellite refraction, that term is holding top pos1t10n 
which comprises the meteorological data gathered on the observation site. These data determine to 
the largest extent the values of the astronomical and to a considerable extent also those of the 
satellite refraction. I t  would be only correct, if in such cases these basic elements of calculation 
having in the hitherto quoted formulae very differing values, should be replaced by the refractive 
index derived from the formula recommended by the UGGI and IACr. Provided this formula 
comports most satisfactorily with the refractive effects of the atmosphere, i t  would first all conribute 
to the greater accuracy of the calculation and secondly enable a more correct comparison of the 
calculation attained under different theoretical assumptions regarding the form and changes of 
the refraction curve or providing other convergent series and the like. 

The significance of the calculation of the satellite refraction is, due to the successful appli
cability of the optical observation of satellites, getting into the foreground of attention. It is obvious 
that the importance of the accuracy of the calculat ion of the satellite refraction is to i ncrease 
simultaneously with the improvement of photo-registering devices and the l ike. In context with 
these increasing claims we have to pay due attention to calculating methods being partly of 
different character than those applied for the astronomical refraction in  which only those meteor
ological elements prevailing at the observation site figure as the influence of the environment, 
whereas other factors perhaps even anomalous atmospheric conditions are without any influence on 
the calculation of astronomical refraction. I t  is essential to find out how such atmospheric ano
malies affect the calculation of the satellite refraction when the object observed is in a finite distance 
from the observation site. The majority of formulae (Dufour, Baldini and others) anticipate between 
the observation site and the object observed a standard course in the atmosphere, or there is, i n  
derivating form1 1 la a certain defined model o f  the atmosphere. 

For this ascertainment a formula was derived in /6/ for the calculation of the satellite refraction 
coupled with such a condition that the meteorological elements were to be known even in any 
further arbitrary point of the line of sight (in addition to the observation site) enabling thus the 
correction of the calculat ion by these values, that is to say, not anticipating for instance, the stan
dard state of the atmosphere. The formula for the calculation of the satellite refraction has been 
worked out in /6/ under the following anticipations : 

1 .  The object of observation M i s  at the height H ) 50 km (see Fig. 5). 
2. The refraction curve is given by th.e equation 

y = a x4 + b x3 + c x2 + d x ( 1 3) 
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3 .  From the height of 50 k m  on can the refraction curve be replaced by the tangent (in Fig. 5 

point 2). 

4. We are familiar with the meteorological data in point 1 and even in point P, at the best in the 
lower layers of the atmosphere. 
From these data we work out first the refractive index n1 and np according to (2) and by means 

of the equation (4a) we determine then the radius of the curvature P t · From the condition, that 
the curve ( 1 3) is passing through point l (0,0) through point 2 (S, O) and from the condit ion that 
the curvature is zero in point 2 and moreover from the known radius P t  then the equation for the 
calculation of the satellite refraction was derived in the form of 

ti = ti ( 1 - �)  + 52 . 00 2 D  1 2 D p 1 
( J  4) 

The values ti, S, D are being demonstrated in Fig. 5. The angle !:i oo  represents the angle of the 
astronomical refraction in point 1 under the zenith distance z. I f  we replace the real meteorolog
ical values in point P by the values of the standard atinosphere defined for instance in /7 /, the 
formula ( 1 4) takes the form 

1:1 = /:1 1 - - + (n 1 - 1 )  . 
( S ) 0,0080 I . s2 . s in z 

00 
2 D  D 

( 1 5) 

In order to find out how in the calculat ion of the satellite refraction the d ifference of the real 
and the standard atmosphere is to manifest itself, were selected l ines of sight on objects under the 
zenith d istances 300 , 450, 600 and 850 for targets being at a distance from the earth station from 300 km 
up to 1 0,000 km, i .  e .  for targets at the heights ranging from 200 up to 5,000 km. For comparing 
the absolute values of the calculated quantit ies the calculation of the satellite refraction according 
to Dufour's formula quoted in /8/ was added . The results of the calculat ion are listed in Table 5 .  

In l ine A are l isted the values derived from the equation ( 1 5), i .  e .  for the conditions prevailing 
in the standard atmosphere. In  l ine B then, are the refraction angles of the atmosphere, in which 
the temperature at the height of 3 km was differing by - 50 C from the standard course, i. e. a cal
culation according to the formula ( 1 4) .  In l ine C there is a calculation according to Dufour's formula. 
Finally in the last l ine D is, for the varying zenith distances worked out the astronomical refraction, 
which is also applied for the calcu lat ions in the formulae ( 1 4) and ( 1 5) .  This astronomical refraction 
is calculated according to L. Oterma's formula /9/, in which the basic value (n - 1 )  i s  determined 
from formula (2). 

Note : The calculation of the refraction angles providing a temperature difference of - 50 C was 
regarded as a really measured ea e quoted in  /7/. 

Table 5 

Zenith I I ' I distance 300 450 I 600 850 
-- --

Dkm ; 300 1 ,000 
' 

300 1 ,000 I 300 1 ,000 1 0,000 I 1 ,000 1 0,000 
I I 

A 32,4 1 32,76 55,78 56,67 1 95,52 97,79 98,50 I 583,46 597,24 

B 32,23 32,70 55,40 56,56 94, 6 1  97,50 98,47 I 572,6 1 596, 1 5  

c 3 1 ,88 32,63 54,76 56,33  92,98 96,84 98,34 I 553,8 1 592,82 

D 32,93 57,04 98,58 598,77 

On the ground of these calculation can be drawn the followi ng partial conclusions : 
1 .  If we want to reckon the refract ion angles with accuracy of ± 1 "  (0, 1 "),  it is necessary to take 

into account for the calculation the real atmospheric conditions approximately from the zenith 
distance z ) 500 (z ) 300) .  

2 .  If we want to reckon out the refraction angles with an accuracy of less than ± 0,5" , i t  is not 
necessary for the zenith distance z )  800 to take into account the real atmospheric condi tions provided 
the object observed at the height h < 1 ,000 km.  

3 .  By comparing the astronomical and satellite refraction i t  becomes evident, that by the l ines of  
sight of objects being at  greater heights than h = 5,000 km i t  i s  possible to replace the calculation 
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o f  the satell ite refraction by that o f  the astronomical refraction, provided i t  i s  z < 850 and if  i t  is 
sufficient to work out the refraction angle with an accuracy of ± 1 " .  

I t  i s  needless t o  elaborate the analysis o f  the results in  the table any further since the accuracy 
of the photoregistrated position of the satell ites is, for the t ime being, lower than the accuracy 
enabled by the calculation according to formula ( 14). The technical character of the photoregi
stration of the position impl ies, however, that it will be already possible within a short t ime to 
make some practical use of the accuracy resulting from formula ( 14). 
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A Mathematical Model for Temperatures in the Lower Atmosphere , 
and its Application in Refraction Calculations 

by P. V. Angus-Leppan, Kensington 

Abstract 

By making use of long-term observations of temperature at various heights in  the lowest 1 00 m 
of the atmosphere, a mathematical model can be derived for the temperature gradient as a function 
of height and time of day : 

- c  z - c  z 

G (z, t )  = g0 + c 1  e 2 + c3 e 
4 

sin (t + c5  + c6 z) + c7 sin (2 t + cs) 
This represents the observat ions, with a standard deviat ion between model and observat ions 

amounting to less than 4 % of the total variation in G. Different values of the ten parameters g0 , 
the c' s are obtained for each month, for each station, but the seasonal variat ion is fairly regular, 
and corresponding parameters are of sim ilar magnitudes for all stations except one where the circ
umstances of observation are exceptional . 

The coefficient of refract ion calculated from this formula, using the appropriate parameters, 
shows how large the expected refraction is under field conditions, and the large diurnal variation. 
As an example, in South East England, in Apri l, on a 20,000 foot l ine 25 feet above the surface, 
refraction varies from - 1 .55  (early afternoon) to 7 .33 feet (after midnight). Desert condit ions 
give refraction corrections which are not as different as expected. 

Temperature differences also cause considerable errors on l ines where the distance is measured 
electronically. 

Introduction 
For visible wavelengths of the spectrum, temperature is the chief cause of variat ions in  re

fractive index, wh ich in t urn cause variations i n  the velocity and direction of l ight waves passing 
through the atmosphere. A first approach in deal ing with th is problem is to assume that the refractive 
index is constant in the horizontal direction and that there is a constant rate of change in the vertical 
direction. The assumption of constant gradient of temperature (or refractive index) is implied when 
in trigonometric levelling we adopt a coefficient of refract ion, or in electronic distance measurements 
we take the me�.n of temperatures at the ends of a l ine to represent the average over its length .  
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Greater pr_ecision can be sought by measuring the temperature gradient directly, but this is 
an observation requiring high precision and it is difficult to obtain sufficiently representative values. 
Or the refraction effect can be deduced by making the measurement with two different wavelengths. 
Again this is an operation requiring very sophisticated apparatus. 

Between the very simple model of constant gradient of temperature, and the more elaborate 
measurement of the actual conditions, there is another approach possible, namely to refine the model 
so that it approximates more closely to the actual conditions. The present paper is the result of 
an investigation which followed this approach. 

Such a model can take into account the major causes of variation in the temperature gradient, 
giving the average values for the conditions of observation. The gradient is a complex phenomenon 
affected by a large number of factors working directly, indirectly and in cross-combinations. Height 
above ground, time of day, season, the various factors of climate and weather, vegetation cover 
and the surface material, colour and texture all affect the gradient. However by sorting out the most 
significant causes of variation it is possible to devise a comparatively simple model representing 
average conditions. In the present instance the temperature gradient is determined as a function 
of time of day and height above surface. A separate set of constants is calculated to fit the obser
vations at the station for each month of the year, thus taking into account the season. Comparison 
of results at different stations illustrates the effects of climate, and some generalisation is possible. 
The limited observations available for clear and overcast days in summer and winter months are 
analysed to indicate in a gross manner, the effects of weather. Even though the model can reflect 
only major factors, and not the vagaries of the weather, the particular site and the time of obser
vation, it is worth having such a model even if it is only used as a standard against which to measure 
the peculiarities. If it is in error there is always a possibility of refining and improving the model, 
and it may even be found that a simple measurement will give an indication of the divergence 
between the standard and the actual conditions, thus enabling corrections to be calculated at dif
ferent points in the model. The detailed analysis and the expression in mathematical terms of the 
variation of temperature gradient, give a clearer understanding of this phenomenon. 

Analysis: Form of Function 

Basic data are from those meteorological stations where continuous temperature observations 
have been made over a period of at least one year at various heights above the surface (generally 
on towers). Eight such stations are listed in "The Climate near the Ground" ( 1 )  and the results 
from five are suitable for analysis. The geographical distribution is limited, most stations being in 
England or Germany, but there is one in the desert at Ismailia, Egypt. Further details are given 
in Table n: The analysis is restricted to the lowest 100 metres of the atmosphere, and it is in this 
layer that the largest fluctuations and most rapid changes occur. To minimise the random day to 
day variations, mean values for one month, taken at each height and each hour of the day, were 
used in the analysis. 

It has previously been shown that the diurnal temperature variation at a particular level is 
well represented by the first two terms of a Fourier series. (2, 3). This time variation is designated/(t). 
The amplitude of the daily variation is largest at the ground and decreases to a small amount at 
high altitudes. This .  variation with heights is B (z). The average temperature at any height, about 
which the daily fluctuations occur, is also variable with height and 1s _given by the function A (z). 

We have .then that the temperature T is given in the form 

T = A {z) + B(z) f(t) ( 1 )  

In trigonometric levelling i t  i s  the temperature gradient, not the temperature, which i s  required. 
Similarly in electronic distance measurement a method of interpolating temperatures is necessary, 
so that the gradient is of more use. The gradient appears to be a better behaved quantity, and it 
is slightly simpler to determine. Thus the analysis deals with temperature gradients. Curves for 
these show characteristics almost identical to those of temperature. This suggests immediately an 
exponential form for A (z) and B(z). However a number of different functions were tried. All except 
two, the exponential and a form containing a fractional power of the height, were rejected as 
unsuitable after testing. The remaining forms were fully tested : 



A (z) = g0 + c1 z-c2 

A (z) = g0 + c1 e- c,z 

B (z) = c3 z- c, 

B (z) = c1 0 + c3 z-c, 

B ( z) = c 3 e - c, z 

B (z) = C 1 0 + -c3 z-c, 

The basic form of the temperature gradient function is, as for temperature : 

dT 
- = G (z, t )  = A  (z) + B (z)f(t)  
d z  

= A (z) + B (z) sin (t + c5 + c6 z) + c7 sin (2 t + c8) 
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(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

..vhere T represents the temperature, t the time of day ( 1  hour = 1 50) and z the height above the 
surface. 

Analysis: Leas{ Square Calculations 

A set of nine or ten constants was determined for each station by least squares, for each month 
of the year and for the different functional forms A (z) and B(z). Since there are observations for 
each hour of the day at each of three or four heights, there are either 72 or 96 observations to deter
mine the unknowns. The results show that the addition of the constant c10 does not improve the 
accuracy. It is not clear whether the exponential or the power form is the most suitable and further 
investigations, covering a greater height range, will be necessary to give a conclusive answer. How
ever the exponential form provides slightly more favourable results for A (z) (Equation 3) and 
markedly more favourable results for B(z) (Equation 6). For large z G (z, t) tends to a constant 
value g0 . In nature the gradient settles to a constant which is not subject to marked daily, annual 
or irregular changes, and which is known. The analysis showed that this known value of g0 could 
be inserte<!i as a fixed quantity in the solution, with no loss of accuracy. 

Results: Some Examples 
It is significant that the same functional form has been successful in all cases, covering the full  

cycle of seasons, and climates ranging from moist temperate to desert. The fit is imperfect, some 
of the differences between model and observations being systematic, though a proportion are due 
to irregularities in the observations which appear to be due to particular idiosyncrasies of weather 
and site. In some respects the model may be the better representative of the climate, because it 
smooths out these irregularities. 

Differences between the model and the observations, expressed as a standard deviation, average 
0. 70 C/1 00  m for all months, for four of the five stations. (AU gradients are expressed in degrees 
Centigrade per 1 00  metres.) The fifth station, Porton, is exceptional, the lowest measurements 
being made only 2.5 ems. �bove the surface. As a result the range of gradients is exceptionally 
large, from - 1000 C/ 1 00  m to + 3300 C/1 00  m. Under these conditions the irregularities are also 
large. In addition the analysis at Porton married observations for a higher ani! lower height range, 
taken in  different years. Expressed as a percentage of the average range of the gradients for all 
months, the standard deviations are always less than 6 % and in the case of Porton only 2.5 %, and 
as a percentage of the highest monthly range always less than 4 % and only 1 .6 % for Porton. 

Figures 1 and 2 illustrate the variation of the gradient in the lowest 80 metres for the station 
Rye, Sussex, England, for the month of April (4). The diurnal variation at the three heights is shown 
in Figure 1 .  Here the curves represent the model and the observations are shown by point symbols. 
Although the characteristics of such observed gradients have been discussed freque�tly, (5) and 
formulae fitted to particular characteristics it is believed that this is the first attempt at a comprehen
sive mathematical model. 

There is a wide range of values, from -6 to + 9o c;100 m, but the range is rapidly damped 
' 

with increasing height. The curves closely resemble sine waves, though in winter months the ampli-
tude decreases and the second harmonic becomes proportionately larger. 
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Figure 2 is an isometric project ion of the gradient as a function of height and time of day. 
It shows that the gradient close to the surface is always numerically highest, and decreases with 
height.  There is  a maximum positive gradient shortly after midnight.  As the sun begins to warm t he 
ground the gradient becomes constant (vertical graph) and soon the negative gradient i ndicates 
that the lowest layers are warmest . The negative gradient becomes more marked ·with t ime, reaching 
a minimum soon after noon. With afternoon cool ing the gradient returns to zero and at nightfal l 
begins to take up  positive values again. The cycle is completed with the maximum gradient occuring 
after midnigh t .  

General ly the fit between observed and calculated values i s  close, though errors, both random 
and systematic, can be distinguished. The standard deviation is ± 0.60 C/ 1 00 m and the errors are 
smal l in relation to the variations. 

As a further example the model for the gradient at Quickborn, Holstein, W. Germany is, for 
the month of February : 

G (z, t )  = - 0 .  2 + 1 . 7e- 0·067 z + ( 1 .  2 + 1 4 . 2e- 0 · 1 S z) 

[sin (t + 5 . 3 - . 060 z) + 0.52 sin (2 t - 8 .4)) 

with standard deviation ± 0.6 .  
For August i t  is : 

G (z, t) = 1 2 .3 e-0 · 1 9 z  + (2.5 + 24.6 e- O· J 4 z) 

[sin (t + 6 . 0 - . 042 z) + 0 . 06 sin (2 t + 6 . 8)) 

Standard deviation ± 1 .0 

Annual Variation 

When the results for all months at a station are compared there are some constants which 
show a fairly smooth and regular variation from month to month, but others are somewhat irregular. 
This is partly because of true irregularities, but partly because many of the constants determined 
are unstable - a considerable <:hange can be made in c1 and c2 for example and the accuracy will 
not be perceptibly changed. This flexibil ity can be used in constructing the generalised "Year Model" 
and investigations are now in progress. This model will contain approximately 20 constants and for 
i ts station wil l  represent the gradient as a function G (z, t, y) of height, t ime of day and time of year. 
There will be some loss of accuracy but it is unlikely to be great . 

Comparing values for all months shows some significant characteristics . The constant g0 i s  
small  and variations in  c1 and c2 can compensate for changes imposed on g0 • The quantity c1 deter
mining the starting point of A (z) is large in  winter, diminishing in summer and sometimes, as for 
Ismailia, dropping to negative values, while its damping coefficient is always close to 0. 1 .  Like g 0 
the quantity c 1 0 does not add any accuracy to the solution. Diurnal range constant c3 is max imum 
in spring and minimum in autumn. Its damping constant c4 has a similar variation. Phase angle c6 

does not vary greatly above and below 6 hours, being larger in  winter. The phase change factor C6 

is somewhat i rregular. The phase change with height is only l inear over a restricted height range. 
The amplitude of the second harmonic, as a proportion of the first is given by c7. This is a maximum 
of approximately 0.5 in winter, decreasing to 0. 1 in summer. Finally the phase constant cs is ap
proximately eight hours in winter, decreasing in summer and becoming somewhat indeterminate 
due to the small amplitude c7. 

Clear and Overcast Days 

The same functional form was used in  the analysis of clear and overcast days. Results for 
Rye are given in Table I (next page). 

In  interpreting the results it should be borne in  mind that the number of clear or overcast 
days is very l imited thus causing i nconsistencies i n  the results, and that the clear and overcast days 
are included in  the middle values for "all days". The most significant cfianges i llustrated are in 
the A (z) and B(z) sections. Increasing cloudiness causes c1 to decrease, with a tendency for the 
damping coefficient c2 to decrease too. A more marked change is the decrease i n  diurnal amplitude 
c3 with increasing cloudiness and a smaller decrease in c4. Quantities c5 to cs vary irregularly, 
indicating a distortion of the shape and phases of the diurnal curves. 
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Station 

Rye I 
I 
I l 

Rye 

I 
Station 

Rye 

Rye 

Table I 

Effect of cloud cover - Clear and Overcast days 

Month Weather 

June Clear 
days 

All days 

Overcast 
days 

Dec. Clear 
days 

All days 

Overcast 
days 

Month Weather 

June Clear 
days 

All days 

Overcast 
days 

Dec. Clear 
days 

All days 

Overcast 
days 

go C 1  Cz 

I 
0.4 I 6.3 0.060 

I 

-0.6 I 1 .3 0.022 
I 

-0.2 .1 - 3.7 0.032 

: I 
0 ! 28.0 I 0. 1 1 0 

I I 

0.2 I 7.4 0.057 

-2.0 6.3 0.050 

I 
C4 C5 c6 

·C 1 0 

2. 1 

1 .4 

0.0 

1 . 3 

0. 1 

0.0 

C7 

0.059 5.9 -0.026
1 0.05 

0.060 4.9 0.0 1 1 0.023 

0.041 7.0 -0.042 0.22 

0. 1 1 5 5.2 0.0 0.72 

0.045 7.5 -0.079 0.49 

0.038 5.2 - 0.032 0.79 

Climate 

No. of 
C3 days 

29.3 1 9 

1 7. 1  74 

7.5 4 

1 3.5 3 

5 .5 67 

1 .4 21 

No. of 
Cg day 

I 

I - 1 . 1  1 9 I 
3 .2 74 

-5.4 4 

-6.8 3 

-8.4 67 

-6.7 21 

Some indication of differences of climate and other circumstances such as surface material 
and vegetation can be gained from a comparison over the limited range of observations available. 

Comparing along the lines, the most interesting feature is probably the similarity of the ranges 
for all cases except Porton. The unusual circumstances at this station have already been mentioned. 
However, the model should be able to cover a wide range of heights and this is one reason why the 
power form of A (z) and B(z) cannot be discarded yet, as they fit Porton with less radical changes 
in parameters. The similarity of parameters is most marked in c1, c2, c3 and c4 though climate causes 
differences for Ismailia in c1 and c3. A difference between Rye and Leafield shows up in c1 and c3 • 
This is attributable to differences in subsoil, moisture content and vegetation. 

Coefficient of Refraction 

The coefficient of refraction K is related to the temperature gradient G by 

258 R P (. 010 + G) K =-------

(273 + T)2 
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Table II 

Values of parameters for dUferent stations - Range over the months of the year 

Stat ion Rye 
Country England 

Latitude N 5 1 0  
Bibl io .  Ref. (4) 

Height Range 8 .2 -77 
in  metres. 
Range of f!o -- 1 .4 to 3.0 
Range of c 1  1 .2 t o  26. 3 
Range of c2 0.02 to 0. 1 0  
Range of c 1 0 - 0. 1 to 1 . 5 
Range of c3 5.5 to 20.0 
Range of c4 0.03 to 0.08 I 

- C4 Z 
B (z) = c 1 o + c3 e  

Leafield Quick born 
England W. Germany 

520 590 
(6) (7) 

6. 8 - 72 I 7 .5 -49 

- 3.8  to 0.0 -0.9 to 1 . 1  
-0. 1 to 9 .2 1 . 7 to 28.2 
0.00 to 0.20 0.07 to 0.24 
- 1 . 5  to 1 . 6 0. 5 to 3 .6 

4 .8 to 32 I 7.0 to 65.0 
0. 1 0  to 0. 1 5  0. 1 3 to 0.27 

I Ismailia 
Egypt 
301Ji0 

(3) 

8.6 - 54 

-0.9 to 1 . 8 
- 1 4.8 to 29.0 

I 0.00 to 0.2 
1 . 3 to 5.0 

27.0 to 40.0 
0.07 to 0. 1 3  

where G is i n  o Cf metre 
R is the radius of the earth in  mil lions of metres. 
P is the air pressure in millibars. 
T is the temperature in o C. 

Porton 
England 

5 1 0  
(2), (8) 

0. 1 6 - 1 2. 1  

- 2.7  to 5 .2 
- 740 to 250 

0.6 to 6. 1 
4 .6 to 1 5 .2 
200 to  1 360 

2.9 to 3 .9  
-

If  average values are assumed for R, P and T, the relationship  between K and G is l inear, and the 
plotted curves of Figures 1 and 2 can be used to indicate variation in K. Graphs of Figure 1 ,  read 
against the right-hand scale, show the diurnal variation in K, while t he vertical variation of K i s  
seen from Figure 2 ,  reading against the lower right-hand scale. Though these graphs only i ndicate 
variation for one month of the year, at a single station, they show clearly that the coefficient of 
refraction is not constant at 0. 1 3, which value is indicated by a plane, dotted, in Figure 2. 

In order to assess these effects on trigonometric levelling, Table I I I  below shows t he magnitude 
of the refraction correction based on the temperature model for Rye, i n  England's moist temperate 
climate and, as a contrast, at Ismailia, in the harsh desert climate of Egypt. The corrections are 
quoted for three different months of the year, for l ine of three different lengths, 4000, 20,000 and 
1 00,000 feet ( .  75, 3 .8  and 1 9  miles) and at heights 5, 25 and 250 feet above the ground. Finally, 
the daily m inimum, which occurs at about noon, and the daily maximum, shortly before dawn, 
are quoted. A positive entry in the table indicates that refraction l ifts the apparent l ine of sight 
upwards, and vice versa. Refraction is proportional to the square of the distance. 

The first half of the table refers to refraction calculated from temperature gradients at Rye. 
The most notable feature is again the wide variation particularly at the lowest level, and the large 
magnitude of the refraction effect .  Even for a 4000 foot line, i t  reaches nearly one foot (April 
minimum, height 5 ft). At higher levels the magnitude decreases, but at 25 feet above the surface 
i t  reaches over seven feet  on a l ine 20,000 feet long. Even at 250 feet above the surface, the effect 
is over 60 feet on a 1 00,000 foot l ine. 

The diurnal variation will follow a course similar to gradient in Figure 1 .  The table gives mini
mum and maximum values and again these show remarkably large variations. For the lower levels 
the minimum becomes negative, indicating a l ine of sight curved convex downwards. It is only 
at the highest level that values begin to  resemble t hose calculated using a standard value for the 
coefficient of refraction K = 0. 1 3  (right hand column). Even here the daily variation is of the same 
order of size as the correction using K = . 1 3. 

It is i nteresting to note the close similarity between April and August. In  December all values 
are very m uch reduced, diurnal variation is far smaller, and the standard K values are no longer 
appropriate at high levels. The coefficient K would have to increase t o  0. 1 9  for these conditions. 

1 5  
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Although some lines in the table would hardly occur i n practice, 1 00,000 foot l ine constant ly 
at 5 feet above the surface, for example, the results are nevertheless of pratical interest. Nearly 
all l ines pass close to the ground for a short distance at least. It should be borne in m ind that the 
effect of a particular gradient is of greater importance if i t occurs close to the observer's end. To 
take a simple example : If a certain curvature F were present for the whole length of a l ine A B, 

refraction would be I<.". If however there were no bending for nine-tenths of the distance, and the 
curvature F for the remain ing one-tenth, adjacent to A ,  then refraction measured from A would 
be 20 % of R" whereas from B it would be l % of R" . 

The refraction at lsmailia, a far more harsh cl imate, is surprisingly similar to that at Rey. 
I n April refraction produces a greater variat ion at 5 and 25 feet, but at 250 feet it has steadied down 
to simi lar values. However August at Ismail ia producflS far more extreme values. Note the values 
of over 2000 feet. Even the maximum values, at n ight, are negat ive, so that the bend ing is con
stantly downwards. M irages could be expected under these conditions. However the effects dampen 
quickly with height and at 250 feet the day values are lower than in April . N ight values (maxima) 
are considerably higher than at other seasons. December stil l shows extremes, and whereas at Rye 
the level for which the 'K = 0. 1 3' values are appropriate i s below 25 feet, for Ismai l ia it is above 
250 feet. 

Generally our coefficient of refraction m_ethod is appl icable for a l ine that is the same distance 
above the surface, over similar surface condit ions, for i ts whole length. The value of 0. 1 3  is su i table 
for heights of about 250 feet above the surface. Practically all l ines are for a short sect ion at least 
within five feet of the surface. The table shows what extreme conditions are experienced in th is 
layer. 

Electronic Distance Measurement 
The effect of temperature on electronic distance measurements i s approximately l part per 

mil lion for each l o F. *) I n the case of a l ine extending between two hil ls on a plain, or across a flat 
valley, the temperature will be measured close to the surface but the l ine wil l be wel l above the surface 
of the valley or plain for nearly all of its length . Very close to the ground, the strata of air between 
isotherms are paral lel to the surface, but h igher up, the undulations of the topography are followed 
in a smoothed fashion, until at a considerable alt i tude they become smooth and horizontal. This 
means that above a hill the intervals between isotherms wil l be smaller while over the valley they 
will tend to be extended. In terms of isotherms the elevation difference between h igh and low points 
is decreased. If this effect is taken into account then the diminished depth of the val ley can be 
referred to as the 'equivalent depth' . 

Table IV sets out the errors due to the difference between observed temperature (h i l ltop) and 
the actual temperature of the line (over the plain or valley) accord ing to the temperature models 
for Rye and I smail ia. These are given for an equivalent depth of 1 50 feet. The values quoted are 
part per 100,000, since the effect is proport ional to distance. Alternatively they can be considered 
as errors, in feet, on a l ine of I 00,000 feet . 

Table I V  

Temperature Effect on Geodimeter and Tellurometer Lengths in Parts per I 00,000 
Rye 

H;�:�' 1 --DAY - �!!'�NIGHT I DAY A�?'!_��iGHT- 1-DAY
��CEM B��GHT 

Parts per 1 00,000 - or error in feet on line 1 00,000 feet long 

1 50 -· 0.30 + 0.46 - 0. 3 1  + 0.37 - 0.03 -1 0.2 1 

1 50 - 0.64 + 0.60 
lsmailia 

- 0.79 + 0.20 - 0.30 + 1 . 12 

The table shows that, even for the modest depth of 1 50 feet, errors of nearly one-half foot 
can be expected at Rye and over one foot at lsmailia. The greatest errors are experienced during 

*) The exact figure varies, depending on whether, as temperature is vari:; , the relative humidity, 
the vapour pressure, or the depression of the wet bulb i s kept constant. 



Table III 

Effect of Refraction in Trigonometric Levelling 

1 .  Station: Rye, Sussex, England 

M onth APRIL AUGUST DECEMBE.R K = 1 3  

Max. or M inimum Maximum Min.imum Maximum Minimum Maximum 
min. (noon) (before 
Refract ion dawn) 

Length REFRACTION EFFECT IN FEET feet 

Height above ground : 5 feet  

4,000 .59 .96 .48 .77 .01 .42 + .05 
20,000 - 1 4.8 24.0 1 2. 1  1 9 . 3  .45 1 0.6 + 1 .25 

1 00,000 - 37 1 .  60 1 .  304. 484. 1 1 . 264. + 3 1 .0 

Height above ground : 25 feet 

4,000 .06 .29 .06 .24 .07 . 1 8 + .05 
20,000 - 1 .55 7 . 3 3  1 .72 6.20 1 . 78 4.63 + 1 .25 

1 00,000 - 39. 1 83 .  43 .  1 55 .  45. 1 1 6. + 3 1 .0 

Height above ground : 250 feet 

4,000 .05 .09 .05 .09 .07 .09 + .05 
20,000 1 . 3 1  2 .39 1 . 3 1  2.42 1 . 76 2.25 + 1 .25 

1 00,000 32.9 60.0 32.8 60.7  44. l 56.4 + 3 1 .0 

2. Station: /smatlia, Egypt 

H eight above ground : 5 feet 

4,000 1 .40 1 . 1 6 3 .44 - . 1 4  .75  3 .37  .05 
20,000 - 35 . l 29.2 86. 1 - 3 .7  1 8.9  84. 3  1 .25 

1 00,000 - 877. 730. - 2 1 20. - 93 .  473 .  2 1 10. 3 1 .0 

Height above ground : 25 feet 

4,000 .25 . 32  .26 . 1 9 - .p9 .54 .05 
20,000 - 6.39 8 . 1 1  6.67 4.94 - 2.4 1 3 .6 1 .25 

1 00,000 - 1 60. 203 .  1 67.  1 24. -61 . 34 1 .  3 1 .0 

Height above ground : 250 feet 

4,000 .06 . 1 3  .05 .07 .05 . 1 5  .05 
20,000 1 .67 3 . 35  1 .25 1 .97 1 .49 3 . 77 1 .25 

1 00,000 41 .9  84.0 3 1 . 5 49.5  37 . 5 94.3  3 1 .0 

Supplement to paper of Prof. Angus-Leppan 
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the day in the summer, and during the night in the colder months. Observing during both day and 
night will usually i mprove the results as errors tend to have similar magnitude with opposite sign, 
but this is by no means certain ; note for example the values in December. 

These figures are based on a temperature measured at five feet above ground level. If i t  were 
measured at two and one-half feet, the effect would generally be to increase the error, by amounts 
which vary for different t imes, but which average 0.05 feet for Rye and 0.2 feet for Ismailia. Ob
serving temperature at about ten feet should, in these circumstances, decrease the error by a similar 
amount .  

Further Investigations 

Sufficient has been shown of the Lower Atmosphere Temperature Model to i ndicate that i t  
has applications bu t  that they are a t  present limited by  lack of  generality. I nvestigations will continue 
i n  the development of a satisfactory generalised form for the whole year at one station and, as 
far as possible with the limited geographical spread, a generalisation for climate. Any new data 
which become available will be incorporated. By studying the errors of the present form it is hoped 
to improve the accuracy. A detailed statitical study is being made by C. McGilchrist of the indi
vidual daily observations and their sequential correlations. 

It is also proposed to extend the model upwards and to attempt a similar model for humidity. 
It should then be possible to apply the results in tellurometer measurements, i n  photogrammetry 
and in aerodist measurements. 
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Electrical Measurement of the Temperature Gradient at 
Astronomical Stations 

by 0. Hirsch, Berlin 

Summary: 

The problems of considering the effect of refraction on astronomical measurements are pointed 
out ; the influence of errors in the meteorological data is discussed, and the effect of the gradient 
of the index of refraction on the curvature of the light path is considered. 

A review of the methods of measurement of temperature by electrical instruments follows, 
special attention being given to resistance thermometers using semiconductor sensors. Applications 
of these techniques are mentioned. 

Zusammenfassung: 

In einem Oberblick wird auf die Problematik der Beriicksichtigung des Refraktionseinflusses 
bei astronomisch-geodatischen Beobachtungen hingewiesen, die Auswirkungen in der Unsicherheit 
der Erfassung der meteorologischen Daten auf den Brechungsindex auf gezeigt und schlieBlich der 
EinfluB von Anderungen des Brechungsindex auf die LichtstrahlkrC.nmung angegeben. 

Es folgt eine kurze Obersicht uber die verschiedenen Moglichkeiten der Temperaturmessung 
mit elektrischen Thermometern, um anschlieBend auf die Vorteile der Widerstandsthermometer 
mit HalbleitermeBfiihlern ausfiihrlicher einzugehen. Die Anf orderungen, die an das Temperatur
meBgerat zu stellen sind, werden an Hand eines speziellen Gerates erlautert, abschlief3end werden 
einige Anwendungsmoglichkeiten genannt. 

The Consideration of the Effect of Refraction 

As is well known, a simplified theory of the astronomical refraction is used for evaluation 
of astronomical measurements. - The earth is considered a globe and spherical stratification 
of the air is assumed. 

Usually, in particular for zenith distances < 600 as occur in astronomical observations, the 
effect of refraction is represented (after repeated application of Sne//ius' law of refraction) by the 
statement 

refr. = (n - 1 )  . tan � ( 1 )  

Here n denotes the refractive index i n  the immediate vicinity of the observation instrument. 
In general the refractive index is defined by 

with 

ngr - 1 p n = l + -· . 
1 + ex .  t 760 

ngr • • • group refractive index 

5,5 . 10- s 

1 -t- ex 

(at standard atmospheric conditions), 
t . . . air temperature in o C, 

. e  

p . . . atmospheric pressure in terms of mm of mercury, 
ex . . . gas expansion coefficient 

1 : 273 . 1 5  = 0,003661 
e . . .  partial pressure of atmospheric water vapor in terms of millimeters 

of mercury 

(2) 

Among other hypotheses concerning the structure of the atmosphere, several assumptions 
for the computation of the formulas mentioned have to be set up. Hence it happens that the correction 
factors so obtained differ slightly, too. If we take the Berliner Astronomisches Jahrbuch for instance, 
the tables are based on numerical data given by Bauschinger ; for instance, n8, (formerly µ0) = 
= 291 ,6 . 10- 6 and e = 6 mm Hg giving R" = (n - 1 )/sin 1"  = 60�' 1 54 at OO C  and 760 mm Hg. 

This standard index of refraction is denoted by R0• In conclusion we have the resultant final 
formula, after inserting the factors A and B for consideration of deviation of temperature and pressure 
from standard atmospheric conditions : 
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R = R0 ( l + A + B) (3) 

Other tabular compilations are of the same general type. They always give as a first result 
a mean (standard) refractive index with t he observed (apparent) zenith distance � as argument. 
It has then to be corrected because of the actual meteorological conditions during observation [6], [ 1 3 ] .  

The uncertainties in  considering the influence of meteorological facts upon the index of re
fraction (2) have been i nvestigated in  detail recently, especially with respect to electronically measured 
distances, i. a. , [9, p. 232]. These uncertainties cause the following errors 

!:!. t = ± 1 o C - >- !:!. n (t) � ± 1 ,0 . 1 o - 6  
!:!. p = ± 1 Torr --:.- !:!.  n (p) '-l ± 0,4 . 1 0 - 6  
!:!. e = ± 1 Torr - - !:!. n (e) '-l ± 5,3 . 1 0 - s 

(4) 

Usually, t he air temperature at astronomical-geodetic measurements is taken near the tele
scope by means of a sl ing thermometer. Furthermore, the barometer reading is noted, while a 
variation of va.por pressure i s  not taken into considerat ion because of its relatively unimportant 
influence. Thus the data having considerable effect on the refractive index n are determined only 
at one point. 

Indeed several assumption concerning the theory of refraction do not agree with real ity ; for 
instance, the stratification of the air by concentric spheres. 

As is well known, the atmosphere is divided into a lower stratum near the ground up to the 
height of some hundred meters, and the free atmosphere lying on top of it .  While relatively constant 
temperature conditions (negative temperature gradient of about 0, 70 C/ 1 00 m annual average) 
prevai l within the latter, the layer close to the earth is subject to extremely variable influences. 

There is a considerable difference between daytime temperature fields and those at night. 
[4], [5 ], [8] and [9]. 

The most important effects acting on the temperature field at night are the reemission of the 
received thermal radiation during the day and the cool ing of the earth'  surface. The so-called 
temperature i nversion caused in th is way effects a stratification of the air according to the decrease 
in temperature. The thickness of this inversion layer depends among other things on the general 
weather character. I t  may be assumed of about 1 00 m average, sometimes even up to 300 m alt i tude. 
The near-the-ground zone of the inversion layer, which is in int imate contact with the surface, 
is the so-called lower stratum of inversion. Within this layer, which is of about 20 m annual average 
at midnight, air temperature foilows the laws of an exponential function;  which according to 
Brocks' i nvestigations contains the elevation multiplied by a small coefficient [5] .  

This lower stratum of inversion represents the intrinsic temperature boundary layer of atmo
sphere. Reviewing the comprehensive statistical material we can see t hat the area that exhibits 
most variations in the temperature curve is one third of the lower stratum of i nversion closest to 
the ground. Therefore systematic variations caused by topographical features may occur within 
different azimuths at one station. A possibility to dertermine anomalies of that kind for derivation 
of a gradient iJ T/ d z is the measurement of temperature in the vertical plane through the l ight path. 

Differences in temperature and pressure along the l ight path in variable layers of air and height 
effect variation of the refractive index n. The influence of the gradient o n/ d z has been neglected 
in (1 ) .  

I t  is, however, of great interest to k now the effect of the gradient of the refractive index n on 
the curvature of the l ight path x .  Since t hese relations were already analyzed by Moritz [ 1 2], we 
only refer to th is paper. 

The curvature of the light path is 

Because o f  n · 1 we may equate 

i3 n 
x = --

11 a z 

a n  
d z ' 

(5) 

(6) 
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i. e., the gradient of the index of refraction is approximately proportional to the curvature of the 
light path. In literature x is often unfortunaltely termed "the local coefficient of refraction". 

with 

According to [2] we have 

x = . r . - - + - sm � = x sm � 
(ngr - 1 )  . Tu p (g a T) . I • 

n . 7()(J T2 R o z 

n8, • • •  standard group refractive index 
n . . .  refractive index of air for visible light 
p . . . atmospheric pressure in terms of mm of mercury 
r . . .  radius of curvature in azimuth of ray g . . . gravitational acceleration 

(7) 

o T a 
z 

. . .  vertical gradient of air temperature taken in oc per 1 00  m, negative 

with increasing height 
T . . . absolute temperature in degrees Kelvin 

(T = Tu + t = 273, 1 5  + t ;  t in O C) 
R . . . gas constant 

Specific assumption and data applicable for Central Europe may now be made, but the exact_ 
knowledge of them would yield negligible corrections only. Thus we have as a result a good ex
pression for the influence of meteorological facts on light path curvature [3] 

x = 5,03 - 3,42 + - sm � = x sm � 
. P (  o T) . )"' , . )"' 

T2 (J z 
(8) 

The formulas mentioned above are not to be discussed in detail here. Nevertheless, it is worth 
noting that in any case average equival�nts for the measured meteorological data are to be intro
duced before they are �ken into further consideration or applied for computation. The change ot 
temperature with elevation involving a negative air-pressure gradient may be neglected only in the 
lower zone near the ground. [5] , [8 p. 37 and 84) , [9 p. 236ff]. 

Possibilities of Temperature Measurement with Electrical Thermometers 

The measurement of air temperature near the ground causes difficulties that not should be 
underestimated. On one hand the temperature feelers of the device are heated by radiation, at the 
other hand they are in touch with the open air. Finally, an artificial turbulent air current would 
falsify results, for instance in the case of a gradient measurement with control points of short 
distances. For a most comprehensive and objective sampling of temperatures the electrical thermo
meters seem to be most suitable, not necessarily for gaining meteorological reference temperatures 
as, for example, obtained in the ,,Wildsche Hiitte", but for "laboratory determination of iso
thermals". 

There is a basic distinction drawn between two categories of contact thermometers- the thermo
couple elements and the resistance thermometers. The latter ones are classified into those with 
metallic sensitive elements and those using semiconductor feelers. [ 1 ]  , [7 p. 380ff]. 

Thermocouple Elements 

If the free ends of two electrical conductors of different metals or alloys are connected to form 
a thermoelectric circuit and differing temperatures are applied to the juncture (soldering point), 
a e. m. f. (thermoelectric current) will be produced. Because of its relative insignificance very 
sensitive .measurement and test equipment as well as adequate treatment are necessary. Of advantage 
are the small dimensions of the thermoelements and their wide range of capacity. This lies between 
- 2500 and + 28000 C. Thermoelements represent the only electrical thermometers for temperature 
measurement at l OOOO C and more. The main field of application is the rpeasurement of very high 

.and very low temperatures. Further details are not to be explained here, because temperature 
measurements with thermocouple elements are of no interest for geodetic purposes. 
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Resistance Thermometers with Metallic Primary Elements 

The variation of electric resistance of pure metals with temperature is regular and follows 
the laws of a power series. The functional temperature dependence of resistance covering the range 
of oo to lOOO C  is represented in most cases precisely enough by the linear term 

with 
R1 • • •  resistance at 10 C 
R0 • • •  resistance at oo C 
ex • • •  temperature coefficient (dimension "" 4 .  10- 3 degr. - 1) 

(9) 

Within the stated range temperature can be measured to 1 0- 3 degrees. For example the resi
stance variation of platinum is 39 % at that extent. A drawback of this technique is that errors 
caused by self-heating of the resistance thermometer become effective, so t hat development of 
feelers of any required size is impossible. The reason is that resistance windings always are relative 
bul ky, preventing a point-shaped construction of primary elements. 

· 

Finally, the feeder line resistance is of no influence on the result of measurement only i f  a 
two-wire circuit system is employed an the resistance of the conductor is eliminated by an additional 
manganin-trimming resistor. In spite of this drawback of restistance thermometers they are accurate 
enough to be used as reference standards for many purposes: 

Resistance Thermometers with Semiconductor Sensors 

Similar to pure metals the change in resistance with temperature of semi-conductors can be 
used for temperature measurements. In  this description we only refer to semi-conductors with 
negative temperature coefficient. Semiconductor resistors of that kind often are termed NTC
resistors, hot conductors (with negative temperature coefficient), or thermistors. 

The fundamental distinguishing features in contrary to mercury-in-steel thermometers are 
the following : the resistance of pure metals increases with temperature with about 0,4% each 1 o c  
while the temperature coefficient ex o f  thermistors i s  negative and approximatley ten times that of 
metals (at indoor temperatures it  is about 2 to 6 % each 1 o C). 

Contrary to pure metals there is no linear relation between temperature and resistance. The 
functional relationship of temperature and resistance of these thermistors is expressed to a sufficient 
accuracy by 

RT = A .  eBIT ( 1 0) 
for very small temperature intervals. 

Here RT stands for the resistance at absolute temperature (degree Kelvin), and A and B are 
parameters of a thermistor. The constant factor A denotes resistance �t T= oo, but may be eliminated 
by introducing the resistance Rrb at a standard point Tb (e. g . ,  t = 250 C, hence n = 2980 K.  

Then we  have 

and 

and finally 

( 1 1 \ 
RT = RT . pB - -) 

b T Tb 

log RT - log RT 
b B = -----

l /T - 1 /Tb 

d R/d T 
ex = ------ -

R 

B 

T2 

( 1 1 )  

(1 2) 

( 1 3) 

The resistance Rrb of thermistors at a standard point of 2oo c varies between 0, 1 and 107  ohms. 

General ly, however, only thermistors with a basic re sistance of some t housand ohms are employed 
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because the lead resistance may be neglected then. The preferred range of appl icat ion of thermistors 
is between - 400 C and -h 1 800 C ;  application is l imited within - 2000 C and + 3000 C. 

Thermistors can be produced in nearly any structural shape desired, even of smal lest proportions 
as to size and weight. They may be disk-shaped, rod- l ike or even "beads" of 0, 1 mil l imeters in dia
meter. Thermistors are made from very pure oxides sintered under carefu l ly control led conditions 
of h igh temperature and atmosphere. Normally they vary great ly as to resistance in  consequence 
of the manufacturing process and mixture, so that they cannot be interchanged. The usual toler
ances of thermistors commercial ly available amount to ± 10 or 20 % in Rrb and ± 5 % for factor 

B of one same type. If they are mass produced they may stay within ± 0,5 % tolerance. 
By an individual selection of thermistors this dispersion wil l be reduced, thus attaining inter

changeability. Though thermistors are exposed to an artificial ageing process, they show sub
stantial ageing effects. At  measurements over longer periods therefore reproducibi l i ty is  very doubt
ful .  But over short time periods temperature difference measurements can be carried out very 
exactly (e . g . ,  1 0- 2 degrees with 1 0 - 4 degrees accuracy) .  

If we compile some characteristic data of the resistance thermometers ment ioned above, we 
can see that those working with semiconductor sensors exhibit the highest degree in accuracy and 
sensitivity for restricted ranges of temperature. On the other hand thermistors with metall ic feelers 
allow highest precision within a comparative wide range. Their drift velocity is near 0, 1 % in 5 years, 
that of thermistors 0, 1 to 1 ,50 C p. a. The reproducible accuracy of resistance thermometers with 
metallic feelers is 0,020 to 0,050 and that of thermistors is about 0, 1 0  up to 0,50. So-called precision 
thermistors will be described later. 

Some Aspects on the Selection of a Temperature Meter 

i he continuous experiments and tests of measuring instruments performed at the Chair of 
Higher Geodesy and Astronomy of the Techn ical University of Berl i n  required the exact determi
nation of the temperature difference between the two ends of a level tube. For this purpose ther
mistors with disk-shaped sensors had been selected and temperature difference measurements 
had been registered by means of a moving-coi l  instrument after previous calibration in a bridge 
circuit (deflection method). The meter, however, showed some serious deficiencies : it had no zero 
stabi lity and the balancing range covered only a few degrees. 

To find a relation to the thermometric scale, time-consumi ng reference temperature standards 
had to be prepared. The smal lest temperature differences of some hundredth degrees which occured 
during the measurements were near the l imits of accuracy of the instrument. This seemed to be 
correct, because there are several hints in l i terature that the ·. re liability of i ndicators mostly is not 
equivalent to accuracy of thermistors. Moreover, in the last two or three years manufacturing 
methods have been developed to produce precision thermistors whose RTb- and B-values were so 

much smoothed that they fol low the same temperature-resistance curve. Thus they show the same 
properties as metal l ic resistance fee lers. 

To give an example, the YSI thermistor (SASCO-Stewart Aeronautical Supply Company Ltd . )  
32 TD 25 type with a nominal resistance of 2 kn at 250 C deviates from the values provided i n  the 
specification sheet only within .1: 0,2 degrees over the range of oo to 1 000 C. For this thermistor 
the drift is 0,0050 p. a. and the reproducible accuracy amounts to O,O l O C. 

The use of these adjustable thermistors requires a suitable meter wi th  a power dissipation 
capabil ity so effective that to a first approx imation the i nstrumental errors may be neglected . 
As is k nown from experience, there are not only a few commercially avai lable temperature meter 
of general appl icabil ity. An instrument of that k ind,  which would be most suitable for thermistor 
measurements within the scope of geodetic laboratory test work too, is ut i l ized in chemical l abora
tories for the determination of molar weights by means of cryoscopia. 

This KNAUER universal temperature meter consists essential ly  of a modified Wheatstone 
Bridge arrangement with artificially aged precision manganin resistors and a regulated power 
supply. I t  permits the individual measurement with one single prim�ry element and temperature 
difference measurements with two sensors (resistance between 50 and 1 00 k n ;  in the first case only 
up to 1 2  k O). 
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To intensify the efficiency of the meter the diagonal voltage of the bridge is multiplied by a 
fully transistorized test amplifier. (linearity better than 99.9 %). Measurements are performed either 
by deflection method or by the compensating method. Sensitivity is about 0,050 C over the whole 
scale of the indicator, running from 0 through 1 00. 

The indicating scale is continuously variable from 0,050 C /'.. 100 scale intervals up to 200 C /'.. 

�J OO intervals. Moreover it is reducible by 8 switch steps alternately with factor 2, i. e . ,  from 
1 to 1 /2, 1 /4, 1 /8 and so on down to 1 / 1 28. Dissipation capacity comes to 2/ 1 0  OOOO C when using 
thermistors, and to 2/ I OOOO C applying platinum resistance feelers. The quality features of the 
apparatus are preset by the temperature coefficient of the I 0-turn coiled potentiometer. A recorder 
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output is supplied. Furthermore a changeover switch "current reverser" serves to keep the pointer 
deflection of the indicator 11cting in the same direction with temperature rising or fal ling. Bridge 
supply voltage is 1 ,2 V max. ,  and can be continuously and reproducibly decreased. I t  is also indi
cated (in %) by the meter. 

The method of operation of the device is i l lustrated by the two figures on page 233 showing 
the underlying principle [ 10] : 

Fig. 1 .  Basic circuit diagram for individual measurement 

Adjustment o f  the temperature meter is attained by 

The instrument then gives zero reading. 

R I R1hermistor 
R2 Rbalance 

Fig. 2. Basic circuit diagram for difference measurement 

( 1 4) 

The one arm of the bridge is represented by the thermistor probes I and U when temperature 
difference measurements are accomplished . The other bridge branch consists of the fixed resistor 
R1 and the variable resistor R2, by means of which balancing is done now. 
Instrument reading is zero when 

Ru thermist or R balance 
( 1 5) 

R1 lhermistor 

holds. Any temperature difference occuring between the two feeler gauges causes a deflection of 
the pointer. 

To expand the operational possibilities of the meter, a special design selector switch has been 
developed by the manufactor. I t  permits the connection of 1 1  measuring points, which are to be 
interrogated successively at the switchboard position "differential measurement". The instrument 
is constructed in such a way that each one of the 1 1  temperature feelers connected can be adjusted 
within the range of 0 to. 12 k n. Beyond that the power supply of the universal meter was improved 
so that it can be operated either on the mains or else run from a battery. 

Some Applications 
As we have already mentioned above, the instrument was purchased primarily for e xamination 

of instruments and has been employed accordingly till now. Because these investigations are parts 
of doctor's theses they cannot be further discussed here. As is well known, often considerable 
scattering will appear in the results of astronomical measurements in different nights. To find out 
whether such systematic deviations from "normal stratification" are caused by local conditions 

at the station, the possibility of measuring the air temperature in vertical planes of different azimuths 
and in different height presents itself. I t  is advisable to use bead-shaped thermistors with leads 
fused into a vitreous body of some 5 millimeters in diameter by 60 millimeters long. Besides that 
they should have a high heat-transfer coefficient to keep the radiational part in heat transfer as 
small as possible. Finally, attention is to be paid to the selection of thermistors to have a temperature
response time not too low ( <. 5 seconds), which should enable a satisfactory determination of 
a mean value of air temperature. 

To obtain a general view of the per formance of such a gradients measurement, a system of 
five equally spaced thermistors had been mounted experimentally to two vertically attached wire 
ropes. The "glass thermistors" used are rather immune to mechanic effects and may be fixed easily 
by some PVC insulating tape. To link the thermistors to the meter stranded copper cable as flexible 
as possible should be preferred (e. g. LifYY 0, 1 4  mm2 0). Necessary calibration should be carried 
out by immersing a second thermistor in a Dewar vessel. This would give a standard of comparison 
ari.d render possible a relation to the temperature scale (melting point of ice). If this absolute in
formation is not required, another normal temperature as constant as possible might be chosen, 
as for instance by digging the thermistor into the earth .  It was found that all of the 1 1  test points 
could be monitored some few minutes in a repetition measurement. The scattering of the test data 
is based but only on temperature variations, in the course of which the amount of the person al 
reading errors is of secondary importance. Experience has shown that the measured values are 
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reliable within ± 2/ 1 00 as the standard deviation of the single measurement, representing the true 
air temperature. 

In geodetic literature usually only measurements with resistance thermometers furnished with 
metallic feelers are dealt with. Therefore it seemed appropriate to give some informations about 
measurement possibilities with semiconductor primary elements. The advantages of thermistors 
are considerable, particularly when it comes to temperature difference measurements, or when 
even only the difference of differences is to be determined. 

The measuring device referred to above is flexible enough and even qualified for neld work 
that it would be quite possible to apply it for measurements for the determination of the refracti
onal effect in leveling in the sense of Kukkamiiki's papers [ 1 1 ]. 
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Contribution to the Vertical Gradient of Refractive Index for 
Microwaves in the First 100 m of the Atmosphere 

by Hans Pelzer, Brunswick, W. Germany 

1 .  The vertical gradient of the refractive index and of its components 

For the _determination of the geometric distance between two points from the measured transit 
time of microwaves it is necessary to know the curvature of the ray path. The curvature 1 /p of the 
ray path is given by the sine relationship as 

d n  

p dh ' (1 . 1 )  

where the horizontal derivation o f  the refractive index i s  neglected. The curvature is the negative 
vertical gradient of the refractive index of the atmosphere [6]. 
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It is a function of the air temperature t, the vapour pressure e and the air pressure p, 

n = n (t, e,  p) , 
and it follows that the vertical gradient can be written as 

d n  o n d t  o n d e  o n dp 
- = -- - + - - + -- - . 

d h  d t d h o e d h d p d h  

( 1 .2) 

(1 . 3) 

I t  is possible to obtain the partial derivations with respect to temperature, vapour pressure 
and air pressure from the formula by Essen and Froome [5] 

(n - I )  . 10- 6 = ( p - e) + 1 + -- e 
103 . 49 86 . 26 ( 5 7 4 8 ) 

T T T 
T: air temperature [O Kelvin ] .  

These derivations are constant with sufficient accuracy, so that follows from (1  . 3) 

d n  d t  d e  d p  

d h 
= Ct d h + Ce d h + Cp d h 1 

and we have to find the vertical gradients of temperature, vapour pressure and air pressure. 

( 1 .4) 

( 1 .5) 

We will restrict ourselves to those conditions which the ray path always runs near the surface 
of the earth . Therefore, we have to investigate the first 1 00 meters of the atmosphere. 

The gradient of temperature in the lowest layer of the atmosphere has been manifold investi
gated [ l ] [2] [3]  [4] .  The result shall be here condensed with reference to the works of Brocks. In 
the day-time it  will be discriminated the unstable lower layer and the adiabatic intermediate layer. 

On the average of a year, the unstable lower layer is thick about 21 meters. I n  summer, it is 
thicker (30 -40 meters) than in  winter. I t  is possible to represent the gradient of temperature in 
the lower layer by 

d t  - = a, .  hb . 
d h  

(1 .6) 

The factor a, is dependent on the time of day and the season as well as on t he weather conditions. 
It is negative in the day-time. For the exponent b we have the relation 

b, = - 1 ± 0 .  2 .  ( 1 .7) 

The adiabatic intermediate layer has an extension up to several hundred meters. There, the 
gradient of temperature is weakly overadiabatic and decreases slowly with the height. 

At night, the unstable lower layer will be replaced by the lower layer of inversion with a thick
ness of about 20 meters. The function (1 . 6) will be preserved, only the sign changes. The exponent 
b1 fluctuates here around a mean value of - 0 .  9. In the layer of inversion situated over that, the 
gradient of temperature decreases slowly to the isothermic state. 

Because of the considerable fluctuation of the coefficient it may be permissible to approximate 
the gradient of temperature in the first decameters by 

d t  

d h  
(1 .8) 

The distribution of vapour pressure in the atmosphere is known worse than the distribution 
of temperature. However, the observations in hand till now allow the inference, temperature and 
vapour pressure have similar height functions, i. e. the gradient of vapour pressure can be written 
l ikewise in the form 

d e  . - = ae . hb 
d h  

(1 .9) 

Although AdJung [1 ] found no strong correlation between the exponents b1 and be in the 
height-functions of temperature and vapour pressure, his investigations give the result that in a first 
approximation 



can be admitted. By this will be 

be = - 1  

d h  h 
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(1 . 10) 

(1 . 1 1 )  

In comparison with that the height-function of air pressure can be given very easy. The 
derivation 

dp 

d h  
= ap ( l . 1 2) 

can be taken for a constant. With p = 755 Torr and t = 1 5oc it will be obtained 

ap = - 0.09 1  (Torr/m) . (1 . 1 3) 

The derivations of the components of the refractive index are now found and can be sub
stituted into the equation (1 . 5). That leads to 

or, by use of abbreviations, 

d n a, ae 
- - = c, . - + Ce . - + Cp . ap ,  
d h h h 

d n  k i  
- = - + kz . 
d h  h 

By the published material [2] [4], for the coefficient k1 the median value 

k1 (mean) = - 1 .0 . I 0- 6 , 

and the bounds 

- 4. 1 . 10- 6 < k i  < + 0.2 . J0- 6 

( 1 . 1 4) 

(1 . 1 5) 

(1 . 16) 

(1 . 1 7) 

can be roughly estimated. The material publ ished in [2] [4] consists of monthly mean values. The 
values in ( 1 . 1 6) and ( 1 • 1 7) were estimated with the assumption the actual range of variation 

will be got by multiplication of the published values by the factor 2.  
Within wide bounds is  furtheron true 

k2 = - 0.033 . I 0 - 6  ( l /m). ( 1 . 1 8) 

With ( 1  . 1 5) a formula for the vertical gradient of the refractive i ndex is found being certainly 
a rough approximation to the actual conditions only. However, it is to suppose this approximation 
will be better than the assumption of a constant gradient of the refractive index. 

The inferences for the form of the ray path and the atmospheric corrections shall be investi
gated in the following. 

2. Projection of the normal section of the sphere into the x, z-plane 

First of all, the problem shall be simplified by a transformation of coordinates. 

If the lateral refraction will be neglected, and with assumption of a sphere as reference surface 
the ray path is a plane curve running in a normal section of the sphere. In this plane E a system 
of polar coordinates shall be introduced with the origin in the center of the earth, and with the 
direction of reference through the terminal point A .  

Then a running point along the ray path has the coordinates (r, <l>) and the optical length L 

between two terminals A and B is given by 

with 

B 
L =Jn (r, <I>) • d s 

A 

d s = V r2 • d <l>2 + d r2 . 

(2. 1 )  

(2 .2) 
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By means of the equations of the projection 

where R the radius of the earth, 

X = r . <l> ,  l 
z = r - R , J  

this plane can b e  projected i nto a x, z-plane E, i n  which the differential o f  arc i s  given by 

(2 . 3 )  

d s = vd x2 + d z2 . (2.4) 

With respect to the scale factor of the projection will be 

V(z + R)2 dx� + d z2 R2 d s = d s .  d x2 + d z2 
from which for the optical length (2 . 1 )  will be obtained 

B 

L = f n (x, z) 
A 

With the relation 

d x2 (z + R)2 - + d z2 B 
R2 - 1 -------- d s  = m (x, z) d s  d x2 + d z2 

A 

n = l + N . 1 0- 6 ,  

(2.5) 

(2.6) 

(2.7) 

and with restriction to heights < 1 000 meters and slope angles < l g, with an accuracy better than 

1 0- 1 will be 

or 

with 

z m = 1 + N .  1 0-6 + -R 

m = I + M .  t Q - 6  

M = N + :_<1:1> . 
6 .  37 

(2 . 8) 

(2.9) 

(2 . 10) 
The further investigations can be carried out in  the x, z-plane with use of the modified refrac

tive i ndex m. Its vertical derivation is 

a m  a n  1 - = - + -O z  d z  R '  
from which with ( I  . 1 5) will be 

3. Shape of the ray path 

According to Fermat's principle the ray path must comply with the condition 

B S 
L = S m (x, z) d s = S m  (x, z) V 1 + z'2 . d x = min. ! . 

A x =o 
This problem of variations leads to the differential equation of Euler 

- + - . ( 1  + z'2) - - z' - - + - z'2 - n + - --- = 0. (o n 1 )  o n  (o n I )  ( z ) z" 
o z R () x () z R R 1 + z'2 

(2. 1 1 ) 

(2. 1 2) 

(3 . 1 )  

(3 .2) 

With the same restrictions as in  section 2 (z < 1 000 meter, vertical angles < l g) and by neglect
ing the horizontal derivation of the refractive i ndex as well as with respect to ( 1  . 1 4) it will be 
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z 

figure 1 
Project ion of the normal sect ion into the x,z-plane 

k i  ( 1 )  II --;- + kz + R - z = 0 . 
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(3 .3) 

The integration of this d ifferential equation can be carried out numerically, e. g. by means of 
the method of Nystrom, carrying on the method of Runge-Kutta. The details shall be omitted 
here, see [8]. 

The ray path along a distance of 50 km is plotted in  the figures 2 and 3 .  The following will 
be evident : 
a) The shape of the ray paths is strongly dependent on the heights of the terminals. For example 

in figure 2 the rays to the terminal Bso are convex curved, on the other hand the rays to the 
other terminals are concave curved on the same conditions. Even along the same ray, the cur
vature can be strongly variable. 

b) The deviat ions from that circle which corresponds with a uniform refractive coefficient k = 0.25 
can be considerable. (In figure 2, the curve of k1 = 0.00 corresponds to a refractive coefficient 
k = 0.2 1 ). 

c) Even in  the case of very low terminals it will be often possible to make a distance measurement, 
if no hindrances to the ray are present. That is i n  conformity with the experience, that in the 
flat even longer distances usually could be measured. 

4. The optical length 

The result of an electronic distance measurement is the optical length L between the terminals 
of the distance. From that, it is necessary to compute the distance reduced to the reference surface. 
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B 

· 5 = 50 km 

k :-4,1 x 1 0 -• 

5 = 5 0  km 

f igure 2 

ray paths with different gradients of refractive index 

For the case of a logarithmic high-function of the refractive index the reduction formulas hall 
be deduced . 

With the denotations (figure 1 ) :  

L :  optical length between A and B 

S :  spherical length between A'  and B' 

can be written : 

S = L + D. s. 

The computation of D. s  shall be carried out in the x, z-plane. It is 

D.s = S - L = (S - s) + (s - L) = D. s1 + D. s2 , 

where s is the geometric distance _between the points A and B in the x, z-plane. 

s = VcxB - XA)2 + (zB - ZA)2 = v S2 + (zB - ZA)2 

Hence it follows with sufficient accuracy 

as well as 

(4. 1 )  

(4.2) 

(4 .3) 

(4.4) 



S = 5 0  km 

k1=-2,05 x 10"" 

0,0 

S = 5 0  km 

figure 3 

ray paths with different gradients of refractive index 

(ZB - ZA)2 � St = - ----

2 £  
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B 

B 

(4.5) 

For the determination of � s2 a method given by Moritz can be used. If the refractive index n 
used by Moritz will be replaced by the modified refractive index m, 

m = 1 + M . 1 0- 6 

by substitution in the deduced relations will be found 

with 

s s 

� s2 = 1 0- 6JM (x, z) d x' -
JO- IZJA32 

d·x' .  
2 x'2 

0 0 

x' 
A , �J�7. f; d ; .  

0 

(4.6) 

(4.7) 

(4.8) 

All integrations must be carried out along the straight l ine between A and B in the projection. 

By consideration of (2. 1 2) 

1 6  
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and by assumption 

a n  
() x = c, (4 .9) 

i. e. in the case of a logarithmic height function and a constant horizontal gradient of the refractive 
index the carrying out of the integration results in 

!:!. s2 = - L (nA - 1) + c . - + k2 + --- + [ L ZB - ZA ZA - ZB 
2 2 2 R 

+ 
k 1 {- !:!. 

z + ZB 
_l:!._z + !:!. !�- + 

. . . . .
. + !:!. zn }l + ZA 2 ZA 3 ZA2 (n + 1 )  ZAn 

+ 
L3 [k-12 {� 

+ 
-� _!:!. z 

+ 
+ 
(
n 2:: 2 1 

_ n i 3 ] ) (/). =)n} + 2 ZA 2 1 2  1 2  ZA 
• . . . . 

p = I p (n + 3 - p) p = I p (n 
+ 

4 -- p) ZA 

with 

k 1 (k2 + 2-) f l (k2 + 1- )2 1 R 1 1 1:!. z I (l:!. z)n R 
+
--- l -- + - -

+ + - f + - -- -
ZA 6 1 2  ZA 

. . . • . 
(n + 2) (n + 3) ZA 1 2  

/). Z = ZA - ZB • 

(4. 1 0) 

The series involving in the formula (4 . 1 0) ,are convergent, if the higher terminal will be de
signated as A .  

I t  follows from (4 . 1 )  and (4 . 2) 

In the special case that the refractive index is linearly dependent on the height, 

becomes from ( 4 . 1 1 ) 

S = L - - - - - 1 . L - --- . L + 1 - - --/). z2 ( nA + 
nB ) ZA + ZB ( R)2 L3 

2 L 2 2 R p 24 R2 ' 

in coincidence with the reduction formulas deduced in [6] , 

( 4 . 1 1 )  

(4, 1 2) 

(4, 1 3) 

Finally the reductions for the ray paths plotted in the figures 2 and 3 shall be tabulated. 
Because the quantity l:!. s' being the correction of a distance with respect to the curvature of 

the ray path is only interesting, it shall be formed the expression 

with 

!:!. s' = !:!. s2 + L - - 1 
+ 

--- - --[nA + nB ZA + ZB £3 1 
2 2 R 24 R2 

ZB 
nB = nA + k 1 In - + k2 (zs - ZA) + c . L .  

ZA 

On the other hand it is possible to introduce a mean refractive index by 

resp., if ZA = ZB, by 

k = _ R _
nB 
__ n_A_ 
ZB - ZA 

(4, 14) 

(4. 1 5) 

(4. 1 6) 

(4 . 1 7) 



With that the curvature correction can be computed by [6] as 

£3 -· 

6 s" = -- (k2 - 2 k) .  
24 R2 
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(4. 1 8) 

The valµes 6s '  are likewise given. The differences are generally inconsiderable. The dependence 
of the curvature correction on the height of the terminals is very striking. 

I I -·· I ZA(m) L ZB(m) k i .  1 06 6 s' (m) k 6 s" 

40 80 -4. 1 0  - 0. 1 05 +0.54 -0. 101  
40 80 - 2.05 - '0.084 + 0.37 -0.078 
40 80 0.00 - 0.048 + 0.2 1 -0.048 
40 80 0.20 -0.044 +0. 1 9  - 0.045 

40 40 - -4. 10  - 0. 1 26 +0.86 -0. 1 26 
40 40 - 2.05 - 0. 1 01  +0.54 -0. 101  
40 40 0.00 - 0.048 +0.21 -0.048 

40 60 ---.4. 1 0  -- 0. 1 1 7 + 0.64 -0. 1 1 2  
40 60 - 2.05 - 0.091 +0.43 -0.086 
40 60 0.00 - 0.048 + 0.21 - 0.048 

1 0  80 -4. 10  -0.058 +0.54 -0. 10 1  
1 0  80 - 2.05 - 0.069 +0.37 -0.078 
1 0  I 80 - 1 .00 -0.063 + 0.29 -0.064 

1 0  1 0  -4. 1 0  +0.298 + 2.82 +0.298 
1 0  1 0  -2.05 -0.094 + l .52 --0.094 
1 0  1 0  - 1 .00 --0. 1 25 +0.85 -0. 1 25 

1 0  20 - 4. 1 0  +0.009 + 1 . 52 -0.094 
10 20 --2.05 - 0. 1 23 I + 0.86 -0. 1 26 
1 0  20 - 1 .00 -0. 1 1 1  + 0.52 -0. 1 00  
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Time-Space Structure of Atmospheric Index Especially Obtained 
by Refractometer Measurements 

by H. Jeske and G. Kruspe ,Hamburg 

�usam111en.fassung 

In diesem Artikel werden die wesentlichen Abweichungen von den in der Geodasie und Radio
meteorologie iiblicherweise benutzten Modellen der vertikalen Brechungsindexabnahme diskutiert 
und <lurch typische Beispiele belegt. Die wichtigsten Einschrankungen sind gegeben <lurch die 
extrem starken Gradienten in den untersten Dekametern iiber der Erdoberflache (s. § 2), Schicht
bildungen in der Troposphare (s. § 3), horizontale Inhomogenitaten (s. § 4) und <lurch den turbu
lenten Charakter der Atmosphare (s. § 5). 

Summary 

In this report the essential deviations from the models of the vertical decrease of atmospheric 
refractive index, which are normally used in geodesy and radiometeorology, are discussed and 
illustrated by typical examples. The most important restrictions of these models are given by the 
extremely strong gradients in the lower decameters above the surface (cf. § 2), by layers in the tropo
sphere (cf. § 3), horizontal inhomogeneities (cf. § 4) and the turbulent character of the atmosphere 
(cf. § 5). 

1 .  Introduction 
The inhomogeneous distribution of the atmosperic refractive index may cause several mechanisms 

of electromagnetic wave propagation such as refraction, ducting, reflection or scattering, which 
determine the radiated field characterized by amplitude, phase, and angle-of-arrival. The random 
time variations of the medium give rise to fading effects and fluctuations of phase and angle-of
arrival, which are a source of noise in geodetic measuring systems. 

The phenomena of refraction (producing errors in transit time and arrival angle) are caused 
by the variations of the real part of the refractive index within the propagation medium. The in
security in the determination of the refractive index l imits the accuracy of the geodetic measuring 
equipments and of tracking devices. 

The , ,Meteorologisches Institut der Universitat Hamburg" and the ,,Institut fiir Radiomete
orologie und Maritime Meteorologie an der Universitat Hamburg", both under the direction of 
Prof. Dr. K. Brocks, investigate the influence of meteorological factors on electromagnetic wave 
propagation with special interest in the amplitude variations of the signal strength. For geodetic 
purposes this problem is of less importance. Perhaps there is a certain interest i n  the attenuation 
factor of propagation A (A = E/ E0, E: field-strength received, E0 : free space level of field-strength) 
to determine the maximum transmission range of electronic range finders acting on 3 cm and 1 0  cm 
waves. 

The mean variations of the signal strength are very large especially for distances not too far 
behind the horizon because of the overlapping influence of several propagation mechanisms. As an 
example the attenuation factor A for wave lengths of 4 cm and 1 3  cm measured at a distance of 
77 km over sea may be given for the whole year of 1 962 as well as for a month with good (June 1962) 
and with poor (January 1 962) propagation conditions [ 1 ,  2] .  The receiving aerials (being l ike the 
transmitting aerials about 30 m above sea-level) were about 32 km behind the horizon. Table 1 
shows in  each case the median value of the attenuation (50 % of all cases in "dB below free space 
field-strength") as well as the differences of the levels reached in 1 0 % and 90 % and in 1 % and 99 % 
of the given time, respectively. 
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T1ble 1 : Attenuation factor A and its variances of a 4 cm and a 1 3  cm radio transmission path 

Aso% 
[dB below E0] 

4 cm -41 
1 3  cm -46 

January 

1 962 

A to% -90% 
[dB] 

44 
27 

A 1 OJ, -990' 0 ,o 

[dB] 

72 
72 

June 

Aso% A to% -90% A t% -99% Aso% A to% -90% A t% -99% 
[dB below E0] [dB] [dB] [dB below E0] [dB] [dB] 

- 61 1 9  30 - 24 35  6 1  
-56  1 4  32 -35 47 60 

(The months of August or September often show the best propagation conditions with similar 
variances as they were given for June) 

But for all propagation problems the fine-structure of the atmospheric refractive index is re
q uired, thus rejoining the various branches of wave propagation . 

We want to report on some investigations which have been carried out in the scope of the 
research programs of the institutes mentioned above, and which may perhaps be useful for the 
clarification of geodetic questions, too. 

By means of the models of the mean vertical refractive index distribution normally used in 
radiometeorology and in geodesy (approximation by polynomes [3, 4], by exponential height 
functions [5, 6], by multilayered models [7], where a linear decrease is supposed up to 1 km) the 
effects of atmospheric refraction are in general but roughly approximated. This paper deals with 
some restrictions and limits of these mean models in the lower troposphere. 

2. Refractive Index Structure Near the Surface, Especially Over Sea 

The models mentioned fail (already for the description of the mean structure) when used near 
the surface, where strong vertical gradients (dependent on the stability of the atmospheric strati
fication) develop as a result of turbulent vertical transfer. The deviations from the neutral equi
librium being not too strong, the height dependence of an exchangeable quality may be represented 
by logarithmic profiles. The potential refractive index Np (strictly speaking this should be called 
potential refractivity defined by [np - 1 ]  . 106 where np i exactly the potential refractive index) 
may also be regarded as an exchangeable quality. We write (above a rough surface) [8, 2] : 

( 1 )  

er : profile coefficient ; Zo :  roughness parameter = 0,02 c m  over sea [8] ; !1 Np : difference o f  the 
potential refractive index between the sea surface and the observation height, in our case always 
6 m ;  Np refers to the height z = o). As to the profile coefficient r a distinct dependence on Ri
chardson's number *) was discovered, derived from more than one tho usand 1 5-min-vertical 
profiles of water vapour, temperature, and wind velocity. These measurements were carried out 
by the , ,Meteorologisches Institut der Universitat Hamburg" over the North Sea. and the Baltic 
Sea [9] .  For information some values of the profile coefficient (reference level z1 = 4 m) are pre
sented in  table 2 [8, 2] : 

R i :  < -0,5 
r :  0,06 

Table 2 :  Profile coefficient r as a function of the Ri-number 

- 0, l  
0,065 

-(J,05 
0,07 

-0,01 
0,09 

0 
0, 1 

0,0 1 
0, 1 05 

0,05 
0, 1 2  

0, 1 
0, 1 4  

0,5 
0, 1 8  

) b
. .  g b fJ/o z 

* As sta ihty parameter we use the gradient form of the Ri-number, Ri = - . I t  can be T ( a u / d z)2 
approximated by logarithmic models ; with r = 0, 1 and z = 6 m we get Rib � 2 !1 T/u2. 
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In the case of larger deviations from the neutral equilibrium the following equations describe the 
real profiles in a more exact way [8, 2] : 

tl Np [ f (R i) ] 
;--+ Zo

. zJ f(R i) -- d z 
o Z + Zo 

where (2) 

f (R i) = ( 1 + : R it (3) 

Different n-values produce different profile models, a is determined experimentally. With n = 1 we 
get a logarithmic-linear model. With a = 7 this model under stable conditions (Ri ) o) gives useful 
results ; under unstable conditions, especially for Ri ( - 0,05, the Ellison-Panofsky model (n = 
= - 1/4, IX = 4, 5) is to be preferred. This model obviously describes the observations better 
than that of Monin-Obukhov (n = - 1 ,  IX = 4, 5). In stable range the Rossby-Montgomery model 
(n = 1 /2, IX = 4,5) may also be applied. 

By means of equation ( 1 ), which is usually sufficient for describing the stratification of the 
different meteorological parameters "in the German Bight, one may calculate the height profile of 
the refractive index, its gradient (i. e. the ray curvature) at a certain height and the mean gradient 
(i. e. mean ray curvature). Moreover, layer widths on the surface may be specified, in which the 
gradient of the refractive index is stronger than a given value. In radio wave transmission the thick
ness of the layer, in which the ray curvature is stronger than the curvature of the earth, the so-called 
duct is of great importance. In  this ground duct an energy transmission with low attenuation is 
possible, equivalent to large transmission ranges. In order to evaluate the thickness of this evaporation 
duct (the main reason of its origin being the strong water vapour gradients caused by evaporation) 
the gradient of the potential refractive index corresponding to the earth curvature has to be inserted 
·in equation ( 1 )  or (2), to be solved with regard to z. This critical gradient amounts to � - 0, 1 25/m 
for average meteorological conditions near the surface [2]. 
Thus the (radio-optical) evaporation duct thickness, called z*, is obtained : 

z* = I'  tl Np/ - 0, 1 25 (4) 

Corresponding values of the duct thickness result from equation (2) [2] . Layers with such strong 
gradients are nearly always present over sea due to evaporation and heat transfer processes. 

To demonstrate the strength of the gradients the mean coefficient of refraction x (x = 1 /p : 
1 /R, 1 /p :  ray curvature, 1 /R :  earth curvature) between a height of 0,5 m and the respective upper 
boundary of the duct are given as a function of the duct thickness z* in table 3 .  Column 1 represents 
the values during logarithmic stratification (Ri = 0) ; columns 2 to 5 show the mean x-values 
evaluated on the basis of the logarithmic-linear model (column 2 applies for stable condition 
Ri = 0,006, columns 3 to 5 for unstable conditions, Ri = - 0,006, - 0,0 12, and - 0,06). 

Table 3 :  Mean coefficients of refraction within the duct *) 

Ri = 0 Ri = +0,006 Ri = -0,006 Ri = -0,01 2  Ri = - 0,06 
z* x :  

3 [m] 1 ,7 J ,7 1 ,7 1 ,7 1 ,7 
5 2,3 2,3 2,3 2,3 2,6 

10 2,7 2,7 2,8 2,9 3,4 
20 3,2 3,0 3,5 3,6 5,0 
30 3,6 3 , 1  3,9 4,2 6, 1 

For equal duct thickness the gradients (x-values resp.) within the duct (obtained from the logarith
mic-linear profile, IX = 4,5) are s�ronger than those obtained from a logarithmic approximation. 

*) Also above the duct the· refractive index gradient is superstandard, at a height of the triple 
duct thickness - values of about 0,5 are still reached. 
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The strong refraction effects over sea have certain consequences in telemetry [ 1 0, 1 1 ] . With x - 1 
t he curvature corrections disappear. 

The equations and models given above also apply for the refractive index in the optical range. 
l n  this case the refractive index difference /). Nopt , P of the potential optical refractive indices has 
to be inserted. The difference !J. Nopt, P is largely equivalent to the difference of (potential) temper
ature between air and sea (!J. Nop t, P = - 0,95 !J. 8 - 0,04 !J. e, where T = 1 50 C, p = 1 0 1 3  mb, 
f = 60 %). Even the radio-optical duct thickness z* has its equivalent in the optical range. One 
effect of the "optical duct'', occurring when the air is warmer than the water (!J. T >  8), is the phe
nomenon of the elevation of the horizon. In this case the upper boundary of the duct (the , ,Kimm
ftache") is seen as the horizon [J 2] .  

For the German Bight some statistics are given for the most important parameters, by which 
the effects of refraction can be approximated. Table 4 i l lustrates the values of the radio-optical 
and the optical refractive index (Ni .  Ni .  opt re�p. )  reached or exceeded in 90 %, 50 % (median). 
and 1 0 %  of time for the lightships P 8, Elbe f ,  and Weser. It shows furthermore the difference of 
the radio-optical or optical refractive index -between a height of 6 m and the sea surface, as well as 
the duct th ickness z* [ 1 3 ] . Part a of the table gives the conditions for the whole year of 1 958, part b 
those of a month with poor propagation condit ions (January 1 958), and part c those of a month 
with 'good propagation conditions (August) . 

T a b l e  4 a :  

N , 

P 8  E l  w 
90 % : 3 1 9  320 32 1 

1 958 50 % : 325 327 327 
1 0 % :  345 344 345 

-- --·--·---· ----

T a b l e  4 b :  
90 % : 3 1 1 3 1 0  3 10 

Jan. 1 958 50 % : 3 1 7  3 1 5  3 1 5  
1 0 % :  328 325 325 

- - -- - - - -- · ---

T a b l e  4c : 
90 % : 333 322 325 

A ug. 1 958 50 % : 343 343 345 
10 % : 35 1 35 1 354 

N i . opt 

P 8  E l  w 
273 274 275 
278 278 278 
286 288 288 

274 276 278 
284 286 286 
289 292 292 

268 270 273 
267 270 273 
267 270 273 

- - - ----·------ -- -· -· - - ----· - -

- !J.N ,  - L'1 N i .  op t  z* [ml 

P 8  E l  w P 8  E l  w P 8  E l  w 

3, 1 1 ,9 1 ,6 - 3,3 - 3,8  -- 3,7 0,3 0,2 0,6 
20,5 7, l 6,8 -0,4 -0,5 - 0,6 5,2 4,3 4, 1  
20,5 ] 7,5  1 6,9 1 ,8 2, l 1 ,7 1 1 ,6 10,4 9,2 

---------

0,6 1 ,0 0,5 -4,0 -4,5 -4,5 0,3 0,6 0,2 
4,5 4,7 4,2 -0,9 -0,8 -0,9 7,6 8,2 6,2 

1 0,7 9,9 9,2 1 ,2 I ,  1 1 , 1  5,7 5,5 5,5 

1 , 5 3 , 1  1 ,8 - 3,2 - 3,7 - 3,8  1 ,3 2,3 1 ,2 
1 1 ,0 1 2, 1  9,5 -0,4 -0, 5  -0,6 7,6 8,2 6,2 
20,0 22,9 1 9,9  1 ,8 2, l 1 ,7  1 1 ,7 1 3,9 1 1 ,3 

The conditions of forming "- duct (z* ) 0) were present in 98 % of the time (for the whole year 
of 1 958). A posit ive temperature difference air - sea (a requirement for the formation of an optical 
duct) occurred in 38 % ( 1 958) of the time. 

It should be emphasized once more that the parameters discussed (and the rafraction properties 
as well) may be derived from simple meteorological routine measurements. Moreover, measurements 
at one point over sea are in most cases representative for a large area (cf. Chapt.  4. 1 . ). Thus a very 
simple method for determining the propagation conditions in the lowest decameters above the 
sea surface is given. 

The turbulence models presented are also generally appl icable over land. The corresponding 
differences may be obtained from measurements on any two levels, different values of the roughness
parameter z0 have to be used [ 1 4, 1 5 ]. The main difficulty of getting t he refractive index field over 
land, however, is the high degree of inhomogeneity of the earth surface. 

3. Vertical Fine-Structure of Refractive Index Obtained by Refractometer Measurements 

In the lower layers of the atmosphere there are always more or less strong deviations from the 
models of the vertical distribution of the refractive index (described in paragraph 1 ) .  The measure
ments of the vertical refractive index, which wi l l  be the subject of the following discussion, are 
characteristic examples. They were obtained from airborne measurements taken by micro-wave 
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refractometer of the type NBS 3, and 3 A respectively over the German Bight and its coast in the 
years of 1 960 and 1 962 [ 1 6, 1 7] .  

We believe it important to point out that the measuring probes are fixed about 1 m in front 
of the nose of the plane, which again lies about 1 m in front of the motors. The accuracy of the 
micro-wave refractometer amounts to ± 0,1 N; the time response the turbulent variations of our 
instruments amounts up to about 20 c/s. With higher flow velocities through the resonator the limit 
of space response lies at about 1 m (own disturbing effect of the cavity [ 1 8]). At flying speeds 
between 60 and 70 m/s space structures down to about 3 m are resolved. 

3 . 1 .  Mean Vertical Stratification of Refractive Index Above the Sea 
(April/May and August/September 1 960, October 1 962) 
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Fig 1 .  represents results of vertical ascents over lightship Elbe 1 on 23 different measuring days. 
They provide an insight into the vertical layers of the refractive index appearing mainly in  autumn 
under different weather conditions. The mean gradients refer to intervals of 75 to 1 00 m .  

The strong scattering o f  the measuring values corresponds t o  the influence of the different 
kinds of airmasses and their modifications over sea. The extreme negative gradients of the refractive 
index (partly with x )  1 )  have been measured up to a height of 500 m mainly at subsidence-, radia
tion-, and advection-inversions. Friction-, subsidence-, and upslide-inversions were the meteoro
logical cause for the strong superstandard gradients above a height of 500 m .  The positive gradients 
of the refractive index (x < 0) appeared in connection with upsliding moist air masses as well as 
with mist layers and clouds. 

Apart from these extreme stratifications the remaining measured values, within the first 
kilometer, accumulate at refraction coefficients of x < 0,25, namely at about x = 0, 1 5 . i. e. ><radio 
= Xop t •  which results from the smal l  humid ity variation with the height in well-mixed air. This 
fact is due to the influence of the relatively warm sea surface on the vertical distribution of tempera
ture and humidity (above the range of influence of the maritime evaporation duct). 

The analyses of radio-sonde measurements near the coast (Emden) taken at l 200 G MT show 
(apart from d�.ys with extreme conditions) in the first ki lometer, due to convection, also coefficients 
of refraction between 0, 1 and 0,2. 

3 .2 Typical Cases of Vertical Structure of Refractive Index 
Out of the material at hand have been selected some typical refractive index profiles, which 

allow some general statements on the vertical distribution of the refractive index under certain 
weather conditions. 

3 .2. l .  Profiles of Refractive Index During Advection of Warm Air-Masses of Subtropical Origin in 
Autumn (Fig. 2) 

Weather situations which account for advection of subtropical warm air-masses always result 
in  layers with distinct vertical gradients of the refractive index. The warm and moist, but unsatu
rated air-masses flowing from the South over the cooler sea produce a duct near the surface (cf. 
22-8-60 and 1 - 1 0-62 in fig. 2). Another layer with extremely strong gradients of the refractive index 
(70 N/400 m on 22-8-60) - consists between the subtropical air-masses and the Atlantic air-masses 
already upsliding there above. 

In addition to the large area layers the format ion of intensive fine-structures in the refractive 
index field is characteristic for these subtropical air-masses. ·On 26-8-60 strong gradients of the 
refractive index already appear - under similar weather situation - at lower altitudes (cf. fig. 2, 
bottom left ) .  
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3 .2.1. Refractive Index Profiles of High Pressure Areas in Autumn (Fig. 3) 

Characteristic refractive index structcres, considerably deviating from the normal atmospheric 
behaviour, also appear in centres of li1gh pressure (fig. 3). The measurements in the morning (left 
part of the figure) represent the case of an intense radiation- and subsidence-inversion of a fog-bank 
at a height of 1 80 to 220 m. The radiation-inversion causes almost half of the vertical decrease of 
the �efractive index. A coefficient of refraction for radio waves (x.rad1o) of 1 ,53  and a coefficient 
of refraction for optical waves (x.0p1) of 0,69 have been obtained. In the afternoon the distinct 
inve�sion weakened by advection of heated continental air (from SE). Above the sea stable conditions 
developed (contrary to the morning). The decrease of water vapour at the lower limit of the inversion 
(being at the same time the upper limit of a mist layer) is considerably stronger than in the morning. 
In this case the following coefficients of refraction observed are X.radio = 2,04, Xapt = 0,3 1 .  

3 .2 .3 .  Refractive Index Profiles During Advection of Cold Air of Continental Character (Fig. 4) 

Fig. 4 illustrates profile structures of the refractive index developing during the advection of 
an mticyclonic inflow (from N to NE) of (dry) continental polar· air-masses above the warmer 
sea mrface. 

Such invasions of cold air-masses promote the forming of the evaporation duct described in 
paragraph 2. The vertical structures arising above this duct could be devided into two types, which 
resu'.t from the distribution of temperature in the advection layer above the zone of surface friction. 
The layers discovered are briefly described in the following (fig. 4a). 

Type 1 :  The convective vertical motion exceeds the zone of friction near the ground. The transition 
from the friction layer to the lower zone of pure convection takes place gradually. 

h (m) dN/dh 

1 .  30 - 685 

2. - 1 520 
3 .  -· 1 655 

- 0,025 Surface friction layer. Adiabatic stratification of temperature 
Tattered clouds. . 

- 0,045· Moist-unstable stratification of temperature. Cumuli. 
- 0, I 70 Transition into the range of polar air-masses. Temperature in-

version. Isotherm temperature distribution. 
4. - 3050 - 0,030 Range of decending dry polar air. 

(top height of the measuring flight) 

Type 2: A moist-stable strat ified advection zone limits the friction zone near the ground and blocks 
the vertical exchange of air-masses. There is a boundary layer, where marked differences of 
the refractive index are caused by isolated convection cells and parts of clouds, which have 
penetrated into the dry advection layer. Else the advection layer of polar air-masses appears 
undisturbed (fig. 4a, right). 

h (m) dN/dh 

1 .  30 - 680 - 0,025 Surface friction layer. Adiabatic stratification of temperature. 
Tattered clouds. 

2. - 840 - 0, 1 35 Transition into the moist-stable advection layer (height of surface 
friction). 

3 . .  - 1 925 - 0,035 Undisturbed advection layer. Cloudless zone. 
4. - 2 1 1 5  - 0, 1 25 Transition into the range of polar air-masses. 
5.  - 3000 - 0,030 Range of descending dry polar air. 

(top height of the measuring l ight) 

The mean vert ical structures obtained under cyclonic influence of maritime polar air-masses 
(often observed in spring) largely correspond to Type 1 i l lustrated i n  fig. 4 a. Only in the friction 
and convection zone near the ground greater space-time variations of the refractive index are ob
served, especially in the range of moist cloudy air-masses (low fractocumuli). Fig. 4 b shows corre
sponding examples of measurements. 
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Fig.  4 a  

Fig . 4 b  
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4. Horizontal Inhomogeneities of Refractive Index 

4. 1 .  Homogeneity of Atmospheric Stratification Above Sea 

The models of refractive index distribution do not account for changes of the refractive index 
in horizontal direction. Near the surface, however, this assumption is guaranteed only exeptionally. 
Even above the sea, especially of course near the coast, greater differences can be observed under 
certain meteorological conditions (even if frontal zones and land-sea breeze effects are not taken into 
account). This problem, which is  of importance also for the practice of geodetical measurements, 
was investigated by simultaneous meteorological measurements (6 weeks) at several places in the 
German Bight [ 19, 9] .  The measurements taken at a fixed pomt of the open sea proved to be re
presentative for an area of about 70 km and near the coast (at least during the period of investigation) 
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for a range of about 40 km. Particularly the latter statement might only be valid when western 
winds predominate (long distance over sea covered by the air-masses). Under weather conditions 
with land winds considerable differences in the meteorological field near the coast may appear. 
Table 5 gives some statistics of horizontal variations of differences in the refractive index (tl. N1) 
between a hejght of 6 m and the sea surface (important for questions of radio-wave propagation, 
cf. equations 1 ,2,4), and of the corresponding differences of air-water temperatures (tl. T) between 
the lightships Elbe 1 - Weser (distance 25 km), P 8 - Weser (63 km), and P 8 - Elbe 1 (70 km) [1 3] .  
For tl.N the median values (50 %) of the absolute differences for the two long-distance lightship 
combinations (P 8 - Elbe 1 ,  P 8 - Weser) amount in January to l ,6 N  and in August to 4,3N. 
The respective values for D.. T are 0,80 C  and 0,60 C. It  can be seen that there may occur differences 
for tl. N  as well as for D.. T, which are incompatible with the postulation of a horizontal homogeneity. 
In 1 0 %  of the time there are differences, which at distances of about 65 km are greater than 5 N  
(January) o r  l l N (August) for tl. N  and 2,ooc (January) and 1 ,50 C (August) for tl. Trespectively. 

Table 5 :  Absolute horizontal differences of D.. N = N6m - N0m and D.. T = T6m - Tom between the 
lightships Elbe 1 and Weser (25 km), P 8  and Weser (63 km), and P 8 and Elbe 1 (70 km) in 
January and August 1 958 
Here are shown the values, which have been reached or exceeded in x % of all observed 
cases : 

Table 5a : 

January 1 958 

August 1 958 

Table 5b : 

January 1 958 

August 1 958 

/ tl.N(l ) - tl. N(2) j : 
( 1 )  (2) 

Elbe 1 - Weser : 
P 8  - Weser : 
P 8  - Elbe 1 :  

Elbe 1 - Weser : 
P 8  - Weser : 
P 8  - Elbe 1 :  

I D.. Tc 1 ) - tl. Tc2) J : 
( 1 )  (2) 

Elbe I - Weser : 
P 8  - Weser : 
P 8  - Elbe 1 :  

Elbe 1 - Weser : 
P 8  
P 8  

- Weser : 
- Elbe 1 :  

90 % 50 % 

0,3 1 ,3 
0,4 1 ,7 
0,2 1 ,6 

0,4 3,4 
0,4 4,9 
0,4 3,7 

90 % 50 % 

0, 1 0,5 
0,2 0,8 
0,2 0,8 

0, 1 0,5 
0, 1 0,6 
0,2 0,6 

25 % 1 0 %  5 %  1 %  

2,2 3,4 4,5 6,8 [Nunits1 
3,2 5,2 6,4 1 0,3  [Nunitsl 
2,9 4,7 6,2 1 1 ,4 [Nunit s1 

6,7 1 0,5 1 4,0 27,0 [Nunits1 
8,0 1 2,0 1 6,0 23,0 [Nunitsl 
7,0 1 0,5 14,7 20,7 [Nunitsl 

25 % 1 0 %  5 %  1 %  

1 ,0 1 ,4 1 ,8 2,8 (OC] 
1 ,3 1 ,9 2,5 3,6 (OC] 
1 , 3  2,0 2,2 3, 1 (OC] 

0,9 1 ,2 1 ,5 2,2 (OC] 
1 ,0 1 ,5 2, 1 2,6 (OC] 
1 ,0 1 ,5 1 ,8 2,7 (OC] 

The greater spatial differences arise primarily under weather conditions with land winds, 
especially in summer when there are striking differences of temperature and humidity between 
sea and land. Fig. 5 may illustrate this fact. It represents the mean diurnal variations of tl. N  (summer 
1 958) at the three lightships mentioned above during a so-called anticyclonic "Siidlage" and i n  a 
cyclonic "Westlage". Apart from the dependence of the amplitude of the diurnal variation on the 
distance from the coast (P 8 shows the slightest variations) and apart from the great differences of 
diurnal variations under the two weather situations the figure illustrates that the horizontal differences 
in a "Si.idlage" (land winds) can reach considerable values. 

4.2. Horizontal Differences of Refractive Index Obtained by Refractometer Measurements 

Over sea, especially i n  the boundary range of sea and coast, we frequently observed remark
able spatial inhomogeneities of the refractive index and strong variations of its spatial mean 
value. 

In  figures 6 and 7 examples of measurements during anticyclonic weather situations with land 
winds are given. 
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Figure 6 shows the horizontal flights at the heights of 1 20 m and 1 90 m, on 8-9- 1 960, in the 
morning. This day there was a small centre of high pressure over the North-Sea . Masses of dry land 
air (modified polar air) drifted against the moister air-masses over sea. The boundary range is  
characterized by a mean horizontal difference of the (absolute value) refractive index of about 25 
N within a few kilometers only . In connection with this there are horizontal inhomogeneit ies of 
the refractive index (due humidity) with comparatively equal amplitudes. 

Figure 7 represents vertical profiles in the area between sea and land, on 5-5- 1 960. It shows 
measurements during advection of warm air-masses under ant icyclonic influence. A stationary 
surface duct has developed over sea (profile 1 ). In  the boundary range between sea and coast 
(profile 2 and 3) this duct is superposed by strong t ime-space variations caused by the influence 
of flats and by advection from land , where convect ion during the day appeared (profile 4). Similar 
condit ions were always observed during anticyclonic weather situations. To the geodesist they re
present most adverse measuring conditions. 

4.3 Internal Waves in the Atmosphere 

Spatial inhomogeneities also appear in  connection with internal waves (gravity waves, 1 0  min
periods on the average), which may develop in a stable-stratified atmosphere or on an i nversion 
surface, respectively. These problems are also being investigated at the "Meteorologische I nstitut 
der Universitat Hamburg" (20, 2 1 ] and that by means of a net of microbarographs on t he one hand, 
and by simultaneous recordings of temperature and wind i n  different altitudes up to 250 m on a 
radio mast i n  Hamburg-Billwerder or by those of captive balloons equipped with special radio
sondes on the other hand. 

The examples presented in fig. 8 show the changes of temperature which appear in connection 
with vertical oscillations in a ground inversion (400 m thick, increase of temperature by 70 C) at 
different heights (upper part), their horizontal and vertical wind components as well as the micro 
pressure variations on the ground. The alternation of an isentropic s

"
urface (6 = J 70) derived from 

the temperature field is equally added to the figure (lower part).  There are changes of alt itude of 
about 100 m. Under such conditions also the humidity and consequently the radio refractive index, 
too, show strong variations (as other measurements reveal). 
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Fig . 8 b :  Va riat i o n s  of hori z o n t a l  ( u 5 0 m )  and ver t ica l ( w 5 0  m) 

wind s peed,  w i ndd i re c t i o n  ( d 5o m ), m i c ro - p ressu re at t h e  g round 
and c a l c u lated height  va r i at i ons of a n  i s en t ropic s ur face 

This is another instructive example for the complexity of the atmosphere i l lustrating the dif
ficult ies arising from i t  also for the surveyor (as to the most convenient altitude of observation, the 
order of reading the instruments during the process of meteorological measurements etc.). These 
wavy layers often are �lso the cause of so-called radar holes. 
5. Fluctuations of Refractive Index 

The random variations in  space and time of refractive index in  the always and everywhere 
turbulent atmosphere are perhaps of not so great interest for geodetic practice. These fluctuations 
are one of the sources of noise in the measuring system (disturbance of the indicating device etc�). 
because the N-pulsations are connected with phase fluctuations 6 0 (6 0 = {2rr . 2d . 6 N/Ao} . 10- 6, 
d: distance, J..0 :  vacuum wave length).  But this problem seems to be no critical point for the geodetic 
observer. To give an i nsight into the appearing pulsations of refractive i ndex a typical example 
of variance-spectra of refractive index fluctuations is shown in fig. 9. These spectra are derived from 
horizontal refractometer flights (1 min) by means of the autocorrelation method of Blackmann 
and Tuckey [22). 

Measurements taken at a height of 56 and 75 m above the North Sea represent a fairly large 

total variance (6N2 = 2,8 and 1 ,4 resp. - always referred to the frequency range from 0, 1 to 
20 Hz). The fluctuations diminish with i ncreasing height (see also the measurements at the heights -- --
of 955 m, 6N2 = 0,2, and 1 268 m, 6N2 = 0, 1 )  unless there are layers . The spectrum of the fluctu-

1 7  
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ations near an inversion is il lustrated by the horizontal cross-section at a height of  33 1 m ,  which 

was taken directly above the inversion. The total variance /!::,. N2 amounts to 1 3 . The spectra can be 

approximated by the relation /!::,. N2/f ,...._, J-n. The statistical turbulence theory of Kolmogoroff
Heisenberg gives an exponent of - 5/3 in  the case of isotropic, homogeneous t urbulence. The 
exponents measured al l over the world vary between about - 1 and - 3, but seem to approach 
- 5/3 under adiabatic conditions. 

The investigations with regard to the comprehension of the atmospheric refractive i ndex field 
will be continued. 
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B.  Errors and Sources of Errors 

Investigations on Errors in the Determination of Astronomical 
Refraction 

by Karl Ramsayer, Stuttgart 

I .  Introduction 
It i s  wel l  known, that the accuracy of the astronomical determination of latitude, longitude 

and azimuth is. l imited by the accuracy of the determination of the astronomical refraction . This i s  
accepted as  an inevitable fact, and has led to the general opinion that for precise astronomical 
measurements it is absolutely necessary to observe during several nights to reduce the influence of 
refraction anomal ies. This opinion means a severe reduction of the efficiency of the celestial geodesy. 
This efficiency would be increased by several hundred percents, if we could reduce the t ime of 
observations at a station to one single n ight, and if we could get an information that the influence 
of the refraction errors is within an admissible l imit. I n  the fol lowing report it wil l  be shown that 
this goal seems to be within reach. 

The observat ion methods may be divided in  observations of zenith distances and observat ions 
of vertical transi ts .  The latter are influenced by the lateral refraction, wh ich is assumed to be zero. 
The zenith distances are influenced by the vertical refraction, which is so large that it must be deter
mined and taken into account . In the fol lowing we wi l l  only investigate the errors of the determination 
of the vertical refraction. These errors we wil l  shortly call refraction errors. 

2. Survey of the refraction errors 
Table 1 gives a brief survey of the essential sources of the refract ion errors . 

1 .  Actual atmosphere :::/= model atmosphere. 
2. Inclinat ion of the opt ical layers. 
3. Deviation of the mean partial pressure of water steam . 
4. Deviation of colour. 
5.' Motions of the air. 
6. Errors of measured pressure and temperature . 

Table 1 
The influence of the error sources No. 3 - No. 6 is not important. The resulting refraction 

errors on the one hand may be determined with a sufficient accuracy or on the other hand may be 
compensated by the observation of pairs of stars with equal zenith distances and an azimuth dif
ference of 1 800, or, i f  the errors have a random or periodical distribution their influence may be 
reduced by increasing the number of observations. 

3. Computation of the astronomical refraction 
Before yve investigate the influence of the error sources No. 1 and No. 2 we wi l l  remember 

how the astronomical refraction is computed. The atmosphere is divided i n  thin layers with constant 
refractive i ndex n, Fig. 1 .  The angle between the beam of l ight coming from a star and the per
pendiculars to the layers shall be i. Then the refraction R is exactly given by the formula 

0 

R = p"f tan i .  
�

�

n
, p" = 206 265" , 

B 

( 1 )  
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whereby we have to integrate from the boundary B of the atmosphere to the observer 0. This formula 
may be computed, if in all points of the beam of light the refractive index n and the angle i are known. 

For the practical solution of formula ( 1 )  i t  is assumed, that the layers of constant refractive 
index are concentric spheres, the center of which coincides with the center of that sphere, which 
approximates the equipotential surface in 0, Fig. 2. With this assumption we get without a loss of 
accuracy worth mentioning the following formula : 

1 
R = p" (n0 - 1 )  tan z + - p" (n0 - 1 )2 . tan3 z 

2 

n 1 

- tan z (1 + tan2 z) . 
p�'f h .  d ( :0) .  

R = refraction 
n0 = refractive index in 0 
n = refractive index in  P 

. n 1 = refractive index in  B = 1 

no 

p" = 206 265" 
z = apparent zenith distance 
a = radius of sphere through 0 
h = height difference PO . 

The refractive index n may be computed from the following equations [ 1 ] :  

Troposphere : 
P T0 e T0 

n - 1 = - . - (vz - 1 )  - - . - (vz - v 1 ) .  
Po T Po T 

Stratosphere : 

n = refractive index 
p = air pressure 

Po = 760 Torr T0 = 273, 1 5  OK T = absolute temperature 

e = partial pressure of water steam, 

p � = partial pressure of gas �. 
vz = refractive index of dry air at p0, T0 
v1 = refractive index of water steam at p0, T0 
v� = refractive index of gas � at p0, T0• 

(2) 

(3) 

(4) 

If we compute the refraction from equation (2) for mean values of pressure, temperature etc. 
we get the normal refraction at sea level 

Rm = 58", 282 . tan z + 0" ,0082 . tan3 z - 0" ,0762 tan z ( 1  + tan2 z) . 
(5) 

Po = 760,3 Torr, T0 = 282,550 K ,  e0 = 4.8 Torr . 

The last term corresponds to the influence of the atmosphere above the observation stat ion 
for average conditions. 

From Fig. 3 we see that for z ( 600 this influence is extremely small. Hence for z ( 600 and 
always supposed that the optical layers are concentric spheres even large deviations of the actual 
atmosphere from the standard atmosphere (e. g. by an inversion of the temperature in the lower 
layers) may only cause refraction errors ( O" ,2. If we compare formula (2) and (5) we see further
more that for z ( 700 the refraction depends mainly on the refractive index and the apparent zenith 
distance in the observation station. 

The fact, that changes of pressure and temperature within the atmosphere have only a small 
influence to the refraction, is seen very clearly, if we assume that the optical layers are horizontal 
planes. I n  this case the radii of the layers are of infinite size, so that the last term in (2) is zero. 
Hence, if the optical layers are horizontal planes, the refraction depends only on z and n0, and the 
atmosphere above the observation station has no influence at all .  The fact that the atmosphere in 
reality influences the refraction depends only on the curvature of the optical layers. 

Table 2 is a further demonstration, that the refraction is nearly independent from the model 
atmosphere used for the computation of the normal refra<>tion. 
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I 800 

3 1 7,9" 
3 17,7" 
3 17,7" 
3 1 8,9" 

Table 2 :  Comparison of different refraction tables at 760 Torr, + 1 0o c and 6 Torr pressure of 
water steam. 

I n  this table only the values of Harzer are computed from mean values of the true atmosphere. 
The other values are computed from hypotheses which deviate essentially of the actual atmosphere. 
Nevertheless the deviations from the values of Harzer are very small. Even the refraction table of 
Bessel gives good values though the Besselian atmosphere differs extremely of the standard at
mosphere, Fig. 4. 

4. Influence of the inclinations of the optical layers 

For the computation of the normal refraction we supposed that the layers with constant re
fractive index are concentric spheres. In reality this will not be the case . I n  a point P of the light beam 
comi�g from the star the true optical layer will have the inclination !!::.. i against the corresponding 
spherical layer, Fig. 5. lf we set i = angle between the light beam and the perpendicular to the 
true optical layer and i* = angle between the light beam and the perpendicular of the spherical 
layer we get 

(6) 
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Herewith we get from the exact formula ( 1 ) 
0 0 0 J d n  J d n  J D. i d n  I I  • � II  • X I / R = p tan i - '"""' p tan 1 • - + p --. - . - . 

n n cos2 i x  n 
(7) 

B B B 
The last term gives the influence of the inclinations D.i of the true optical layers. This term is 

small . Therefore it is allowed to set 

; x = z , n = I .  

Then we get with n = 1 in B and n = no in 0 
0 n = no 

/). R = p" . - = _P_ /). i . d n . J D. i d n  I I  J cos2 i x  n cos2 z 
B n = I  

(8) 

Fig. 6 shows the relation between D.i and n, whereby the values of D.i are chosen arbitrarily . 

Now we introduce a mean value t::, i of the inclinations, which we define in the following manner : 

n = n0 
D. i (n0 - 1 ) = J D. i .  d n .  (9) 

n = I 
This mean value D.i we call effective inclination of the optical layers. !l.i is changing with zenith 

distance, azimuth and time. Herewith and with 

P To n0 - 1 = 0,000 283 . - . - , Po = 760 Torr , T0 = 2830 K Po T 
we get from (8) 

- /). ;o p T A R ,,-..., I I A • ( 1 ) 2 � 1 "O 
0 

2 u '"""' p . u z n0 - • sec z """"' , . -- . - . - . sec z . 
1 0 Po T 

D. R is positiv, if the layers ascend in the direction of the observation. 

( 10) 

( 1 1 ) 

According t o  [2] the main cause of the inclination of the optical layers is the horizontal gradient 
of the temperature in the vertical of the observation. For sea level we get 

/). i0 = 1 ,70 . 
d T [��] . 
d s  Km 

( 12) 

We see, that in the neighbourhood of the ground, !l.io may be several degrees. But on the other 
hand !l.i will rapidly decrease with altitude because in higher altitudes the atmosphere will be better 
balanced. If we suppose a linear decrease, we get for stations near sea level 

A D.. i0° h Km 11 d T 
u R = 0,05011 • -- • -- • sec2 z = 0,085 . - . h . sec2 z ,  

1 0  l K m d s  
( 1 3) 

where h = height above the observation station, where D.i gets zero. We may also asswne an ex
ponential decrease of !l.i with altitude [3] . But all these hypotheses may only give a rough idea 
of the influence of the inclinations of the optical layers, which is to be expected. 

5. Empirical values of refraction errors 

A better information about the influence of the inclinations of the optical layers we get from 
real determinations of refraction errors. I n  Fig. 7 a and 7 b we see the standard deviations of the 
difference between computed and observed zenith distance of a ·star passing the meridian. These 
standard deviations are derived of 6700 meridian zenith distances by J. Bauschinger [4] and 
L. Courvoisier [5]. They may be approximated by the following terms : 

Bauschinger : m ·� ± Vco,"3 1 )2 + (0,"23 . tan z)2 + (0,"035 . sec2 z)2 , (14a) 
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( 14b) 

The first terms i n  the square roots mainly represent the i nfluence of the errors of the obser
vations and of the declinations of the stars. The second terms are mainly caused by a systematic 
error of the refraction constant. Both, Bauschinger and ourvoisier, used the Besselian refraction 
constant 60"44 instead of the better value 60", 1 0. A part of the second terms is also caused by the 
systematic difference between the interior and exterior temperature of the observation stations. 
The · last terms represent the influence of the inclinations of the optical layers. The statistical basis 
of these last terms is not well founded. But it is sure, that the i nfluence of the incl inat ions of the 
optical layers is astonishi ngly small, because the standard deviations are well approximated by the 
formulae 1 4 a  resp. 1 4  b. 

As a further proof, that the influence of refraction anomalies is small ,  the results of latitude 
determinations with the Astrolab Danjon at Potsdam in the years 1 96 1  and 1 962 [6] may serve. 
Fig. 8 shows the latitude for each series of observations of about 24 stars. The averaging curve 
represents the true value of the latitude with the influence of the polar motions. We see that the 
errors are small and have approximately a random distribution. Fig. 9 shows the distribution of the 
errors according to their size and sign. The maximum errors are -0",34 and + 0",27. The mean 
error of one observation is ± O", 1 0. The mean observation error of one determination of latitude 
is ± O" ,08 . Hence the mean i nfluence of refraction anomalies is only ± 0" ,06. 

6. Determination of refraction errors by determinations of latitude with the Sterneck method 
In [3] the author made the sugestion to determine latitude and longitude by the combination 

of small and large zenith distances and to i ntroduce a mean value of the inclination of the optical 
layers as a further unknown into the adjustment. Meanwhile a student i n  his diploma work [7] 
made corresponding investigations with the Sterneck method for the determination of latitude. 
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He observed pairs of stars with approximately equal zenith distances, whereby the zenith distances 
of the different pairs changed from 30 to 730. 

From the observation of one pair of stars we get the latitude cp from 

1 I I cp = - (os + oN) + - (zs - ZN) + - (Rs - RN) , N star upper culm. ( 1 5) 
2 2 2 

l 1 I 
cp = - (os + 1 800 - oN) + - (zs - ZN) + - ( Rs - RN) , N star lower culm ( 16) 

2 2 2 

o = declination, R = refraction . 
The results are free of the influence of the flexure of the telescope and of periodical errors of 

the division of the circle, because the north star and the south star have approximately the same 
zenith distance. The error of the half difference 1 /2 ( Rs - RN) mainly corresponds to the influence 
of the inclination of the optical layers, hence with ( 1 1 )  

I 1 - - --· 

- d (Rs - RN) = - p" (n0 - I )  (6. is - 6. iN) .  sec z = p" (n0 - l ) . 6. i .  sec2 z .  ( 17 )  
2 2 

Hereby /;;.;5 and 6.iN in general will have different signs . 

If we suppose that 6.i is constant within a series of observations and independent of the zenith 

distance, then it should be possible to determine simultaneously cp and 6.i. This procedure failed, 

because 6.i is changing with zenith distance, azimuth and time. But the results showed again that 
the refraction errors are small even in large zenith distances. 

Fig. 1 0  shows the squares of Ej = � - C?i 
I 

C?i = latitude from observation i, cp = - [cp;] . 

2 
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We see that the increase of zi2 with the zenith distance is only small. The great values marked 
with A belong to the same programme. They correspond probably to observation errors and not 
to a large inclination of the optical layers because the signs of the .:-values are not the same ones. 
This is also valid for the errors marked with B. 

Fig. 1 1  shows the standard deviations mrp of one determination of latitude depending on the 
zenith distance. The numbers correspond to the number of latitude determinations within the marked 
zone of z. The errors are mainly caused by observation errors. The influence of the inclinations 
of the optical layers is very small .  This is very surprising because the observation station is situated 
amidst an extended slope where large inclinations of the lower optical layers are to be expected. 

7. Conclusions 

It was shown that refraction errors, which disturb the measuring of zenith distances of stars, 
are mainly caused by the inclinations of the optical layers. It was further shown that the refraction 
errors are surprisingly small even at large zenith distances. Hence it is generally not necessary to 
observe during several nights if we do not need the highest degree of accuracy. For the determination 
of the deviation of a plumb line an accuracy of ± 0",3 (mean error) seems to be sufficient. This 
accuracy is reachable in most cases within a few hours in one neight. To be sure, that the obser
vations are not disturbed by unusual large refraction anomalies, the author recommends the 
simultaneous observation of zenith distance and horizontal direction of about twenty stars. The 
simultaneous observation of a star in two directions is easily possible with an automatic star tracking 
device [8] .  Afterwards the zenith distances and the horizontal directions are evaluated separately. 
I f  both computations give the same latitude and longitude within a few tenths of an arc second, 
we are sure that the result is free of an essential refraction anomaly, because it is not probable 
that the lateral and vertical refraction anomalies have the same influence. If the difference surpasses 
the limit, the observations must be repeated.  
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Definition of the Refraction and Shimmer Problem Affecting 
Geodetic Observations of Satell ites 

by Darwin G. Abby, Michael S. Tm·enner, Bedford 

Abstract 
A large amount of apparently good information collected from optical field observat ions 

of various light sources is expected to be lost during the data reduction and analysis phase due 
solely to atmospheric effects. Experience has shown this to be true. The available observational 
techniques each require individual consideration primarily as a funct ion of time. Observations of 
satell ites equipped with flashing strobe lights are subject to all the long term and short term shimmer 
effects which compare with the flash durat ion. The continuous trace technique of letting the satellite 
image trail across a photographic plate is subject only to the long term shimmer effects, character
ist ical ly longer than 0. 1 seconds in t ime. "Chopped" image trails fall between these extremes of 
observat ional techniques as the reflected satellite image position is integrated for an exposure period 
of 1 0  to 50 milliseconds, thus eliminating the extremely short fluctuat ion effects. A curve-fitting 
approach using a least squares analysis can be used to resolve the problem and can be readily applied 
to the continuous trace and chopped trail techniques where sufficient data is collected. H owever, 
this least squares approach is somewhat l imited in the case of active l ight sources as there is an 
energy and weight versus number and interval of flashes trade off in the design of an active satel l ite 
experiment . 

Introduction and Background 
During the past several years the art of observing artificial earth satel l ites for the purpose of 

making precise geodetic measurements has developed into an advanced science. A variety of in
dividual techniques have proven to be feasible as well as there exists a series of new techniques 
which are currently being analyzed and tested. ( 1 3) No single technique of observat ion can be 
listed as the panacea for the problems of satellite geodesy ; rather, each must be carefully applied 
to those problems whose parameters can best be matched to the available technique which will 
produce the best and most accurate solution. 

The uses of all optical geodetic satellites are simi.lar in nature : the satellite is used as an object
of-reference in space and as such its exact positions in space and t ime must be obtainable somewhere 
in the geodetic solution. To insure this, the satell ite must be in an orbit which is geometrically 
favorable to all observing stations, such that a strong and rigid geometry is produced during the 
time of observation. 

I n  general, i t  is the geograph ical area which contains the geodetic problem to be solved that 
dictates the approach and individual technique that is optimal . For example, simultaneous ob
servat ions from participating ground stat ions have been used almost exclusively to date in the 
solution of moderate size networks (1 to 2000 km). Large reflecting balloons of the ECHO and 
PAGEOS types have been ideal for simultaneous observations. Yet, they have a limited value 
when it is necessary to extend observat ions to a dynamic mode where individual, or small graphs 
of stations observe the target satellite along an extended orbital arc. In this case, a dense satel l ite 
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of a large mass to surface area ratio is necessary to permit the application of precise orbital con
straints to determine the satellite position along its orbit as a function of time .  

I n  todays inventory, there are at least four artificial earth satellite techniques available to  the 
geodetic community : 

( 1 )  Active satellites such as the ANNA and GEOS series whose optical beacons flash for durations 
of the order of a millisecond at precisely prescribed times. 

(2) Cooperative satellites (those equipped with special directional reflectors) which reflect optical 
signals of short duration from ground laser sites. 

(3) Passive satellites used in a "chopping" mode where sun reflected energy is integrated on film 
for characteristic periods of 10 to 50 milliseconds. 

(4) Passive satellites used in a "continuous trace" mode where the satellite image is trailed across 
the photographic plate. 
I n  all of the satellite techniques, corrections for refraction must be made in the plate reduction 

phase. Normally, the gross refraction corrections using a computed value derived from standard 
refraction equations, such as Garfinkels (3) (7) ( 1 2) and station-observed meteorological parameters 
of pressure and temperature, are straight forward and pose little problem since the referenced 
astronomical background suffers approximately the same refraction. Additionally the correction 
for the satellite being at a finite distance rather than the assumed infinite distance of the

-
star back

ground is also straight forward and has been sufficiently discussed by Baldini and Schmid. (2) ( 1 2) 
Normally, these computed corrections are sufficiently accurate and are not a limiting factor in 
obtaining a satisfactory solution. However, the fundamental atmospheric limitation is the minute 
spatial and temporal fluctuation of the apparent index-of-refraction termed "seeing" which · is 
characterized by the observed shimmer and scintillation effects. 

Scintillation, the fluctuation in intensity of the observed source, is not a significant problem 
as one is interested only in a positional relationship, provided that there is significant energy density 
such that an im.a:ge can be recorded during all phases of observation. It is shimmer, the apparent 
short term angular displacement of an object, which must be recognized as the problem. This is 
not to say the two effects are independent, but rather they have the same cause. Considerable 
literature (4) (5) (6) (9) ( I ' ) exists on the subject and the magnitude of shimmer has been 
satisfactorily measured ; yet, complete agreement does not exist as to the exact cause, size, or me
chanism that produces the apparent fluctuations in the index-of-refraction. The reason for this is 
obvious, it is still impossible to measure the precise and instantaneous index-of-refraction cont
inuously along the light ray from an extra-terrestrial source through the atmosphere to an observer. 

Analysis of the Problem 

Since angular displacements of several seconds-of-arc can be expected during opt ical obser
vations, steps must be taken to minimize the degradations of the final geodetic solution. Recognition 
of the problem is the first step, select ing the mode of observation is next, and finally comes the 
minimizing of these degrading atmospheric effects in the reduction and analysis phase. 

The criteria for observing are based on the environmental and system conditions in existence 
at the t ime of observation : 

( I )  From a visibility standpoint, in the temperate zones of the earth, the best weather occurs 
shortly after the passage of frontal systems. Normally the weather will be clearest after a fast 
moving cold front, yet, this is just the time when shimmer and scintillation will be at a maximum. 

This is the time of the highest winds both at ground level and high altitudes. As time passes 
(over the period of days) even though shimmer becomes less, haze and atmospheric extinction 
increase. Past experience has shown that a significantly large number of observations are made 
during times when shimmer effects are the greatest. A surprisingly large number of plates 
with apparently good data (good image, time records, etc.) have been lost i n  t he reduction 
phase. The bulk of this loss-of-data can be attributed directely to excessive shimmer and camera 
vibration effects. 

(2) The actual source and spectral content of the observed energy source (sun,  satellite strobe, 
or ground based laser) is of no real consequence for obtaining positional information. The 
criteria that must be met is that sufficient energy must be received by an observing instrument 
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to be recorded. If the satellite is small and/or the energy leaving the satel lite is of low power, 
the signal must be integrated for a finite length of time. During this time the satellite will move 
a finite distance. When observing a sun-reflecting satellite each integration period as currently 
experienced in using geodetic cameras has a time interval of 1 0  to 50 mill iseconds. Range, 
satellite albedo, satellite size and shape, camera resolution, and angular velocity must all be 
duly considered. When a strobe light is used, it characteristically has a higher instantaneous 
output power than the sun reflecting satellite, yet its total duration is considerably less. For 
example the ANNA satellite had a flash duration of 2 .3 milliseconds and the GEOS-A satellite 
possessed a flash duration of approximately one millisecond . For obtaining angular information 
in the reduction phase, instantaneous times are computed as a simple mean of the · duration 
of the event, either flash duration or shutter open time. 
The problem of refraction in making optical geodetic satellite observations is not one of 

measuring the gross refraction but rather can be stated as "How does shimmer affect these obser
vations, what is the magnitude of the effect, and how can these effects be minimized ?" The actual 
excursion of the angular position as a result of shimmer is difficult if not i mpossible to express 
mathematically. However, an assumption can be made that the movement is periodic i n  nature 
and is a superposition of both h igh and low frequencies. Whit this assumption, the duration-of
event can then be treated as acting as a low band-pass filter which produces a mean of the high 
frequency excursions. (6) 

Experimental Result and Discf,4ssion 

To obtain representative values of what could be expected during normal operations with the 
standard Air Force Geodetic Camera, the PC- 1000 (f/5, I meter focal length), a random plate 
was selected which was exposed with a contin uous trace d uring a pass of the ECHO I satellite 
(Figure 1 ). Under magnification, the star and satellite trails showed both scintillation and shimmer. 
A star close to the satellite trail was selected and measured as well as a portion of the satellite trail, 
such that the measured section of the trails would coincide in time. The trails were measured on 
a small Mann Comparator which had a reading and operator error of ± 1 . 5 microns, determined 

Fig. l 
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by repeated measurements on a single point. The x-axis was measured in relation to increments 
of 20 and 200 microns along the y-axis for the satellite and 25 microns in the y-axis along the star 
trail. 

Since the star background has a slow angular velocity of 1 5  seconds-of-arc per second of t ime 
versus 606 seconds-of-arc per seconds of time for the ECHO I satellite, the high frequency shimmer 
effects are masked along the star trail but become obvious along the satellite trail . On this particular 
plate 3 distinct frequencies were observed along the satellite trail of 37, 5 .  9, and 0 .  28 hertz with 
comparable periods of 27, 1 70 and 3600 milliseconds. Along the star trail the longer period angular 
movement was almost identical to the satellite period of 3600 mill iseconds while the higher frequency 
effect was obscured as would be expected. The magnitude of the excursions for this particular 
plate were of the order of ± 1 second-of-arc. This seemed to be characteristic of all observed 
frequencies. These results compared well with what would be expected based on previous studies. 
( 1 1 )  (9) (5) (8). (Figures 2 and 3) 

Another type of examination has been conducted where simultaneous observations of the 
active GEOS-A satellite taken from a network of ground stations in the southeastern U. S. and 
Caribbean area, have been investigated for shimmer effects. The assumption has been made t hat 
an observed orbital-segment can be expressed by a polynomial of given degree. The observed right 
ascension and declination have been used in a least-squares curve fitting technique to form the 
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polynomial, then by comparing the orbit as defined by the polynominal with the observed data, 
residuals were obtained as an approx imation of the total random error remaining after the plate 
reduct ion. 

The available data for this evaluation was received on I BM computer card format as the output 
of the plate reductions phase. Previous to this, the raw observations had been made by the 1 38 1 st 
Geodetic Survey Squadron (USAF) in the field and shipped to the Aeronautical Chart and Infor
mation Center (USAF) at St. Louis. Here the plate measurements were performed on a Mann 
Semi-Automatic Stellar Comparator which has a repeatable, reading accuracy of one micron. The 
plate measurements were then processed through computer programs where the right ascensions 
and declinations of the stars are adjusted for sidereal t ime, refraction, lens distortion, camera orient
ation and focal length, and differential refraction along the satell ite orbit. When finally recieved, 
each flash point is associated in time with a right ascension and decl ination and referenced to a plate 
reduction error. 

The total error, cr T, i n  the combined right ascension and decl ination can be treated as the 
square root of the sum of the squares of the individual errors. 

1-(JT = l' :E cri2 

Table I 

Error Sources 

I .  Emulsion and Image Shifts 
2. Comparator Measuring Error 
3 .  Distortion (Tangent ial, Radial, and Random) 
4. Refraction 
5 .  Differential Refraction 
6. Star Catalog 
7. Flash Event Time 
8. Shimmer 
9. Camera Vibrat ion 

Listed in Table I are the errors which affect an individual measurement. The first six are accounted 
for in the plate reduction error, crpR, which has been derived in the plate reduction phase. The re
maining possible errors will be Flash Event Time Error, crTime , which is dependent on the accuracy 
of the satellite clock and e lectronics ; the shimmer error, crs ; and camera vibration error, cr y. There
fore : 

The probable error of the GEOS-A clock at al l t imes when the clock rate is reasonably close 
to nominal has been estimated to be 1 00 microseconds relative to a WWV test point. ( I )  The strobe 
lamp flash intervals will not vary from flash to flash by a value greater than 1 00 microseconds. 
Therefore the inaccuracy along the satellite trail due to flash interval inaccuracies will be less than 
1 meter (less than 0 . 05 seconds-of-arc at normal ranges.) Therefore it can realistically be stated 
that crrime is of no consequence and can be considered as zero. 

The errors from shimmer and h igh frequency camera vibration (a frequency such that could 
be seen in the satellite trai l ,  yet masked by the filtering effect of the slower moving star image) are 
found to be very difficult to separate. The low frequency vibrations can be observed by examining 
each star on a plate and comparing the image trails for an exact similarity of motion since the entire 
emulsion is u ndergoing the vibration. This would differ from shimmer in that this exactness of  
similar motion between separate star trails would not  be expectes to occur over the full plate. In  
examining the v ibration problem associated with the active satell i te technique, wind velocity 
would appear to be the primary cause, since in normal operation there are no shutter or camera 
movements during the actual flash times. The shutter is normally opened several seconds prior 
to event t ime and any inherent shutter vibration is dampened out. Additionally, results have not 

1 8  
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Stat_ion # 3 64 9  ( Jupite r ,  Flo r ida ) 

Te mp Sky °RA Uo Dat e  UT E l e v  Az bulb P r e s s Wind Condition a;- opR as-1 96 6  dry/ w e � 

0 1 / 02 0 8 - 1 7 4 2 . 7 2 6 5 . 9 0 .  6 3  0 . 8 8  1 .  08 1 0 9  

0 1 / 1 3  0 4 - 5 2  3 3 . 6 3 38 . 6 0 . 4 3  0 . 7 3  0 . 8 5  2 . 5 4  

0 1 / 1 5  0 5 - 0 2 44. 7 3 0 9 .  l 6 3 / 54 2 9 . 8 5  Calm Lt ha z e  1 .  1 0  0 .  1 7  1 .  1 1  2 . 0 7  

0 1 / 1 6  0 3 - 0 1  2 5 .  3 1 7 . 4 6 7 / 64 S - 5  kts C l e a r  1 .  8 4  0 . 3 3  1 .  8 7  2 .  1 0  
0 1 / 1 6  0 5 - 06 3 7 . 2 2 9 7 . 4 6 5 / 6 3 2 9 . 8 0  Calm Cle a r  0 .  3 4  0 .  0 9  0 .  3 5  1 .  04 
0 1 / 1 9  0 3 - 1 4  3 8 . l 3 5 8 . 4 5 5 / 5 1  3 0 .  1 5  SE - 3  kts Cle a r  0 .  6 6  1 .  5 7  1 .  7 0  o .  8 9  1 .  4 
0 1 / 28 0 1 - 5 4 4 5 .  l 1 3 7 . 3 4 7 / 4 1  3 0 . 2 5  SE - 3  kts C l e a r  0 . 5 4  1 .  1 8  1 .  3 0  1 .  0 l 0 . 8 
0 2 / 0 5 0 0 - 1 6  3 1 .  4 3 26 .  l 4 6 / 3 9  3 0 . 3 0  NE - 1 0  kts Clear 0 .  7 3  0 . 8 2  1 .  l 0 l .  0 5  o .  3 
0 2 / 09 0 0 - 3 7  3 1 .  1 2 5 9 . 5 68 / 5 7 3 0 . 4 5  N W - 1 0- 1 5  kts C l e a r  0 . 8 4  0 . 3 3  0 .  9 0  0 . 9 3  
0 2 / 1 6 1 0 - 1 8  2 6 . 7 1 04 .  l 6 7 / 66 3 0 . 0 5  Calm Lt haze 0 . 44 0 . 6 9  0 . 8 2  0 . 9 4  
0 2 / 1 7  1 0 - 1 8  2 9 . 4 1 3 6 .  l 6 3 / 6 2  3 0 . 0 5  Cal m  mod . haz e  0 . 5 7  0 . 9 2  1 .  08 1 .  l 0 

Station # 3 86 1 ( H ome stead, Florida ) 

0 1 / 1 3  0 4 - 5 2 3 0 . 2 34 1 .  5 0 .  6 7  0 . 8 2  1 .  06 1 .  0 3  0 . 2 
0 1 / 1 5  0 5 - 02 4 1 .  l 3 1 6 . 7 6 9 / 6 5  2 9 . 8 0  Calm C l e a r  1 .  3 5  0 .  5 5  1 .  46 0 . 9 2  1 .  l 
0 1 / 1 6  0 3 - 0 1  2 2 . 3 1 6 . 6 6 7 / 64 2 9 . 7 9  NE - 5 - 1 0 kts C l e a r  0 .  1 1  0 . 6 9  0 .  7 0  0. 8 2  

0 1 / 1 6  0 5 - 06 3 5 . 6 3 04 .  1 6 5 / 6 3  2 9 . 8 1  N W - 0 - 5  kts Cle a r  0 . 44 0 . 3 9  0 .  5 9  1 .  1 2  
0 1 / 1 9  0 3 - 1 4  3 3 . 9 3 5 9 . 5 5 7 / 5 2  3 0 . 0 8  S - 5 - 1 0 kts B r oken cum. 0 . 8 9  1 .  2 3  l .  5 2  1 .  0 9  1 .  1 
0 1 / 2 8  0 1 - 54 48 . 4 1 28 .  7 4 9 / 4 3  3 0 . 2 2  S E - 1 0 - 1 5  kts C l e a r  0 .  9 5  0 . 7 6  1 .  2 2  1 .  0 2  0 . 6 

0 2 / 0 5 0 0 - 1 6  2 8 . 8 3 2 9 . 6 I 3 0 .  2 2  S E - 1 0 - 1 5  kts C l e a r  o·. 6 4  0 . 3 0  0 .  7 1  I .  0 6  

0 2 / 09 0 0 - 3 7  3 2 . 4 2 6 3 . 3 6 7 / 64 3 0 .  28 W - 5 - 1 0  kts Haz y  0 .  48 0 . 4 2  0 . 64 0 . 9 3  

0 2 / 1 6  1 0 - 1 8  2 6 . 8 1 0 0 .  2 7 2 / 68 3 0 . 0 6  N - 0 - 5  kts Br oken cum. 1 .  62  0 .  46 1 .  6 9  0 . 9 7  1 .  4 

0 2 / 1 7  1 0 - 1 8  3 1 .  2 1 3 2 . 5 6 3 / 6 1  2 <4 .  9 5  Calm Lt ha ze 0.  1 9  0 . 1 3  0 .  2 2  0 . 9 7  

0 4 / 1 5  08 - 36 4 5 . 5 8 6 .  7 i .  l a  0 . 4 7  1 .  2 7  1 .  1 1  0 .  6 

Tabl e Ila 
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Station # 3 1 0 6 {Antigua I s l an d ) 

Sky 
Date U T  El e v  Az Te mp Pr e s s  Wind Conditi on �"' 'Ji- a;- op� 1 9 6 6  oS 
04/ 0 1  0 1 - 0 1  4 0 � 2 3 4 ? .6 0 . 6 0  0 . 8 1  1 .  0 0  1 .  0 5  

Station # 3 40 I ( B e dford,  Ma s s )  

0 1 / 1 2  04 - 49 48 . 0 2 3 8 . 2 1 .  0 2  0 . 8 9  l .  3 5  0 . 8 9  l .  0 
0 1 / 1 3  04 - 5 2  3 7 .  7 2 5 9 . 4 0 . 8 6  0 . 9 7  1 .  3 0  0 . 9 8  0 . 8 
0 1 / 1 9  0 3 - 1 4  5 1 .  6 246 . 2 0 . 47 0 . 6 2  0 . 7 8  o .  7 6  0 . 2 

Station # 3 4 0 2  (Mobil e , Alabam a )  

0 1 / 0 2 08 - 1 7 6 0 . 4 2 0 1 . 8 0 . 2 3  0 . 6 7  0 . 7 1  0 .  7 4  
0 1 / 1 2  04 - 49 4 5 . 2 4 1 .  6 0 . 7 5  o .  3 1  o .  8 1  0 . 68 0 . 4 
0 1 /  2 8  0 1 - 5 4 2 3 .  5 1 25 .  1 0 . 7 7  1 .  2 2  1 .  44 1 .  09 0 . 9 

Station # 3 404 (Swan I s l and ) 

0 1 /  2 8  0 1 - 5 4 40. 9 7 1 .  9 1 .  3 1  1 .  7 6  2 .  1 9  l .  0 1  1 .  9 
04 / 1 5  08 - 3 6 3 0 . 9 5 8 . 7 0 . 8 8  2 . 4 7  2 . 6 2  1 .  0 9  2 . 4 

Station # 3 4 0 5  ( G r an d  Turk Island ) 

0 1 / 2 9 0 2 - 0 0 4 7 . 2 2 0 1 .  l 0 .  7 6  4 . 3 3  4 . 40 1 .  0 9  4. 2 

Station # 3 406 ( Cu r a c a o  Island) 
........ 
00 

* 
0 1 / 2. 9 0 2 - 0 0 5 9 .  1 288 . 5 0 . 7 7  1 .  1 1  1 .  3 5  l .  1 3  0 . 7 
04/ 0 1  0 1 - 0 1  2 3 . 6 3 9 . 8 0 . 4 5  o .  7 1  0 . 8 4  0 . 88 

N 
Table IIb -..J 

Vi 



Lis ting of GEOS Film Plat e s  
Analyz e d  and the Re s ults 

Sky 
Date UT Elev Az Temp Pr e s s  Wind Condition 
1 9 6 6  

Station #3407 (Isle of Trinidad ) 

0 1 / 29 0 2 - 00 3 2 . 4 28 5 .  1 

Station # 3 648 (Savannah, Georgi a )  

0 1 / 02 08 - 1 7 3 9 .  9 2 3 5 .  7 
0 1 / 1 9  0 3 - 14 5 6 . 2 05.  2 
0 1 / 28 0 1 - 54 3 1 .  1 148 . 4 
0 2 / 05 00 - 1 6 4 3 . 6 3 1 4.  7 

Station # 3 6 5 7  (Abe r de en, Mar yl and ) 

0 1 / 1 2  04 -49 68. 6 242 . 2 
0 1 / 1 5  05 - 0 2  3 5 .  3 240. 2 
04/ 0 1  0 1 - 0 1  2 5 . 6 1 09 .  5 
04/ 1 5  08 - 3 6 34. 6 1 5 0. 8 

Table lie 

°RA- Oj- or-

0 . 6 3  0. 46 0 . 7 8  

0 .  64 1 .  4 0  1 .  5 4  
0 .  7 5  o.  1 3  0 . 7 6  
1 .  1 3  1 .  5 3  1 .  9 0  
0 . 6 7  0. 2 3  o.  7 1  

0 .  7 5  0 . 9 0  1 .  1 7  
0 . 7 0  0 . 8 5  1 .  1 0  
1 .  1 3  1 .  1 2  1 .  5 9  
1 .  2 2  1 .  4 9  1 .  9 3  

a-PR. 

1. 02 

0 . 8 6  
0. 8 2  
1 .  02 
1.  08 

1 .  0 2  
o.  9 4  
0.  7 3  
1 .  4 1  

oS 

1 .  3 

1 .  6 

0. 6 
0 .  6 
1 .  4 
1 .  3 

N ......:i 0\ 
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demonstrated that the vibration is a problem in the PC-1 OOO observations of active satellites. There
fore, for the remainder of this paper the effects of vibration shall be treated as minimal and/or 
included as shimmer. 

The total error for an individual plate or flash point can be obtained by computing a poly
nomial using a least squares adjustment to obtain the residuals and variance. Since only seven 
flashes are available per observation in the GEOS-A sequence a third order polynomial was chosen 
as a best representation of the data. To arrive at this decision, second, third, and fourth-order poly
nomials were computed and it was found, in general, that the residuals for the third order fit were 
minimal. Also, it was observed that the third order polynomial produced a changing satellite 
acceleration representative of the real case. 

A total of 43 observations from 1 1  sites were analyzed and the results can be examined in 
Table I I .  All error columns are in seconds-of-arc. (The figures for right ascension have been corrected 
for convergence of the meridians.) The total plate error, crr, was computed by 

crr = -v crRA2 + cro2 
Sir..ce cr1;me is negligible and crv is treated as negligible or a part of the error due to shimmer, crs then 

crs = -Vcrr2 - crpR2 
Where crpR equaled or exceeded crr, shimmer is regarded as having no significant affect in de
grading the plate data. This occurred in 42 % of the plates examined while in the remaining plates crs ranged as high as 2 . 4 seconds-of-arc with an average value of 0 . 9 seconds-of-arc. 

Two stations, at Jupiter and Homestead, Florida were of particular interest. These stations 
were separated approximately 1 50 kilometers and as a result were under the influence of the same 
general meteorological conditibns. Of the data evaluated, these two stations participated in  1 0  sets 

Fig. 4 

a ! Sec of A RC) 
- 2'- 1' 0 i' 2' RESIDUALS FOR G EOS FLASHES (3 rd Degree Polynomial  Curve Fit) Station 
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of simultaneous observations. In  three of these sets vf simultaneous observations, the plotted 
residuals of the least-square curve fits to the flash image points compared both in magnitude and 
direction between the two stations. This can be seen in Figure 4 where four sets of residuals are 
plotted. The observation of 01 54 on 28 Jan 66 is presented as an example of a random distribution. 
The observation of 0452, 1 3  Jan 66 show a small effect, while the observations of 0502, 1 5  Jan 66, 
and 001 6, 5 Feb 66, show a marked degree of similarity. 

Weather data for the observations at Jupiter and Homestead was collected from the camera 
operators log and further compared with meteorological surface charts, the upper air analysis 
charts from 850 to 100 millibar levels, and the balloon sounding from M iami, Jacksonville, and 
Tampa, Florida for this period of time. During January and February the seasonal jet stream winds 
were active over Florida with speeds characteristically as high ':\S 50 to 70 meters per seconds at 
the 300 millibar level, (approximately 9,400 meters height). Of special interest, on the night of 
15 January 1966, both cameras were looking northwest into an approaching cold front (frontal 
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passage was 14 hours later) with the associated frontal pressure and temperature changes. (Figures 5,  
6,  7, and 8) 

I t  is recognized at once that no significant conclusions can be drawn from this discussion 
since insufficient data has been collected and examined. However, as a scientific curiosity a further 
comparison of meteorological data to observed shimmer would be warranted. With the advent 
of active satellites, a significant experiment could be performed by a network of cameras over a 
wide area by observing the satellite flashes that provide a common time and position reference. 
The purpose of this experiment would be to determine If the changing meteorological parameters 
over a geographical area do contribute to a systematic, fast-changing, index-of-refraction whose 
effect can be recognized and measured by separated observing stat ions. Ideally, the cameras would 
be separated from a few meters up to several hundred kilometers. This type of observations has 
already been attempted at Jupiter, Florida by NASA for the purpose of image quality studies and 
could be extended with slight modification to the study of shimmer. ( 1 0) 

Summary and Conclusions 

With due consideration of the discussion presented above, several conclusions can be made. 
1 .  Independent of the problem of measuring and/or computing the gross atmospheric refraction 

and the differential refraction between the astronomical background and a near earth object, 
there exists the apparent small short-term fluctuations in the index-of-refraction. In a majority 
of observations made, these fluctuations do become a significant if not a limiting factor in 
making a precise geodetic determination. 

2. When making geodetic satell ite measurements a statistical approach is extremely valuable in 
overcoming the limitations i mposed by shimmer. As well as improving the accuracy of solution, 
i t  can be used an early monitor of the quality of data prior to the lengthy solution computations. 

3. For active satellites, in order to reduce shimmer by using a least-squares fit, the number of 
flash points during a camera observation sequence should be increased to as great a number 
as possible consistent with the satellite's power capabilities. Certainly the ANNA satellite 
with five flashes per sequence and the GEOS-A satellite with seven flashes per sequence have 
not provided an overabundance of data for eliminating atmospheric refraction effects. 

4. For passive satellites, collection of sufficient data is not generally a problem since 100 data 
points can easily be recorded during a single observation. Yet, some improvement in data 
quality is obtainable when the exposure duration is selected to filter the effects of high frequency 
shimmer. 

5. Further examination of the effect of meteoroligical parameters or systematic shimmer is warr
anted. One possible step would be to perform an experiment where a network of separated 
cameras simultaneously observe an active satel lite. With sufficient data, it should be possible 
to determine if a correlation exists between shimmer and gross meteorological conditions 
of frontal systems, high altitude winds, and changing pressure and temperature gradients. 
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C.  Refraction in Connection with Spatial Geodesy 

Formules essentielles de la refraction d'un rayon lumineux 

entre 2 points a distance finie ou infinie 

par H. M. Dufour, Paris 

L'expose ci-apres se propose de rappeler les formules de base de la refraction et donner leur 
caracteristique d'application dans les divers cas qui se presentent en pratique. 

Ces demonstrations se trouvent dans 2 articles precedemment parus [ l , 2] 

l - Formules de Base ,-. 
On se limite au cas d'un arc A B plan. 

N 

A 
A vec les notations de la figure ci-dessus, on a :  

.5 

Refraction totale : � == P t  + P2 = .{ r (M ) ds 

0 

s 

l 1· Angle P t : P t  # sin Pt = 
S 

(S - a') I' da' 
0 

s 

Angle pz : P2 # sin P2 = �fa I' d a 

0 

T etant la courbure du rayon lumineux en M. 
En pratique, sauf de rares exceptions, s et a peuvent etre remplaces par leurs projections sur A B. 

Remm;ques 

1 )  La courbure r est egale a ( - L �) ' n etant l'indice de l'air, N la normale exterieure a la 

trajectoire (A B, -N = + � )· 



2) L'application de !'integration par la formule des 3 niveaux donne les expressions : 

� = s 
r 1 + r 2 4 r t12 

6 

s 
n2 = - -· (2 r t: + 1'2) I" 6 12 
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3) Ces formules donnent aussi les corrections pour passer de la transformee d'une ligne geodesique 
,...., -� 

A B a  la secante A B, en projection conforme. L'indice n est remplace par l'echelle e de la pro-
jection. 

4) Elles se generalisent sur la sphere (projection conforme sur la sphere de rayon 1 ) :  

s 

� = 
.
r r (s) dJ 

0 
s 

1 /� sin P I = -.- sin a' r (M ) d cr' 
sm S . 

0 
s 

sin P2 = -.-
1
- {sin cr r (M) d a 

sm S . 

0 

la fonction "longueur" devenant un sinus et la courbure T devenant la co·urbure geodesique . 

I I  

Le probleme des couches horizontales planes est une premiere approximation toujours interessante. 
n permet en particulier de voir apparaitre une quantite tres importante, que nous appellerons Ja 
hauteur equivalente d'air 

A etant la densite de l'air. 
L'indice n peut en effet s'ecrire : 

n = 1 + a.06 (a.0 = 0,000 292 55) 

et !;integration fait intervenir la seule quantite IM· qui est une donnee pratiquement equivalente 
a la pression. 

I 
l 

11 - 12 
P ex> - P I = rxo lg �o H 

p ex> = a.0 tg �o A 1 
[�0 = distance zenith'1.le en A, /1 = IA, 12 = IB, 61 = densite en A, H = denivelee] 

Pour un sc>.tellite, /2 = O ;  on pourra ecrire : 
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P2 11 8 km T1 
p 00 

= H 1:1 1  # H km 273 
(T1 = temperature absolue en A) 

formule amplement suffisante jusqu'a � = 800 

L probleme des couches horizontales spheriques est un peu plus nuance. On pourra distinguer 2 cas ; 

A) � < 800 

L'integrale reste realisable dans to us les cas ; elle fait apparaitre les integrales : 
00 

I i (M) = f 1:1 d h 

M 

00 12 (M) = f 1:1 h d h 

M 

avec h = h'(l + 
2

h�) 
(h' = altitude vraie) (13 (M) � [ fJ. h' d h . . .  etc . .  -) 

L'integrale 11 (M) qu'on continuera a appeler hauteur equivalente d'air est toujours tr�s voisine 
d'une pression. Les autres integrales necessitent de faire une hypothese sur la loi des temperatures 
en altitude, mais !'influence de cette hypothese sur le resultat est pratiquement minime . . .  

II apparait aussi une erreur de ligne d'integration, qui peut etre non negligeable pour � > 750. 

I I 
, . .., 
I X-t I 
I I 
I I 

I 
I 
I 

Fig. 2 

P I = CXo lg �o [ll 1  -
X2 

(/1 - /2) ( 1 - __ 3 Hm 
-

� l2 X2 J R S cos2 �o (n + 1 ) R cos2 �o (n + 1 ) R2 cos3 �o 
P 1  en prenant pour. ligne d'integration �o = �1 + 
2 

avec X1 = R eos �0, X2 = X1 + S 
en adoptant une loi lineaire de decroissance de la temperature : 

T � T1 [1 - :J d' oil !J.  � 8 1 ( 1 - :J- ' . I � 11 (1 - :J 



r par exemple T = 288 ( i - 4:) , n = 5,7 , :: = - 60/km ] 
La h auteur I equivalente d'atmosphere est liee a la pression barometrique par la relation : 

pmm 
I =  -- x 8 010  

760 ' 

Quand B va a l ' infini (cas d'une visee sur etoile) : 

t" = rx tg �o r� 1 - / 1 ( 1 - -- 3 H"}__ __ )l 00 0 cos2 f30 (n + 1 )  R cos2 [30 _ 
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expression equivalente a la formule de Laplace ( avec (30 = � 1 + P� ) mais qui peut aussi s'ecrire 

pratiquement : 

p00 = rxo tg f30 (� 1 -
1 1 ) 

cos2 [30 
avec [30 = f3 1 + p00 

(c'est-a-dire en prenant pour f3o Jes distances zenithales calculees d'apres Jes ephemerides). 
On notera aussi la forrnule, pour des engins hors de ! 'atmosphere terrestre : 

P2 = rxo tg f3o --- 1 - . [ /1 ( 3 Hm )J 
S cos [30 (n + 1 )  R cos2 (30 

Remarque importante 

Les pressions"barometriques �tant supposees mesurees, Jes grandeurs I s'en deduisent facilement :  
Jes hypotheses sur I'atmosphere n'interniennent que dans des termes correctifs. 

B) f3 )  800 

I I  semble que la seule fac;on de resoudre pratiquement le probleme consiste a se definir des 
lois de l'indice en fonction de ! 'altitude : ( 2 h ') 

h = h' 1 + -!? . 
On peut songer par exemple a se definir 2 zones : 

1 
0 ,.,- h ,,,, H , � = P + Q h + T h2 , v = - = p + q h - t h2 n 

1 H / h ,,,, 00 ,  /!i = P' + Q' h + T' h2 , v = - = p' + q' h - t '  h2 
n 

Les formules generales conduisent alors a des calculs relativement faciles a mener a bien. 
A titre d'exemple, quand A et B sont dans la meme zone, on aura : 

� = n 1 sin � 1  s r q - t s cos f3 1 - f 3s: J 
s2 [- s J P 1 - pz = n 1 sin f3 1 t - cos f3 1 + -3 2 R - -

p l = q - 2 t - cos f3 - I -n1 sin f3 1 s [ s s2 J 2 3 6 R 

Les coefficients (p, q, t) qui derivent des (P, Q, T) pourront etre definis par les diverses conditions 
qu'ils doivent satisfaire : 
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- Valeur de A au point h = 0 
- Valeur .de S A dh (- - pression) - Equation barometrique 
- Hypotheses sur Jes temperatures 
- Mesures effectuees. Hypotheses meteorologiques . . .  etc . . . .  

Conclusion 

Nous avons surtout voulu insister sur le fait que I' introduction de la pression, quantite mesurable, 
dont derive la grandeur /, hauteur equivalente d'atmosphere, permet de reali ser des integrations 
rigoureuses pour f3 ( 800, avec des hypotheses tres generales sur la structure de !'atmosphere ; ce 
phenomene, deja bien connu pour Jes calculs sur Jes etoiles (terme completentaire de la formule 
de Laplace), se generalise aux points vises a d istance finie. 

On notera que c'est aussi la pression qui intervient comme terme correctif principal dans Jes 
calculs de l'effet de la refraction atmospherique sur Jes distances mesurees. 
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Determination of Refraction When Adjusting Spatial Triangu1ation 

by L. Hradilek, Prague 

The problem of refraction was solved by the adjustment of spatial triangulation in the Western 
Carpathians. Theoretical investigations and practical tests proved that it is possible to estimate the 
main value of the coefficient of refraction (one or two parameters defining the refraction) without 
meteorological measurements at every point of the network . 

It is necessary to f ulfill two conditions : I .  The station points are to be chosen on sharp peaks or at least I 0 - 1 2  m above the ground. 
2. All vertical angles measured at the observation station are to be considered as one observation 

unit. They must be measured quickly for the changes of tefraction not to exceed substantially 
the limits of the observation errors. 
When repeating the measurements of vertical angles at least twice (in two hours' intervals) 

we can trace the changes of refraction and consider the applicability of each vertival angle for the 
adjustment. 

Fig. 1 represents the changes of vertical angles at the station point Baranec (2 200 m) during 
the whole day. All these vertical angles are suitable for adjustment. 

It sometimes happens that the first measurements are anomalous (Fig. 2). The cause is in the 
apparatus which must get adapted to the temperature conditions at the station point. On the 3rd 
picture we can see the anomalous changes before sunset. These last measurements cannot be taken 
into adjustment. 

New condition equations were derived for adjustment of vertical angles, and there was used 
an approximative solution of normal equations with unknown coefficients of refraction and de
flections of the vertical by tl\e adj ustments without the possibility of using electronic computers. 

For adj ustment with high-speed computers there was devised an exact method of combined 
adjustment of all measured quantities yielding the spatial geodetical coordinates, deflections of 
the vertical and coefficients of refraction at every point of the network. 

In the Western Carpathians the coefficients of refraction varied within the limits of 0,09 - 0, 1 9  
at different station points. The mean difference 0,01 1 between their values was estimated both 
by the approximative and. the exact method. 

For an independent check-up of the computation of refraction was used the precise levelling 
transformed by Molodensky's method to the ellipsoid heights and the computation of height 
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differences from directly measured lines (as inclined as possible). The difference of 2 - 3 cm at 
the distance of 1 0  - 1 5  km shows that the refraction errors are within the limit of 1 " .  

The following problems and questions were solved together with the refraction problem. 
There was 

1 .  realized the project "Passo Pordoi" of the Symposium at Cortina d'Ampezzo in 1962. 
2. reached nearly the same accuracy in the horizontal and vertical coordinates. (The ratio of the 

weights of horizontal angles and vertical angles was about 2 : 1 ). 
3. answered the question of the possibility of mapping the quasigeoid by combining geometric 

methods with the ordinary levelling. 
4. there were invest igated the conditions and tested the possibility of using classical methods 

of separated adjustments of horizontal and vertical angles in high mountain regions. 
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Results of Terrestrial Refraction in Mountainous Countries by 
the Investigation of Vertical Triangles . 

by Rafael N. Sanchez, Tucuman 

The Consejo Nacional de Investigaciones CienWicas y Tecnicas of the Republica Argentina 
subsidized this research. 

1 .  In a previous paper it has been shown that we can compute vertical refraction angles in mount
ains without limitation in height by combining zenithal angle, tellurometric and astronomic 
measurements. 
At the University of Tucuman we chose two very different zones : the Tolomb6n triangle is 

across the Calchaqui valley, a long and dry one in the argentine provinces Catamarca, Tucuman 
and Salta (fig. 1 ). The Alpachiri triangle, on the contrary, l ies on the eastern side of the Aconquija 
"sierra" which is in frofit of the great plains and shows a high ridge (more than 5000 m) along 
50 km (fig. 2). A geometric levelling between the points A and P was performed (including one 
intermediate astronomic station to know the geoid's profil). This enabled us to determine uni
vocally the six refraction angles. 

I 
\ 

�-
(1'7 So ... ) -+o;Q""" 0 °  0 9' 53 • __ / 

I I 

p I � .. • 0'10 44 "� 
I I 

2. Tellurometric measurements : the distances were computed by averaging the values N calcul
ated at the extremities of each side, near the MRA2 units. Measurements were only made 
if a breeze or wind ran at the terminals, between 8 and 1 1  in the morning, 1 6  and 1 9  in the 
afternoon, in  general during two or more days. Only one side, P R  (20, 7 km with 3400 rn in 
diff. of height) showed a strong correlation between observed retards and computed distances ; 
i .  e. variations of mean ·N along the microwave path were not suf6ciently represented by the 
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changes of N computed as above was indicated. (Radio soundings in Cordoba simultaneous 
with the measurements in Alpachiri - July 64 - showed in average a l inear relation between 
N and h). 
The results were : 

BQ = 1 94 1 0,30 m ( ±  3,5 cm) from 8 measurements 
CQ = 37855, 1 5  m (± 5,4 cm) " 1 0  , ,  

B C  = 1 8746,5 1  m ( :::!::: 3, 1 cm) " 1 1  " 

PR = 20736,68 m ( :::!::: 3,0 c:n) " 1 2  " 

A R  = 50707,0 1 m ( :::!::: 7 ,5 cm) " 1 0  " 

A P = 30108,86 m ( :::: 3, 1 cm) " 1 0  " 

3 .  Zenithal angles : in Tolomb6n reciprocal and simultaneous measurements were performed 
during 6 days (April 64) from 10  to 1 7  hours. The reciprocal z generally showed similar patterns ; 
also maxima values within the period of observation. On the contrary, a definite relation didn't  
appear between z and the observed temperatures. Sets of s ix :: steady values were taken to 
deduce vertical refraction angles. 

I days July 1 964 I adopted values I 1 8  1 9  20 2 1  

ZPA = 9 1002' . .  4 1 ,5" 43,4" 4 1 ,5" 43,  1 "  9 1 002' 42,4" 

ZAP = 890 1 0' . .  40,8" 40,5" 4 1 ,2" 57, I "  890 1 O'44, 9" 

.ZpR = 80021 '  . .  01 ,5" 07,0" 00, I "  0 1 ,3" 80021 '02,5" 

ZRP = 99048' . .  1 7,4" 23,5" 26,5" 22,0" 99048'22,4" 

ZAR = 85040' . .  08,5" 57,2" 57,0" 04,6" 85040'01 ,8"  

ZRA = 94042' . .  24,9" 25,4" 28,8" 22,8" 94042'25,5 I 

Table 3 :  Averages z in the Alpachiri triangle. 

Jn the Alpachiri trilateral reciprocal z were observed from 1 0  to 1 6  hours during 6 days (July 64). 
The side A P  (30 km, between 380 and 890 m osl) only showed a definite trend of maxima values 
with maxima temperature. Strong variations in the z values on the sides A R  and P R  were observed : 
tens of seconds were the differences between the observed ZAR (A R = 50,7 km, from 380 to 4360 m 
osl). The z averages of each day, nevertheless are within few seconds (Table 3) and the means of 
the complete days ( 1 8, 1 9, 20, 2 1  July) were taken to compute the vertical refraction angles. 

4. Latitude and Longitude determinations : 10 to 1 5  stars at h = 300 were observed at the 6 stations 
with 1" theodolites, radioreceivers and marine clocks. A standard error between ± 2" and 
± 4" can be assigned to the computed latitudes and longitudes. The resulting angles between 
the plumb l ines, were in Tolomb6n : 

in Alpachiri : 

YCQ = 00 1 9' 4 1 "  

YAR = 00 26' 28" 

YBQ = 00 09' 53" 

YAB = 00 1 5' 44'' 

y BC = 00 09' 48'' 

YPR = 00 1 0' 44" 
5. Geometric and astronomic leveling between A and P :  I n  order to apply t he classical method 

to compute !l. zAP and !l. zpA , a geometric leveling and an astronomic station were performed 
between A and P. The former gave !l. h = 488,7 1 m and the later a plumb line deflection of 
7".  Thus the zenithal angle of the right side A P at A was 

�AP = 890 1 2' 07" 

6. Refraction angles at Tolomb6n : Table 5 shows 9 sets of observed z taken at moments of steady 
variations. The !l.z were calculated with the hypothesis 

!l.zco = !l. zoc 
for the presumable less perturbed side CQ. 
As a further step it can be taken the CQ light path as a 3rd degree polynomial : 

1 9  



Table 5. Tolomb6n triangle : observed z and refraction angles dz (in the case dzac = dzca) 
I a I b I c I d I e I f 

April 64.Hour I 1 1  1 1 . 1 5  I 1 1  1 i .30 I 1 1  1 4.30 I 1 1  1 5.30 I 1 2  1 1 . 1 5  I 1 4  1 4.45 
0 I " 0 I U 0 I " 0 I " 0 I , ,  0 I ,,  

ZQC 91  2 1  48 91 21 48 91 22 04 91 21  51  91 21  52  91 2 1  49 
ZCQ 88 55 47 88 55 47 88 55  57 88 55 55 88 55 58 88 55 51  
ZQB 98 1 9  08 98 19  09 98 1 9  23 98 1 9  24 98 1 9  08 98 19  05 
ZBQ 8 1  49 41  8 1  49 41 8 1 49 47 81 49 55 8 1 49 49 8 1  49 48 
ZBC 84 00 38 84 00 35 84 00 30 84 00 32 84 00 3 1  8 4  00 37 
ZCB 96 08 05 96 08 07 96 08 09 96 08 09 96 08 07 96 08 10  

dzac=dzca 1 03 1 03 50 57 55 1 00 
dZQB 54 53 42 35 50 55 
dZBQ 10  10 1 - 1  6 5 
dzBc 1 5  1 8  26 1 8  1 8  1 4  
dzcB 50 48 43 45 52 47 

Table  7. Refraction Angles in Tolomb6n 

I a I b I c I d I e I f 

day hour I 1 1  1 1 . 1 5  I 1 1  1 i .30 I 1 1  1 4.30 I 1 1  1 5.30 I 1 2  1 1 . 1 5  I 1 4  1 4.45 
" , ,  II  ,,  " II 

dzca 65,8 67,2 57,5 61,5 58,5 65,5 
dzac 60,2 58,8 42,5 53,9 52,5 55,5 
dZQB 5 1 ,2 48,8 34,5 3 1 ,9 47,5 50,5 
dZBQ 1 2,8  1 4,2 08,5 2, 1 08,5 09,5 
dzcB 52,8 52,2 50,5 52, 1 54,5 5 1 , 5  
dzBc 1 2,2 1 3, 8  1 8,5 1 4,9 1 5,5 09,5 

�CQ = I 52,8 I 54,2 I 54,5 I 56,5 I 56,5 I 56,5 
880 56' . .  

I g I I 1 5  1 5.00 I 
0 I II 

91 2 1  36 
88 55 50 
98 1 9  1 1  
8 1 49 49 
84 00 3 1  
9 6  0 8  1 4  

1 07 
43 
10  
1 4  
49 

I · g I 
I 1 5  1 5.oo I 

II  

66,4 
68,6 
44,6 
08,4 
47,4 
1 5,6 

I 56,4 I 

h I 
1 5  1 6.00 I 

0 I II 

91  21  41 
88 55 48 
98 19 01 
81 49 50 
84 00 28 
96 08 09 

1 06 
57 

5 
2 1  
50 

h I 
1 5  1 6.00 I 

II 

73,2 
58,8 
49,8 
1 2,2 I 57,2 
1 3,8  I 
61,2 I 

1 

1 6  1 4.45 
0 I ,,  

91 21  42 
88 55 54 
98 19 09 
81 49 5 1  
8 4  00 37 
96 08 1 4  

1 02 
46 

7 
9 

48 

1 
1 6  1 4.45 

II 

62, 1  
62,9 
46,9 
06, 1  
47, 1 
09,9 

56, 1 

N \0 0 
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y = AcQ x2 + BcQ x3 

(x-axis coinciding with the tangent to the light path at C) and the CB and Q B light paths as a 4th 
degree polynomial : 

Y = AcB x2 + BcB x3 + CcB x4 

y = AQB x2 + BQB x3 + CQB x4 

with the condition of a common curvature (for the horizontal light path) of the two light paths 
meeting in one point. 

Table 7 shows the solutions for the 9 sets. The last row, zenithal angles �CQ corrected by 
refraction, shows a little dispersion : it could be interpreted as an indication of the goodness of the 
hypothesis used. 

It  appears, nevertheless, a strong inverse curvature of the paths CB and Q B  near B. A proof 
made on these sides using the Saastamoinen tables (Bulletin Geodesique No. 78, 1 965) by inte
gration of temperature gradients in each tenth of the sides didn't verify the temperatures taken 
at the terminals ( diff. : 1 20 !) . 

It can be eliminated the inverse curvature if the CB and Q B light paths were described by a 
complete 2nd degree equation. The integration of temperature vertical gradients showed in this 
case a difference of 1 00. 

I t  seems to  be impossible to represent by a simple model of atmosphere the strong asymmetry 
of !:iz at the light paths CB and Q B. 

Finally, it also seems unlikely to attribute that asymmetr.y to an erroneous estimation of N 

in the computation of the telh .. rometric distances CB and Q B. The two tables of Saastamoinen 
were used to verify that atmospheric models approaching such z asymmetry, give mean values 
of N from 5 to 8 ppm (with several hypothesis about U and d U) smaller than the N averaging the 
terminals : i. e .  the sides would be 5 to 8 ppm greater and the !:iz asymmetry would be increased 
in 8" to 1 2" . 
7. Refraction angles at Alpachiri : with the z values of Table 3 could be computed the 6 mean 

refraction angles : 

/J.. zAP = 1 '22" 

/J.. zpA = 0'55" 

/J.. zAR = 2'21 " 

/J.. zRA = 1 '39" 

/J.. zpR = 0'49" 

/J.. zRP = 0'30" 

The light paths A P and A R  can be represented by 3rd degree polynomials : curvatures at the 
common terminal A coinciding within 2,5 �� and integration of t-gradients along t he A R  path 
compatible with the observed t at the terminals. That integration along PR gives a difference c f  
1 50 :  PR runs near the mountain side from 890 t o  4360 m os/. 
8. Conclusions : First order sides (,......, 20 km) in mountainous countries, with great differences 

in height (2000 to 3500 m) show strongly different reciprocal refraction angles : the greatest 
ones are not necessarily at the lower end. 
First order sides with moderate differences in height (CQ = 40 km with 800 m ;  A P = 30 k m  

with 500 m) seem to adapt t o  the linear variation o f  curvature derived from a 3rd degree polynomial, 
as Jordan-Eggert had traced. Likewise the long side A R  (50,7 km with 4000 m diff. height) shows 
the same pattern : its curvature is compatible with the met. data taken at the terminals. 

1 9* 
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Part Ill 

Elimination of Refraction from Geodetic Angular Measurments . 

Nivellitic Refraction . Conformal Theory of Refraction 

Elimination of Refraction at Vertical Angle Measurements, 
Using Lasers of Different Wavelengths 

by Erik Tengstrom, Uppsala 

Introduction 

The knowledge of the influence of the distribution of the scalar n in air is necessary both for 
optical distance measurements and for optical direction measurements. The same holds true, of 
course, also for corresponding measurements of microwave propagation, but  we shall here deal 
with the visual spectrum, only. For a) optical distance measurements the distribution of group
index n along the path is essential, but also the distribution of phase-index n along the same path 
is needed. The former can be used to correct the observed optical path-length 

B 
S ng d s = L with 
A 

B 
/). S J  = - .\' (ng - J )  d S 

A 
( I ) 

to obtain the length of the curved path in space between A und B. The latter distribution can be 
used to compute the difference �s2 between the Euclidean distance S and the distance L + �s, 
so that 

s! = L + 6. s 1 + 6. s2 (2) 

is the correct distance. 

6.s1 ,  is the s.c. phase-correction, 6.s2 the curvature-correction, and we denote by S� the curved 
path-length, 

S! = L + /). S 1 (3 ) 

Using two different wave-lengths, A.B and "AR, it would be possible to determine for a certain A., 6.s1 
in the following way, from measured LB -LR:  In comparison with 6. s 1 ,  s! (B) - s! (R) is a quan
tity of second order, and therefore, 

B 
= J { ng (B) - ng (R)} d s (A.) 

A 

(4) 



!:l. L; can be measured, and the last integral can be written 

B . 
,I F (R, B, J.) [ng (:A) - 1] d s (J.), where 
A 

n (B) - n  (R) 
F (R B J.) =  

g g 
' ' ng (J.) - 1 
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(5) 

This expression is a function of the position along s(:A), where the temperature is tOC, total 
pressure of air p/mm Hg, and absolute humidity pressure e mm Hg. We have 

n0 - 1 p 5,5 . 1 0 - 8 
n = l +  . - . e 

1 + Cl t 760 1 + Cl t 
(6) 

where n0 is the group-index in  dry air (0,03 % C02) with t = ooc, p = 760 mm Hg. a =  0,003660 ; 
the termal coefficient of expansion of air. 
We obtain 

n0 (B) - 1 p 
ng (B) = I + 

1 + et t 760 

n0 (R) - l p 
ng (R) = l + 

1 + et t 760 

5,5 . 10- s 
---- . e  

1 + Cl  t 

5,5 . 1 0- 8'  
-- . e  

1 + Cl t 

n (J.) = 1 + 
no (:A) - 1 p 5,5 . 10- 8 

• e g 
1 + Cl t 760 1 + Cl t 

F (R, B, J.) = 
n0 (B) - n0 (R) . _!_ 

. 
_ __ ______ _ 

1 + et t 760 n0 (:A) - 1 p 5,5 . 10- 8 
1 + Cl t 760 

--- . e  

or F (R B J.) ""'  no (B) - no (R) ( 1 + 0, 1 4  
p

e ) ' ' ' --
n0 (:A) - 1 

We can now write (4) as 

B 

!:l. LR � 1 + 0, 14  - . [no (:A) - l ] d s = - N � s1 (:A) 
B n0 (B) - no (R) [ ( e ) ] f n0 (:A) - 1 P m 

A 

(7) 

(8) 

(8 a) 

(9) 

(; L being an estimated mean over the path. If we measure L in monocromatic light (:A), we have 

B � L� 
SA = L (J.) - - , 

N 

� LB 
� s1 (:A) = __ 

R 
being the path-correction 

N 
( 10) 

for the :A-measurement. N may be computed from Barrel and Sears' formula for group velocity 
index 

3 B  5 C 
n = A + - + - , 

).2 ).4 

:A being the wavelength i n  microns, reduced to vacuo and 

A = 1 + 2876,04 . 10-7;  B = 1 6,288 . 1 0-1 ;  

( 1 1 )  

c = 0, 1 36 . 1 0-7 . 

Experiments of determining path-corrections in  2.foresaid way, using lasers of different wave
lengths, are now going on at ESSA, Boulder, Colorado, USA. The method and observation techni-



294 

que was proposed in 1 965 (or earlier) by Owens and Bender [1 ] , who seem to have obtained al
ready very promising results. For determining the curvature correction the same theory as used 
for b) optical direction measurements can be applied. 

Determination of refraction through dispersion measurements. 

For simplicity, we regard the light-beam as a plane curve through the observer A and the 
light-source B. 

Let P be nearest point from A, where the tangent of the lightbeam is paral lel to AB. Then 
the refraction angle aA at A (Fig. 1 )  is 

d oc 

A p 
ocA = J:: d s  =fa ds 

p A 

where - - = cr is the variable curvature along s. 
d s  

We know from Heath's formula, that 

d In n 1 d n 
cr = -a;- -

n a v 

( 1 2) 

(1 3 )  

Here n i s  the wave refractive index (phase index), being the positive normal of the ray. Applying 
Gladstone's and Dale's law, this can be written 

Writing (6) as 

n - l 1 d p 
cr = - - - -

n · p d v  

n - 1 = M1 (n,, - 1 )  + M2 

where M1 and M2 are atmospherical functions of position along s, we have 

cr = 
M1 (n0 - 1 )  + M2 1 d p 
+ Mt (n0 - 1 )  + M2 p d v 

and therefore in radians 

p p JM 1 a p d s JM 2 a p d :,· 

°'A 
= (no - l ) .  p a v i + M1 (no - 1 )  + M2 

+ p a v I + M�;;�-i)+ M2 
A A 

If we denote the "meteorological integrals" with R and Q, we have 

°'A = (n0 - 1 )  R + Q 

where n0 can be computed from Barrel and Sears' formula for any /... (reduced to vacuo) 

Fig. 1 

rl = °'1  + � I  ' 

8A = OC2 - °'I , 

r2 = oc2 + �2 

8B = �2 - � I  

Refraction angles and total refraction 

( 1 3  a) 

(6 a) 

( 1 3  b) 

( 1 4) 

( 1 4  a) 



B C 
n0 = A + - + -)..2 )..4 ' 
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and valid for wave-index (constants, see [ 1 1 ]) .  Now, using two wavelengths A. i ,  and A.2 (A.2 > A.1 ) , 
we get 

exA (l q )  = [n0 (A. 1 )  - 1 ] . R + Q 
( 1 5) 

exA (A.2) = [n0 (A2) - 1 ] . R + Q 

Reasonably presuming R and Q being the same for both beams, we obtain the dispersion between 
the arriving rays at A equal to 

( 16 )  

o can be measured with high accuracy by interferometric methods (see below), so  ( 1 6) gives R ,  
and the refraction angle at A is 

a""� -
exA (A.) = [n0 (A) -- l ]  _ _ __ 1., _ __ t Q = aA (A) + Q 

n0 (A 1 )  - n0 (A2) 
( 1 7) 

for any wavelength A.. Q, which is very small for the visual spectrum, depends mainly on the h u
midity along s between A and P. I t  may be estimated accurately enough in the following way : 

B 

Q 
= (:�),,, .f �1 • � � . l-+M1 (n� � i )  + it; = (:�),,, . R = --- 5,5 . 1 0 - 8 (� )

m 
. 760 R '  ( 1 8) 

A 
where m denotes mean values between A and P. 
Obviously the percentage Q of a is approximately equal to 

1 00 . 5,5 . 10- 8 . 760 (=-) % 
no - 1 p m 

or, with n0 - I  - 0.0003 in al l visual cases 

Q = -- o . 1 4  (;),,, a 

E.g.,  if the relative humidity along s between A and P (approximately half way between A and B) 
is 70 % and the corresponding mean temperature woe, we get at Pm = 700 mm, em = 0,70.9.4 = 
= 6.6 mm and (;) - 0.0094, which means 

Q = - 0.00 1 3  fi. 

Neglecting Q, we consequently commit an error of only 0. 1 3  %. A very rough estimate of (:;-)m is 

sufficient in most cases. I f  e .g. the refraction angle at A for a beam from B has been found to be 
64."2, when omitt ing Q, the error from neglecting humid ity in abovementioned case is only 0."08. 
We may of course also determine the total refraction r = ex + � (see fig. 1) at a certain moment 
by means of simultaneous dispersion measurements oA and os from A and B. We have, neglecting Q 

( 1 9) 

The accuracy of this method for determining ex and r is naturally depending on the magnitude of llA. = A.1 -A.2 . The bigger this  difference is ,  the more accurate is the result. We therefore need to 
use two wavelengths, one in  the red, one in the blue region of the spectrum. As the differential 
dispersion increases with decreasing wavelength (approximately as I f),2), it is especially important 
to go rather far out into the blue region, when choosing A.1 . 
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Interferometric method for measuring o 
The method of determining refraction by measuring the dispersion angle between two wavelengths 
in the arriving spectrum at A from a white lightsource at B is not new. It was proposed by Nah
bauer several decades ago, but the use of an interferometric observation technique for measuring 
8 was practically introduced at first at the Royal I nstitute of Technology in Stockholm 1 948 [2 (In
troduction)], when the author of this paper started his experiments with a double-slit interfero
meter, using conventional white lightsources and narrow filters. The old idea of using filters and 
of pointing at the red and blue images with a theodolite, and measuring with its circle the disper
sionangle- or the angle between a red and blue lightsource - can never be accurate enough . 

The aim of the author's experiments [3], [4], [5], [6], was originally to determine r accurately 
enough at the same time as the vertical angle measurements were carried out. With r and the re
sults of the zenitdistances, the difference in the components of deflection of the vertical in the plane 
of the beams could be derived, enabling the determination of geoidal undulations by a purely geo
metrical method, avoiding the tedious astronomical position observations. The msq error In o, 
desirable for achieving same accuracy as obtained from astronomical deflection stations of reasonci.ble 
density (20--30 km) should be of the order of ± o:· 3 .  Using phase-velocity and phase-index, which shou Id 

be the case in this kind of determinations, the refraction angle is approximately 
1 5  
- microns 

�:A 
times <!>. When e.g. �A = 2000A, refraction is about 75 times the dispersion angle. The first experi
ments were carried out with interferometric filters at A for C and F of the Balmer series (�:A = 
= l 700A), using a white filement l ightsource at B. Later on a Hg - Cd lamp, containing excited 
Hg- and Cd-vapour was introduced (�:A = 2088A). To obtain the wanted accuracy in rx and r in 
these two cases, o must be measured to within at least O" .003. 
The first instrument used (see figures 2a, . . .  ), which was adapted to a Wild T3 theodolite, and had 
two double slits wit h  variable slit-distances d, which always satisfied the condition 

d,. 1 ) q  
d1.2 � '  

gives an internal mean error in o (or in a smal l apparent angle between two light sources with dif
ferent wavelengths) from 1 0  coincidence-measurements of the fringe-systems with equally spaced 
fringes (principle : see fig. 2) of about ± 0."03, which means an error in refraction (or deflection 
of the vertical difference) of the order of 2 - 3  seconds of an arc. The red fringe-system was always 
easy to see, and the accuracy in measuring coincidendes between two such systems often surpassed 
the one, mentioned above. But the blue fringes were very faint, also at small distances (visibil ity 
failed at distances greater than 1 OOO meters). 

a )  

blue filter 

red  filter 

b )  
/ blue f r inge syste m 

I I I I I I I  I I I I 
I I I I I I I I I I � red f r i nge sys t e m  

c )  
1 1 1 1 1 1 1 1 1 1 1  

1 1 1 1 1 1 1 1 1 1 1 

Prinziple of coincidence observation with small interferodispersometer 

Fig. 2 
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against l igh t 

betw e e n  d o u b l e  sl i ts 

Top s c r ew for 

sl i t - d i stanc e s  vary i n g  

S m a l l  
d i spersometer  

Smdl interferodispersometer with va riable slit d,istances 

297 



298 

We therefore 'had to face at least two problems to be solved : 
1 )  The problem of increasing the accuracy of 8-measurements at least JO times 
2) The problem of increasing the intensity of the blue light. 
The problem of scintillat ion and undulat ion, invest igated during several months under various 
meteorological conditions, did not seem to be too serious, though it was studied for red light, only . 

Pr i sm, 

at tac� 
fo c����nate� 

I 
Plate with vert ical axis 
attach e d  to tri pod 

F ig. 3a 

--- Hor izontal 
move m e nt 

---Vertical  
mov e me nt 

of 
coor d i n ate -

table 

�Coord i nate -
table 

Fig. 3 b  
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a )  

Plate with vert ical  ax i s  

Fig. 3c 

First type of big interferodispersometer 
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I I I I I I I I I I I I I I 
------ blue 

c )  
I I I I I I I I I I I 

- - - - - - -:=.-::::. - F' 

F 

- - - -

fringe system 

fr inge �ystcm 

Principle of determining a with first type of big interferodispe rsometer 

Fig. 3 
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1 )  The accuracy might be increased more than 1 0  times by utilizing M ichelson's principle in his 
big stellar interferometer. To make the system more stable, we built the instrument with fixed mir
rors and a centered prism, which could move perpendicularly to the line, connecting the centres 
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of the mirrors (see fig. 3a, . . . .  ), thus changing the distance between the two first reftexionpoints. 
Coincidences between the two fringe-systems, produced by a fixed double slit (d), can be achieved 
by moving the reflecting centre prism along the line of sight .  At a certain position of the prism, 

A 
the distance between the reflexionpoints (see figure 3) is D 1 •  If 8 is exactly equal to __!_ , the red D1 
vibrations at M1 and M2 differ in phase by one red wavelength. As 8 is very small (a. in fig 3), there will 
be enough diffraction at the mirrors, so that we can select a pair of red rays (not obeying the normal 
law of reflexion) which reach the siits by paths, identical with those traversed by the blue pair 
of rays. The phase difference between the red vibrations being increased by At makes the angle 

A 
between the two zerofringes equal to _..!. , which means, that the red fringe of order one will coincide 

d 
with the blue zerofringe. The dispersionangle (or a small angle between two monochromatic light
sources) is consequently -

Ar Ar d 
8 = - = - . - , D 1 d D 1  

which shows that the accuracy i n  determining a will be 
D� times greater tha'1 by using the small 
d 

instrument. Increasing D, a second coincidence will occur at D2, and 

or in general 

2 /..., 2 /..., d 
a = -- = - -D2 d D2 

n A  
8 =  -- . D (20) 

In the small "interferodispersometer" (first instrument), there will be a contraction of the fringe
systems by increasing slitdistances. In  order to observe accurately very minute angles, the objective 
of the telescope and the magnification power of the eye-piece must be increased without decreasing 
the optical quality of the system. In the big instrument the fringe-distances are always constant .  

Th f · ( · h 
· Ar 

d 
/...b 1 

. 1 . h h h d e nnge-systems wit spacmgs - an - are on y movmg re ahve to eac ot er, t us pro uc-
d d 

ing coincidences of increasing orders, which may all be observed with same accuracy. 
As the light from conventional sources is not perfectly coherent, only fringes of low order are pos

sible to observe. It is therefore necessary to adjust the instrument carefully, so that the prism is 
symmetrical to the mirrors and the mirrors symmetrical to the distant lightsource, which means, 
that we may observe the region close to the zerofringes. (Adj usting procedure, see [6]). 

By using lasers, however, this difficulty has been over-come to a great extent. The extremely high 
coherence of such lightsources makes it possible to observe very high order fringes (also such frin
ges, produced inside the higher order diffraction patterns). Naturally the intensity falls rapidly, 
but the high intensity of the laser beam very often enables the observation of coincidences of orders 
greater than 2<XX>. A speeding up of the a.dj ustment-procedure for symmetry is however obtained, 
and the ·number of the coincidence is not necessary to know, if we make at least two coincidence 
observations. 

Another principle of increasing the observed fringe-spacing has been introduced recently at our 
Institute in U ppsala. A spherical mirror receives the light from a distant source. The two parallel 
slits in front of the mirror produce diffraction patterns with double-slit fringes in the focal plane . 
of the mirror, which are not possible to observe directly with desirable accuracy. However, by plac
ing a wide angle optical edge of glass inside the focus (see. fig 4) it is possible to increase the appa
rent fringespacing, so that coincidences may be observed with same accuracy as in the Michelson
instrument. The image in the focal plane is free from chromatic aberration, which is a great ad
vantage. A careful one time adjustment of the edge solves the difficulty of finding t he zerofringe 
region (low order fringes). Figures 4a, b . . show the new instrument. 
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a 

/ red fringe system 
I I I I I I I b I I I I I I I I I I I . 

\___blue fringe system 
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J 

1 

From liQht 
source 
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Laboratory experiments, already made with the two big interferodispersometers show, that the 
determination of a may be made from coincidence observations in two different wavelengths to 
within ± 0"002, which corresponds to a mean error in ex and r of less than ± 0"2. 

The use of lasers will probably solve our second problem : 
2) Increase of intensity over greater distances. A He-Ne laser (6828 A) has already been used for 

checking the intensity of fringes, and it seems as if such lightsources may enable measurements 
to be made over more than 20 km. The blue source will be either a shortpulse Argon- or Krypton 
laser, which are now both commercially available. Experiments with two lasers are probably going 
to be started this fall in Uppsala at two bases, one 7 km long and one 1 5  km long. 

Addendum: 
The computation of the curvature-correction 6s2 at distance-measurements may now be made 

from the refraction results above in the following way : 

We have 

S I 

6 Sz = f cos ( CXA + f (j d I r d I - s .  

0 0 

where I is reckoned along S. This may be simplified, taking only terms up to second order into 
consideration. Thus 

s 1 

� s2 = - �f (cxA + f a d / )2 di 

0 0 

(A 1)  

The /-function S a d  I may be derived mainly from the distribution of  the gradient of  wave-index (�:) along S. (Temperaturegradient along S). For constant a («A � �B• r � 2 «,<) we get 



r fXA + �B 
If, e.g. , we use the "3-level solution" for rxA , �B viz - = = <1M(�) s s 

2 (3 �B - r) 
we obtain 8 (/) = a + b !, where a = ---s 

Numerical example: r = 500" ; 1 )  rxA = �B ; � S2 = - 24 mm 

I 

S = 1 00  km ; 2) rxA = 300", �B = 200" ; � S2 = - 37 mm 

3) ocA = 400", �B = 1 00" : � S2 = - 1 3 5  mm 
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Refraction in Precise Levelling 

by T. J. Kukkamiiki, Helsinki 

The effect of refraction on precise levelling is small owing to the shortness of sights and because 
of the fact that we can eliminate most of the refraction by using equal sight lengths forwards and 
backwards. Levelling refraction differs in  nature from refraction in  the trigonometrical height 
measurements owing to the nearness of the ground. 

Refraction in levelling has been studied for a long time. Names such as Lallemand, Hugershoff, 
Kohlmiiller, de Graaff-Hunter, Cole and Bomford come to mind. Climatological parameters were 
measured with quite complicated instruments. The purpose of most of these investigations was 
only to elucidate the phenomenon qualitatively. The knowledge obtained on levelling refraction, 
however, was the same as it is now. 
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When we began the Second Levelling of Finland in 1 935 ,  we studied the possibility of deter
mining the refraction quantitatively. The results were promising and since 1 937 we have measured 
the vertical temperature gradient in connection with levelling and computed the refraction cor
rect ion. 

Since the second world war more attention has been paid to levelling refraction. 
K. Brocks of Hamburg has made an exhaust ive study of microclimatics and has calculated 

the parameters on which leve11ing refraction and trigonometrical refraction depend. 
G. Reissmann of Dresden has compared numerous temperature functions by measuring the 

vertical gradient with mercury thermometers. R. Eger of Dresden has made observations on a 
test line. 

R. Hase of Miinchen has constructed a gradient meter with constantan-copper thermoelements .  
H. Ellenberg of M iinchen has compared several gradient meters of different types. 

0. Simonsen of Copenhagen has endeavoured to determine levelling refraction at different 
heights above ground in order to derive absolute values of refraction. He has also observed the 
refraction and temperature gradient simultaneously. 

Several studies have been performed in Yugoslavia. J. Stevanovic has computed the refraction 
in the levelling net of the country. He has also studied refraction on a special test line .  

In Poland H. Strusinsky has made large-scale experiments in test areas. 
In Hungary D. Csatkai and E. Honyi have attempted to determine refraction with the aid 

of statistical temperature values. 
A lot of work has been done, but the results do not seem to be very convincing. M .  Kneissl 

for instance has found that the observation of meteorological parameters takes too much time 
and thus it is not practical enough to determine the levelling refraction in that way. Other sources 
of errors are more dominant. I. T .  Entin of the Soviet Union has made 3400 observations without 
discovering any correlation between the levelling refraction and vertical temperature gradient. 

Investigations in recent decades have given a fairly clear qualitative picture of the levelling 
refraction. Quantitative determination h as not yet been solved satisfactorily for regular leve11 ing. 
The following conclusions can be drawn : 

The refraction effect in precise levelling depends on the vertical temperature gradient . Other 
factors are insignificant. 

In day light the vertical temperature gradient is negative. The sight bends up and the image 
vibrates several times a second . Staff readings are dependable provided the vibration is not too 
strong. 

At night the gradient is positive, the sight bends down and slow swaying occurs with a period 
ranging from seconds to minutes. Staff readings are unreliable because of the swaying. 

It makes little difference whether the temperature is expressed as a function of log h, h2 or he 
of the height h. The exponent c varies with the hour of day and with the weather, but an average 
value of c = - 0. 1 gives satisfactory accuracy for the computation of level ling refraction. 

In precise levelling with equal sight lengths the refraction effect is eliminated on level ground 
but on slopes refraction causes a systematic error. In regular levelling work in daytime under 
favourable weather conditions and using a sight length of 50 m, the refraction decreases elevation 
differences by 0.05 - 0. 1 0  mm per metre. 

The temperature gradient can be observed without delaying the work. The refraction correction 
has little significance in regular levelling but in special levellings, where exceptional accuracy is 
needed, the correction for refraction may improve the result. 
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Eliminating the Refraction Error from the Long Optical Sights in 
the Water-Crossings 

by Juhani Kakkuri, Helsinki 

The Finnish part of the levelling across the Aland archipelago and Aland sea from Finland to 
Sweden is going on. This levelling can be carried out with the same accuracy as the precise levelling 
around the Gulf of Bothnia, [1 ]. The agreement between the different elevation systems in the 
nordic countries can be made essentially better by closing the levelling line around the Gulf of 
Bothnia. In addition to this the precise elevations are aquired to Aland. These elevations can be 
used in order to study the crustal movements in the area of the Aland archipelago. 

The Finnish part of this levelling contains the lines running from the little parish Kustavi via 
the islands of Ava, Enklinge and Varda to the mainland of Aland and from Aland to the rocky 
islet of Market on the boundary line. The line from Kustavi to Aland was measured during the 
years 1 963 - 1 966, containing the following water-crossings 

Length of crossing 
in meters 

shorter than 300 
300 - 500 
500 - 1000 

1 000 - 1 850 

Total 

Number of crossings 

54 
1 9  

8 
6 

87 

On the basis of  the good results of  the test measurements made in the year of 1 963 these 87 water
crossings were measured optically. The optical measurements were made using the classical levelling 
instruments Zeiss NiA and the modern automatic instruments Zeiss Ni2 as equipped with their 
special water-crossing devices. 

The most harmful error source of the optical methods is refraction. When using the sight lengths 
of several hundred meters the refraction causes serious errors, which are difficult to eliminate. 
The main part of the refraction can be eliminated by carrying out simultaneous observations with 
two levelling instruments in opposite directions and taking the mean of these observations. The 
remaining error, the asymmetrical refraction error, can be made smaller either by the Kukkamaki's 
method in which the refraction correction is computed from the direct measurements of the vertical 
temperature gradient, or by avoiding measurements in weather conditions causing asymmetrical 
refraction fields. 

The measurements of the levelling line from Kustavi to Aland were made in suitable weather 
conditions, and in addition to this the refraction corrections were computed. 

1 .  Observing the vertical temperature gradient and computing the refraction correction 
Kukkamaki has shown that the main part of the levelling refraction can be determined by 

measuring the vertical temperature gradient. The other microclimatical factors : humidity, air 
pressure, and the content of carbonic acid in the air, which have effects on the levelling refraction 
can be neglected as compared with the vertical temperature gradient, [2]. 

The application of Kukkamaki's method to the · water-crossings is as follows. The crossing, 
the length of X, is divided into n parts for measuring the vertical temperature gradient. These 

dt divisions are xi,  x2, • • •  , Xn. The temperature gradient, 
d z , belonging to each division x, is measured 

along the sight line. The refraction, R, can be computed from the formula 

R = A  i Xv Sv (dt ) v 
v = l  dz ( 1 ) 

in which sv is the distance between the division xv and the levelling staff. The coefficient A depends 
on the temperature t, air pressure p and humitidy e. It can be computed from the formula, [3], 

20 
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[ 1 . 1 1 6 p 0 . 0002 e ] 
A =  - l 0- 6  

( I  + 0 . 00367 t )2 760 
-

( 1  + 0 . 00367 t )2 
(2) 

When deriving the formula (2) the values 0 .556 .  µ m for the wave lenght of white light and 0.03 per
cent for the content of carbonic acid in the air are used. I n  normal conditions, t = + 1 50 C, p = 
= 760 mmHg, and e = 7 . 7 mmHg (corresponding relative h umitidy of 60 percent), the coef-
ficient h as the value 

A = - 1 . 00 1 · 1 0 - 6  (3) 

The accuracy of the refraction R as computed from the formula ( 1 )  is determined by the gradient 
dt 
- while the other quantities A ,  x, and s can be determined with sufficient accuracy . 
dz 

1 . 1  Measuring the vertical temperature gradient 
The vertical temperature gradient is measured by the differentiai thermometer, which has 

been used by the Finnish Geodetic I nstitute since 1 938,  [2],  [4] .  The operation of the thermometer 
is based on the principle of the Wheatstone's bridge. There are two electric resistors, D1 and D2, 
made of thin n ickel wire, in the thermoneter, and the temperature difference between the resistors 
is measured. According to Hytonen, this temperature difference D..t can be measured with accun:.cy 
:I: 00.087, [4] .  

I n  addition to the inner error of the differential thermometer the temperature difference 
between electric resistors Dt  and D2 is affected mainly by external errors from the measuring alti
tude of the gradient and from the fluctuation of the gradient field during observation 

1 . 1 1 .  Measuring altitude of the gradient 
It is presupposed that when computing the refraction R from the formula ( 1 )  the vertical 

temperature gradient is measured from the right altitude which is equal with the altitude of the 
sight l ine, Z0• Supposing that the altitude of the lower resistor is z1 and that of the higher is z2 = 
= z1 + 2 meters, and that there exist the temperatures t 1  and t2 at the altitudes z1 and z2 respectively. 
The altitudes of the resistors have to be determined so that 

(4)  

Thus, the altitudes of the resistors D1 and Dz are bound to the altitude of opt ical sight .  The con
nection between them is determined by the function, expressing the dependence of the temperature 
on the altitude. This function is above the smooth and uncovered surfaces as follows 

t = a + b zc (5) 

i n  which a, b, and c are the constants. The most important of them is the exponent c, which depends 
on the elevation angle of the sun and the quality of the surface. In summer i n  Finland its value 
alternates daily as follows, [5), [6] : 

- 0.5 � c s + 0.5 . 

6,, t 
(6) 

From the formulae (4) and (5) we have -- = b c Z0c- 1 , and because of b = 6.. t/(z2c - z1c) we 
2 

finally have 

and 

2 
Z0 = when c = 0 . In (z2 / z1) 

(7) 

(8) 

The connection between z1 , z2, and Zo is determined by the formulae (7) and (8). On the basis of 
these formulae we can show, that in al l weather conditions z1 can be determined approximately 
from the formula 



z 1  = Z0 - 0.85 meters, when 1 .75 m <: Z0 -=:::: 5.00 m 

without making greater than 1 0  percent relative error. 
1 . 1 2. Fluctuation of the gradient field 
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(9) 

I n  practice. it is impossible to carry out gradient measurements in all divisions xv simultaneously. 
Generally the grndients of the divisions are measured one after another firstly i n  the direction from 
the levelling instrument to the staff and then in the opposite direction from the staff to the levelling 
instrument. Thus we have two gradient measurements for each division, and the average values 
are used. Simultaneously optical observations are made. If the gradient of the division fluctuates 
a random error results. 

The fluctuation of the gradient field was studied during the summer of 1 963. I t  was found 
on the basis of about 1 500 observations that the larger the fl uctuation of the gradient, the stronger 
the mean gradient of the crossing is. The fluctuation is further most serious when the sun is being 
covered by a cloud or coming out from a cloud. The wind diminishes the fluctuation. The mean 
error of one gradient observation measured at the altitude of about 2 meters is the function of the 
mean gradient of the crossing, g, as follows : 

mg = ( 1 .862 ± 0.2 1 5) g2 + (0.03 1 ± 0.023) g + (0.0 18  ± 0.002).  

On the basis of the interpolation formula ( 1 0) the following table is computed 

g in o c;m 

- 0.20 
- 0. 1 0  

0.00 
+ 0. 1 0  
+ 0.20 
+ 0.30 

Table 1 

mg in O C/m 

± 0.086 
0.034 
0.01 8 
0.040 
0.099 
0. 1 95 

( 1 0) 

The mean error of one gradient given in  Table 1 is the result from the following factors : 1 )  the inner 
errors of the differential thermometer, 2) the altitude error of the gradient, and 3) the fluctuation . 

error, and thus i t  expresses the total error of one gradient observation. According to Hytonen the 
accuracy of the temperature difference /!:,,, t is ± 00.087 as measured by the differential thermometer, 
[4]. In  the gradient measurement it causes the error ± 0.044 O C/m. This error is, when there exists 
the zero gradient, ± 0.0 1 8  OC/m according to table 1 ,  and thus it is smaller than Hytonen's value. 
When deriving the inner error of the differential thermometer Hytonen estimated that the reading 
error of the galvanometer is ± 0.2 scale divisions causing the error of ± 00.082 for the temperature/ 
difference /!:,,, t. Estimating that the reading error of the galvanometer is ± 0. 1 scale divisions and 
taking into account also the other inner errors of the differential thermometer we have the error 
of ± 00.045 for the temperature difference· and ± 0.023 OC/m for the temperature gradient which 
shows a rather good agreement with the errror of ± 0.0 1 8  OC/m. 

The inner error of the differential thermometer is, however, a quite unessential factor when 
criticizing the accuracy of the measurement of the vertical temperature gradient. The fluctuation 
of the gradient field is the decisive factor. The accuracy of the gradient measurements is rather 
good when the prevailing gradient is small, but it quickly gets worse when the gradient becomes 
stronger and reaches the relative error of 65 percent already at the gradient's value of ± 0.30 O C/m. 
This means that the optical water-crossings are possible only when the vertical temperature gradient 
is small. 

1 .2. The accuracy of the refraction correction 
The refraction correction can be computed from the formula ( 1 ) .  If all the divisions xv are 

equally long, x1 = x2 = . . .  = Xn = x, the formula ( 1 )  can be put in  the form 

R = 0.5 Ax2 L (2 (n - v) + 1 ] -
n (dt ) 

v = l  dz v 

20• 
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The mean error of the refraction correct ion as computed from the formula ( I ' ) is the following 

l/4-n2 - 1 111R = -1::: 0.5 AX2 mg 
3 n3 ( 1 1 ) 

i n  which X = nx is the length of the crossing, n is the number of the divisions, and mg the mean 
error of one gradient observation. The mean error mR is the function of the length X, the mean 
error mg, and the number n. Thus, the accuracy of the refraction correction can be made better 
by adding the number of the divisions of X, i. e. by making the measuring points of the vertical 
temperature gradient thicker. The mean error mg is given i n  table 1 .  

The following example of how to compute the refraction and its mean error is given. On the 
27th of May 1 963 the following gradients were observed at the measurement of the 4 1 3  m Jong 
water-crossi ng : ± 0. 1 8 , + 0. 1 2, + 0.20, +0. 1 5, + 0.20, + 0. 1 2, + 0.08 and O.OO O C/m. Thus, 
the mean gradient of the crossing was g = + 0. 1 3  O C/m. The mean error mg is according to table 1 
the following ± 0.053 O Cfm. Because the lenght of the crossing is 4 1 3  m, and the number of the 
divisions is 8 ,  the division x has the following value 5 1 .6 m. From the formulae ( l ' ) ,  (3) and ( 1 1 )  
we have 

R = - 1 3 .29 mm 

mR -= ± 1 . 85 mm. 

Thus, the relative error of the refraction R is 1 3 .9 percent, which is a quite satisfactory result .  
1 . 3 .  Practical experiments 
In the spring of 1 963 some test measurements over water-crossing were carried out on the 

islands of Suomenl inna off Helsink i in order to study the possibility of also eliminating the asym
metric refraction error from the water-crossings by using Kukkamaki's method. Two bench marks 
A and B were fastenend on the cliffs along each of the shores of the 4 1 3  meters long water-crossing. 
The elevation difference between these bench marks was measured by ordinary precise level l ing, 
which was carried out many times along the shore l ine. The levell ing i nstrument, a Zeiss NiA, 
was set up at the other end of the crossing, and the collimation error of the spirit level of N iA was 
eliminated as exactly as possible. The elevation difference between the bench marks A and B was 
then observed onesidedly in the course of several days. The effect of the curvature of the earth 
and the elevation difference between A and B as determined by the ordinary level l i ng were sub
tracted from these elevation differences. The absolute refract ion values belonging to each one-sided 
observation were thus observed. Simultaneously with the optical observations, the vertical temperature 
gradient was measured at 8 points, equally di triuted along the sight line. The refract ion values 
were computed from these gradients by using the formula ( 1 ). The refraction values, computed 
on the basis of gradients observed were consistent with the absloute refract ion values from - 25 mm 
to + 2 mm. The statistical calculations showed a strong correlation 

r = 0.86 ± 0.05 

which shows that the computed refraction agrees well with the real refraction. 
The elimination of the asymmetric refraction error was studied as follows. The above-menti

oned 4 1 3 m long water-crossing was measured during asymmetric conditions i n  order to study 
large asymmetric errors. By using the levelling instrument Zeiss N iA, two one-sided water-crossings 
were measured. The first onesided crossing was observed on the 27th of May, when the weather 
was warm, and the vertical temperature gradient was strongly positive. The levelling instrument 
was set up on the shore B of the crossing. The elevation difference between the bench marks A and 
B was then measured in the direct ion from B to A. The second one-sided crossing was measured 
on the 30th of May in the evening, when the vertical temperature gradient was nearly zero. The 
levelling instrument Zeiss NiA was set up on the shore A .  The elevation difference was on that 
day measured one-sidedly in the d irection from A to B, consequently in the opposite direction 
on the 27th of May. The collimation error of the levelli ng instrument was eliminated on both days 
as exactly as possible. The refraction correction belonging to the optical observaton of both days 
was computed in t he above mentioned way. The results were the following : 



Table 2 
------

1 .  2. 3 .  4.  5 .  6 .  

- 534.54 + 7.99 - 527.30 + 0.20 - 530_92 + 4. 1 0  
- 532.54 + 8 .63 - 526.70 + 3 .26 - 529.62 + 5.94 
- 532_68 + 5 .78 - 525.38 + 0. 1 3  - 529.03 + 2.96 
- 535.08 + 7.00 - 526.44 + 2.84 - 530.76 + 4.92 
- 537.43 + 1 1 .69 - 524.7 1  + 0.64 - 5 3 1 .07 + 6. 1 6  
- 534.94 + 9.01 - 525_50 + 1 .44 - 530.22 + 5 .22 
- 538.72 + 1 0.42 - 525. 1 7  + 0.83 - 5 3 1 .94 + 5_62 
- 537.62 + 5 .91  - 525.08 + 0.83 - 5 3 1 . 3 5  + 3 .37 
- 534.83 + 7.32 - 525.00 + 0.64 - 529.92 + 3_98 
- 528.46 + 0.48 - 526 .54 0.00 - 527.50 + 0.24 
- 528.84 + 0.64 - 524.56 + 1 . 37 - 526.70 + 1 .00 
- 528 .52 2. 1 1  - 524.72 + 0.77 - 526.62 - 0.67 

Mean - 529.64 + 3 .57  
Mean error ± 0.53 

Explanation of columns in Table 2. 
Column 1 .  The elevation differences from A to B observed on the 27th of May in  mm. 
Column 2 .  Refraction corrections to  the  values of the column 1 .  in  mm. 
Column 3 .  The elevation differences from A to  B observed on  the 30th of  May in mm_ 
Colu mn 4. Refraction corrections to the values of columns 3 .  i n  mm. 
Column 5 .  The uncorrected means of  the elevation differences from A to B in mm. 

Computed from the values of columns 1 .  and 3. 
Col umn 6. Final refraction corrections to the values of column 5. in  mm. 

Computed from the values of columns 2. and 4. 
Column 7. The final refraction corrected elevation differences from A to B in mm. 

Computed from the values of the columns 5 .  and 6. 
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7. 

- 526.82 
- 523.68 
- 526.07 
- 525.84 
- 524.91 
- 525.00 
- 526_32 
- 527.98 
- 525.94 
- 527.26 
- 525.70 
- 527.29 

- 526.07 
± 0.35 

The d irect measurements over water surface have given the following values to the elevation 
difference between the bench marks A and B. Without the refraction correction the value is 
- 529.64 ± 0.53 mm and with the refraction correction - 526.07 ± 0.35 mm. The comparison 
of these values with the real elevation difference - 526. 1 6  ± 0.22 mm as determined by the ordinary 
precise level l ing along the shores shows that the computation of refraction correction on the basis 
of vertical temperature gradient has improved the result by eliminating the asymmetric refraction 
error and also made the mean error smaller. 

1 .4 .  Measurements in the Aland archipelago 
Several water-crossings i n  the Aland archipelago have been measured i n  two different days. 

The difference between the mean of the first day observations and the mean of the second day 
observations is marked with !:iH' if the refraction correction is not computed and with l::iH if the 
refract ion correction is computed. The results were as follows : 

Table 3 

Length of crossing !:iH' !:iH 
(m) (mm) (mm) 

480 + 0. 1 1  + 0. 1 1  
325 + 0.78 + 0.38 
436 - 0.74 - 0.43 
444 - 0.3 1  - 0. 1 6  
680 - 0.91 + 0.07 
342 - 1 .98 - 1 .50 
482 + 0.05 - 0- 1 2  
330 - 0.8 1  - 0.6 1  
635 -- 3 .25 - 2. 1 5  
3 1 3  + 0.05 + 0. 1 3  

----- - -••w - ---••• •- • •• 
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Th� mean error per V km o f  the average of one observation day can be computed o n  the basis 
of the values given i n  table 3. by using the formula 

m = v-1 L �6. H )2 
2 n  X 

i n  which X is the length of the water-crossing. The following mean errors are obtained 

without the refraction correction ± 1 .32 mm/ V km 

with the refraction correction ± 0.90 mm/ l{k�-.-

( 1 2) 

It i s  found on  the basis of the above mentioned mean errors that the refraction corrections have 
improved the mutual agreement of the averages of the different observation days. The achieved 

mean error of ± 0.90 vo.45 mm = ± 0.60 mm for levellings over the water-crossings on the 
average 450 m long is smaller than was expected. 

All the observations for table 3. have been made in side wind conditions. This circumstance 
is important as we shall see later. 

2. The asymmetry of the refraction field 
The asymmetry of the refraction fields has been studied on the optical water-crossings in 

the Aland archipelago i n  the summers of 1 963 - 1 965, and i n  addition to this the special investig
ations concerning the refraction at the shore line were made during the summer of 1 966. 

The quality of the surface has great influence in the causing of asymmetric refraction conditions 
due to t he fact that different k inds of surfaces, ground and water, have different capacities of ab
sorbing radiation energy from the sun. 

The dry ground gets warm rapidly during sunny summer days. The surface temperature in 
Finland can even reach a temperature value of + 70 o C. The heat energy coming from the sun is 
stored in only a thin surface layer of the ground, which has a small heat capacity. The daily temperat
ure variations of the ground are great as compared with the daily temperature variations of the air. 
For that reason the vertical temperature gradient, prevailing above the dry ground, is negative 
i n  the day time and positive at night. 

A part of the radiation of the sun, coming to the surface of the sea, is reflected back, another 
part is absorbed by the water. The heat energy, remaining in the water, is mixed into a considerably 
thick layer. The surface of the sea warms up slowly, and its daily temperature variations are small 
as compared with those of the air. For that reason the vertical temperature gradient, prevailing 
above the sea, is positive in the day time and negative at night . 

Thus, the values of the vertical temperature gradient, prevailing above the dry ground, are 
essentially different as those above the surface of the sea. The gradient above the ground changes 
sharply at the shore line to the sea gradient. The width of the area of change is only a few meters, 
aecording to the observations. 

If the levelling instrument at both shores are set up at the shore lines or at the same distance 
from the shore lines, the sights of both instruments go over the same kinds of surfaces, and in  these 
circumstances the arithmetical mean of the simultaneous observations of both instruments does 
not contain the asymmetric refraction error. The wind, however, can cause a change in this circ
umstance by transferring the changing area of the vertical temperature gradient with regard to the 
shore l ine. 

2. 1 .  The influence of the wind· 
Some of the water-crossings in the Aland archipelago were measured in two different days. 

These were divided in two groups : 
group 1 .  The observations of only one day or those of both days were carried out with a 

land wind, i. e. with the wind blowing from the land to the sea. 
group 2. The observations of both days were carried out with a side wind, i. e. with the wind 

blowing in the direction of the shore l ine. 
By using the formula ( 1 2) the fol lowing mean errors for the average value of one observation 

day were computed : 
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with a side wind without the refraction corrections ± 1 . 32 mm/ fk m  

with a land wind without the refraction corrections + 2. 1 4  mm/ Vkm 

which shows that the agreement of the observations carried out on different days is, in  side wind 
conditions, better than with a land wind. The symmetry of the refraction fields is obviously better 
in s ide wind conditions. The temperature measurements carried out during the summer 1 966 have 
strengthened this view. 

2. 1 1 . The termistor thermometer 
The purpose of the temperature measurements, which were carried out at the shore, was to 

make clear the course of the isotherms in the area of the shore in different wind conditions. The 
special thermometer was constructed for this purpose. 

Fig. I .  

The standard miniature N. T. C. resistors, type 
Philips E 205CE/P/6k8, were used as the sensitive 
elements for the temperature. The coupling 
shema of this termistor t hermometer is given i n  
figure 1 .  The other components o f  the thermo
meter are the power supply Klein TSRG for the 
constant voltage of 8 volts, the carbon resistor 
of about 600000 ohms, and the digital voltmeter 
Solartron L 1 420. Because the resistance of the 
digital voltmeter is very great (greater than 500 M) 
as compared with the other resistances of the 
c ircuit, the digital voltmeter does not load the 
circuit but measures the voltages between the 

terminals of the termistor. In  the temperature area of - 1 0o c, + 300 C the resistance of the term
istor, RT, can be computed from the formula 

Rr = ex e�/r ( 1 3) 

in  which T is the absolute temperature, ex and � are the specific constants of the termistors, and e is 
t he base of the natural logarithm. 

If Rv is the resistance of the carbon resistor, V the vol tage of t he power supply, and U the 
read ing of the digital voltmeter, the absolute temperature can be computed with sufficient accuracy 
from the formula 

� = k ,  log ( u_ ) + kz  
T V- U  

in  which k 1 and k2 are constants depending on the values of Rv, ex, and � as 

1 log Rv - log ex 
k 1 = - -- · ··- and k2 = - - --· ----

0.43429 � 0.43429 � 
The reading accuracy of the t hermometer described above i s  better than ± 0.04 o c. 

( 1 4) 

( 1 5) 

The main disadvantage of the thermometer is its sensitivity to contact errors resulting from the 
uncleanliness, for instance from the moisture in  the thermometer. 

The advantages are the great reaction abi l i ty and the stabi l ity of the calibration. The influence 
of the radiation error of the sun is smaller because of the small size of the termistor. 

2. J2 .  The temperature measurements at the shore 
The termistor was fixed to the end of a long rod in order to place it in different measuring 

points. The calibration was made before and after the measurements every day. 
The situations of 33 measuring points are given in Figure 2. The temperatures at these points 

were measured as fol lows : firstly from the sea to the land and from the lowest point to the highest, 
t hen from the land to the sea and from the h ighest point to the lowest. One observation series 
included two of th is kind of measurements, and i t  took 20 -- 50 minutes depending on the violence 
of the t urbulent fluctuation of the air. In addit ion to th is the surface temperature of the sea and 
the temperature prevailing a few ccntimeters above the ground a.t a distance of 1 0  meters from the 
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Fig. 2.  The measuring points of the temperature. 

shore l ine were measured. Also the cloudiness and the wind direction with regard to the direction 
of the shore l ine were recorded. 

The measurements were carried out in May, August, and October in 1 966. The measuring place 
was chosen from the island of Suomenl inna. It was an uncovered cliff gently sloping to the sea. 

The observation material is still under treatment, but already now the following provisory 
results from the structures of the isothermal surfaces in sea wind and land wind conditions can be 
given. 

2. 1 3 .  The profile with a land wind 
An example of the typical profile in  land wind conditions is given in Figure 3 .  

�<-------<( w ;  n d 

Fig. 3. The isothermal surfaces with a land wind . 

The surface temperature of the sea is + 7 .8  o c  in  this example. The temperature of + 2 1 .0 o c  

is prevailing 2 .5  cm above the dry ground at a distance of 1 0  m from the shore l ine. A gusty wind 
of 2 beauforts is blowing from the land to the sea. The cloudiness is 20 percent. The sun is shining. 

The wind is bringing warm air from the land to the sea. The isotherm are paral lel to the ur
face above the dry ground as far as the shore l ine whereas they are rising in a vertical direction 
above the sea and form curved surfaces there. 

2. 1 4. The profile with a sea wind. 
An example of the typical profile in sea wind conditions is given in Figure 4. 

w i nd > > 
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Fig. 4. The isothermal surfaces with a sea wind. 

The surface temperature of the sea is + 1 9. l o c  in this example. A temperature of + 25.5 o c  

i s  prevail ing 1 cm above the dry ground at a distance of 1 0  m from the shore line. A wind of 1 
beaufort is blowing from the sea to the land. The cloudiness is 20 percent. 
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The wind brings cold air from the sea to the land. Cold air penetrates at. the shore l ine below 
the warmer air masses by forming there a bag of cold air. 

Above the sea nearest to the shore l ine the isotherms are curved. Above the ground in a zone 
of about 5 m beginning from the shore l ine the isotherms rise in a vertical direction, and then they 
are overturned and become again parallel to the surface. 

2 . 1 5 . The profile with a side wind 
An example of the profile in side wind conditions is not given in this paper because of i ts less 

stable form. It seems, however, to resemble that of the sea wind . 
2 . 1 6. The vertical temperature gradient at the shore l ine 
The refraction, which has an influence on the levelling results, depends on the magnitude of 

the vertical temperature gradient at the sight l ine.  It is found on the basis of the temperature profiles 
given above that the gradient, while being the same outside the area of the shore, is in the immediate 
vicinity of the shore l ine essentially different in different wind conditions, Tables 4. and 5 .  

Table 4. 

Dat. Time 1 .  2.  3 .  
1 966 

v 27. 1 3 . 1 9  + 0. 1 3  - 0.20 - 0. 1 8  
1 3 .46 + 0. 1 0  - 0. 1 0  - 0.06 
1 4.44 0.00 - 0. 1 0  - 0. 1 7  

30. 1 3 .50 + 0.30 - 0.50 - 0.29 
14.56 - 0. 1 0  - 0.50 - 0.53 

Y I I r 2. 1 3 .00 + 0.05 - 0. 1 0  - 0. 1 9  
1 5.00 - 0. 1 0  - 0.04 - 0.3 1 
1 6 . 1 6  + 0.05 0.00 - 0. 1 0  

mean + 0.05 -- 0. 1 9  - 0.23 

The vertical temperature gradient at the altitude of 1 . 5 m above the surface in the land wind conditions. 
The columns are 

I .  The vertical temperature gradient above the sea at the distance of 4 meters from the shore 
l ine in O C/m. 

2.  The vertical temperature gradient above the shore l ine in o c;m. 
3. The vertical temperature gradient above the dry ground at the distance of 4 meters from the 

shore l ine in O C/m. 

Table 5 .  

Oat . Time 1 .  2. 3 .  
1 966 

v 3 1 .  1 3 .05 - 0.09 + 0.02 - 0.24 
1 6.2 l - 0.09 + 0.04 - 0. 1 3  

Y I  l .  1 3 . 1 6  - 0.05 - 0. 11  - 0.06 
1 4. 1 4 + 0.01 - 0.06 - 0. 1 0  

Y I U  4. 1 1 .45 - 0. 1 5  + 0.25 0.00 
12.55 0.00 + 0. 1 5  .. . 0. 1 2  
14. 1 6  - 0.05 + 0.05 - 0. 1 2  
1 4.40 + 0. 1 0  - 0.25 - 0. 1 8  

mean - 0.04 + 0.01 - 0. 1 2  

The vertical temperature gradient at the altitude of 1 .5 m above the surface i n  the sea wind conditions. 
The columns are the same as in table 4. 

I n  J;:i.nd wind conditions the vertical temperature gradient continues the same as far as the 
shore l ine. After that the isotherms turn to oblique and vertical positions, and therefore the vertical 
temperature gradient diminishes to values close to zero. 
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With a sea wind the isotherms are already rising to a vertical posi tion before the shore line, 
and after that overturn even to an inverse position. 

When the wind is blowing in the direction of the measuring l ine, one shore of the water-crossing 
is under the influence of the land wind and the other shore under the influence of the sea wind. 
Because the levelling instrument cannot generally be set up outside the strong temperature gradient 
area on that shore, where the land wind is prevailing, a clear difference ex ists between the conditions 
of the different shores. This asymmetry causes refraction error. 

With a side wind there are the same wind conditions on both shores of the water-crossing. 
Thus, in that case the refract ion field is symmetrical .  

3 .  Conclusion 
The optical measurements carried out in Suomenlinna and in the Aland archipelago have 

shown that the asymmetric refraction error, which remains in the arithmetical mean of the s imult
aneous observations in opposite directions, can be reduced by measuring the vertical temperature 
gradient. 

The asymmetric refraction error exists in  such kinds of optical measurements over water
crossings, in which the sight l ine has gone over the heterogeneous surface or when the measurements 
have been carried out in land wind conditions. l f, however, the measurements have taken place 
with a side wind and at the same time the vertical temperature gradient has been measured along 
the sight l ine in order to determine the refraction correct ion, the accuracy of the measurements 
over the water-crossings has been essentially greater. The mean errors are ± 1 .43 mm in land 
wind conditions without the refraction correction, ± 0.89 mm in side wind condit ions without 
the refraction correction, and ± 0.60 mm in side wind conditions with the refraction correction 
for the levellings over the water-crossings of an average length of 450 nieters. 
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Measuring of the Refraction in the Second Levelling of Finland 

by Erkki Hytonen, Helsinki 

I .  Introduction 
Owing to different density of air layers a line of sight is refracted towards a layer where the 

density is greater. The error caused by this phenomenon, appearing e.  g. in precise levelling, tends 
to diminish the measured height differences. The effect is of such order that it ought to be eliminated . 
T n  the fol lowing a method is explained, which is used in  Finland. 
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2 .  Formulae for refraction 
The levelling refraction has been determined by a method developed by Kukkamaki (cf. Kuk

kamaki 1 938, 1 939). The computing formulae have been derived from the interpolation formula 

fz = a +  bzc (a, b and c const.) ( 1 )  

where t z (O C) i s  a temperature at the height z ( < 300 cm) above the ground. From this formula ( 1 )  
the following equation i s  derived 

R = d . . 
c: c -- (Z1 - Z2 ) - Zo (Z1 - Z2) 

s2 .& [- 1 c + 1 c J 1 c ] 
(Z0 - Z1)2 z2 - z1 c + 1 

Following symbols have been used 
R = refraction error for one instrument station (in mm), 

(2) 

B . 
d = - 10-6 [0.933 - 0.0064 (t - 20)] . -, where t (O C) is a temperature and 

760 
B barometric reading (in mmHg) t), 

.& = temperature difference t2 2 - lz1 , 
s = length of sight, 

Z0 = height of instrument (in m), 
Z1 and Z2 = height of line of sight respectively on the fore and the back 

staves. 
Assuming that the refraction is directly proportional to the levelled height difference D the equa
tion (2) gives the refraction error 

R = 10- s . y .  (s�f . .& . D (3) 

in mm, when s is given in m and D in "staff-unit" ( = S U  = 5 mm). The coefficient y means a 
tabulated (Kukkamaki 1 939, pp. 1 1  . . .  1 8) quantity 

Y = . -- (50c ,- 1 - 250c -, 1) + 1 50c . 200 
5.95 [ 1 J L ] 250' - 50c c + 1 

(4) 

In addition to the quantities s and D, observed in connection with the levelling, the temperature 
difference .& is measured. 

I 

H 

3 .  Differential thermometer 
In  order to determine the value of .& a so-called 

differential thermometer has been used in Finland 
since 1 938. In the preliminary experiments the ther
mometers were devices based on t��rmocouples, later 
on resistors and on the principle of Wheatstone 
bridge (Kukkamaki 1 938, p. 1 5). The writer con
structed the thermometers used nowadays making 
some alterations in the earlier model. It has been 
tried to improve the accuracy by adding a voltmeter 
and by replacing a resistance wire made of platinum 
by a nickel wire. The galvanometer is not used· as a 
null-instrument but the current, which flows through 
it and which is caused by temperature difference of 
the resistances, is measured. 

3. 1 .  Parts and coupling scheme of instrument. 
In Fig. 1 the coupling scheme is illustrated with 
following notations : 

1) The above formula has been used for d in this paper. The new formula has been accepted 
by IUGG Assembly Berkeley 1 963 (Resolution No. 9). This means a change of 3 .6  per cent in 
the refraction correction, which is, however, insignificant concerning the results presented in 
this paper. 
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A :  Moving-coi l  galvanometer (model Siemens KMP 66, D l 20) with scale (500-0-500), one scale 
division of which corresponds to about 33  µ A .  Because one division is 1 .2 mm wide, the reading 
accuracy is about 0.2 mm. The internal resistance is 1 0  0. 

B :  M oving-coil voltmeter (model Siemens KMP 66). The scale is  divided i nto 20 parts (each being 
1 . 8  mm wide) with a reading accuracy of 0.02 V. The internal resistance is 2000 0 . 

C1 and C2 : The known resistances (model V itrohm l W) each of 1 0  0, which are inside a thick 
insulati ng cover, made of constantan wire. 

Di  and Dz : Resistances (each of 1 0  0) of nickel wire, made artificially older. The temperature 
difference existing between these is exactly that to be measured. Each consists of a spiral of 
90 cm-long wire (in diameter 0. 1 mm), wound around a cross-shaped 8 cm long frame 
made of_ insulat ing material. The temperature coefficient of the nickel resistance wire is 0.005. 
The wire is coated with enamel . 

£: Potential divider of constantan wire with pre-set adjustment (model Yitrohm GLA, total 
resistance I 0), by which the bridge can be "balanced". 

F: Variable resistance (model Bulgin IVC4) of constantan wire, range of regulation 5 . . .  30 0. 
G :  Shunt resistance o f  33  0 (Vitrohm I W), made o f  constantan wire. 
H :  Circuit switch. 
/ :  Flashlight battery of 1 . 5 V being a source of energy. I n  field work the battery lasts 1 . 5 months. 

By a voltage of 0.7 V the total current in the circuit is 70 m A and that going through D1 and 
D1 35 m A .  

All  parts are placed in  a plywood box (total weight 2.5 kg, size 2 3  x 8 x 27 cm), which is  
carried on the shoulder by a leather belt . D1 and D2 are during the measurement fastened on a 3 m 
long rod, at 0.5 m distance from i ts end. In  order to reduce the radiation error, the frames of the 
resistance wires D1 and D2 are inside a hol low aluminium cyl inder ( 1 0  cm long and dia. 4 cm), 
the surface of which is reflect ive. 

3 .2 Procedure of measurement. The differential thermometer is cal ibrated against a known 
temperature difference in order to determine a value of the scale division. The procedure of an actual 
field measurement is as fol lows : the record keeper reads at each instrument stat ion the galvanometer 
three t imes, closing the circuit between readings. I n  order to el iminate any possible change of t he 
zero point he changes the places of t he resistances (i . e. turns the rod) and reads the galvanometer 
again three times. The temperature difference & to be measured is a difference of the means of the 
observed readings. The measurement is carried out near the instrument and temporal ly in the middle 
of the levell ing observations. 

3 . 3  On errors of differential thermometer. In the following only internal errors of the thermo
meter will be examined. 

3 . 3 1 Error of calibration.' By cal itration of the thermometer the same voltage is used as in 
the field, ordinary of 0.7 V. For t he present thermometers has been obtained 

l scale division of galvanometer p "-1 oo.5. 

The value of p has- been defined as a difference of two galvanometer readings, one observed before 
and another after turning of the rod. The internal standard error of p is ± 00.0 1 5 .  But the cal ibrat
ions made at different times differ from each other much more, t hus it has been observed that the 
final standard error caused by the cal ibrat ion is 

mpc = ± 00,035 . 

The voltage is regulated, within the l imits of the reading accuracy, in the field measurements 
to be the same as at cal ibration. There is theoret ically an equation between p (O C) and voltage V 
(in volts) 

0.38 
p = ·-· . v 

So the a ccidental error of the voltage brings on p t he error 

m v  = ± 00.01 6 .  p 
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The error of the temperature d ifference .& to be measured arising from t he whole cal ibrat ion error I/ (mpc) 2 + (mp V) 2 = ± 00.038 depends on the val ue & i tsel f. Because the average temperat ure 

difference : r250 - t�0 1 :--, oo.3 ,  i .  e .  0 .6 scale d ivisions in  galvanometer. is t he final error of t he 

cal ibrat ion 

mp = ± 00.023 .  

3 . 3 2  Read ing error of  galvanometer. The galvanometer can be observed,  as  said, wi th  a read ing 

accuracy of about ± 0.2 scale d ivision. Because t he final temperature d ifference is a mean of three 

observat ions, the effect of the read ing error on the quant i ty  .& is accidental ly 

mg = ± 00 .082. 

3 . 3 3  Vent i lation er ror. Theoret ical ly, the temperature of the nickel wire rises d uring the 

reading of t he galvanometer by 00.9, without radiat ion and t ransmission of heat.  lt has been ex

perimentally proved, t hat t he max imal value of the vent i lation error, caused by a different vent i l

ation of the resistances D 1 and D2, is :l:: 00.05. Therefore t he a.ccidental e rror of the temper:tt u re 

difference -&, arising from the venti lci.t ion error, is 

m ,q.  = _J= 00 .02 .  

The internal accuracy of t he temperat ure difference ft, measured by t he d ifferential thermometer 

i n  a manner before-ment ioned, is consequently given by 

m11- = I mp2 + mg
2 + mv2 = ± 00.087 . 

According to the equation (3) the infl uence of mn. upon the resu l t  of R is in average circumstances 

(v -= 70 (!.._)2 • 1 D1 -:--:: 1 50 S U )  I 
' 50 

f!1, R = ± 0.009 mm. 

4 .  Errors due to methods of measuring and computing 

(5)  

There is ,  in  addit ion to t he internal errors of the thermometer appearing i n  the determination 

of &, a Jot of errors, wh ic!1 have an effect on the computing of R. These errors decide, in fact, the 

accuracy of the correction for t he level l ing refraction. 

4. 1 Statist ical exponent c' . The exponent c is not determi ned i n  connect ion with the levelling, 

but for i t  statist ical val ues recorded by Best i n  England are used (Kukkamak i  1 938, p. 1 4). However, 

t hese val ues have been reduced to different latitudes, t he differences in t he t ime of sunrise and sunset 

having been taken into consi deration. ln order to estimate the error arising from the  introd uction 

of the stat ist ical exponent,  which wi l l  be denoted by c' i n  fol lowing, the procedure is as  fol lows : 

Start ing with the test measurements, carried out by Kukkamaki and Behrendt, a standard error 

me given by the test measurements and a standard error me, _ c of t he difference c' - c will be 

computed. Consequently, t he standard error me· of the statist ical exponent is equal to 

Y m2c, -c - nz2c . 
4. 1 1  Formulae of errors. The expression for t he standard error of t he exponent c is obtained 

starting with the equation for the determ inat ions of c 

(6) 

z 1 ,  z2, z3 (z 1  < z2 < z3) mean t hree temperature measurement points, .&1 and &2 t he measured temper

ature differences correspond ing to the interpolation formula ( 1 )  

c (' 
.j-)- 1 = b (z2 - Z1 ) , 

In t he next t he fol lowing symbols are used : 

& 1 
mfl = standard error of -- = 8 ,  

.& 2  
m1 = standard error of a s ingle temperature observat ion, 

m,s- = standard error of a s ingle observation of temperature difference . 

• 
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No. Local time .&1 .&2 c c' c' 
- c 

1 936 

1 VI 29 8�8 - 0�47 - 0�34 - 0.29 - 0.35 - 0.06 
2 9.9 - 0. 34 - 0.86 + 0.84 - 0.30 - 1 . 1 4  
3 1 1 .4 - 0.45 - 0.74 + 0.45 - 0.26 - 0.71  
4 12 . 1  - 0.60 - 0.94 + 0.41 - 0.24 - 0.65 
5 1 4.9 - 0.51  - 0.76 + 0.36 - 0. 1 3  - 0.49 
6 1 5. 8  - 0.46 - 0.53 + 0. 1 3  - 0. 1 1 - 0.24 
7 1 6.5 - 0.44 - 0.53 + 0. 1 7  - 0. 10  - 0.27 
8 1 7. 1  - 0.31  - 0.29 - 0.06 - 0.08 - 0.02 

9 VI 30 1 3.4 - 0.94 - 0.75 - 0.21 - 0. 1 9  + 0.02 
10 1 4.2  - 0.82 - 1 .03 + 0.21 . - 0. 1 8  - 0.39 
1 1  1 4.9  - 0.68 - 0.84 + 0. 1 9  - 0. 1 8  - 0.37 
1 2  1 5.7 - 0.78 - 0.83 + 0.06 - 0. 1 2  - 0. 1 8  
1 3  1 6.4 - 0.62 - 0.76 + 0. 1 9  - 0.10 - 0.29 
1 4  17 .5  - 0.38 - 0.34 - 0. 10  - 0.07 + 0.03 
1 5  1 8.4 - 0.43 - 0.24 - 0.53  - 0.04 + 0.49 
1 6  1 9. 1  - 0. 1 5  - 0.36 + 0.80 - 0.02 - 0.82 
1 7  1 9.9 - 0.01 - 0.09 ( 0.00) 0.00 ( 0.00) 
1 8  20.6 + 0. 1 5  + 0.22 + 0.35 + 0.02 - 0.33  
19  2 1 . 1  + 0.38 + 0.29 - 0.25 + 0.05 + 0.30 

20 vu 1 2.4 + 0.20 + 0. 1 7  - 0. 1 5  + 0.39 + 0.54 
21  3 . 1  + 0.3 1  + 0.03 ( 0.00) + 0.39 ( + 0.39) 
22 4. 1 + 0.04 + 0. 1 5  ( 0.00) + 0. 1 1 ( + 0. 1 1 )  
23 4.9 - 0.01 - 0.07 ( 0.00) - 0.24 (- 0.24) 
24 5 .9 - 0.01 - 0.20 ( 0.00) - 0.39 ( - 0.39) 
25 6.6 - 0.46 - 0.49 + 0.06 - 0.39 - 0.45 
26 7.4 - 0. 16  - 0.38 + 0.79 - 0. 37 - 1 . 1 6  
27 8 . 1  - 0.46 - 0.64 + 0.30 - 0.37 - 0.67 
28 9. 1 - 0.58 - 0.49 - 0. 1 5  - 0.32 - 0. 1 7  

29 VII 2 9.4 - 0.66 - 0.67 + 0.01 - 0.32 - 0.33 
30 10.3 - 0.43 - 0.65 + 0.38 - 0.29 - 0.67 
3 1  1 1 .3 - 0.64 - 0.83 + 0.24 - 0.26 - 0.50 
32 1 1 .8 - 0.71 - 0.70 - 0.01 - 0.24 - 0.23 
33 1 2.6 -· 0.71 - 0.74 + 0.04 - 0.21 - 0.25 
34 1 3.6 - 0.72 - 0.73 + 0.01 - 0. 1 9  - 0.20 
35 1 4.4 - 0.78 - 0.93 + 0. 1 6  - 0. 1 5  - 0. 3 1  
3 6  1 5.2 - 0.68 - 0.99 + 0.34 - 0. 1 4  - 0.48 
37 1 5.9 - 0.64 - 1 .04 + 0.44 - 0. 1 1  - 0.55 

38 VII 3 1 6.3 - 0.65 - 0.83 + 0.22 - 0.09 - 0.31  
39 1 7. 1  - 0.52 - 0.59 + 0. 1 1  - 0.07 - 0. 1 8  
40 1 7.9 - 0.35 - 0.28 - 0.20 - 0.06 + 0. 1 4  
4 1  1 8.4 - 0.24 - 0.27 + 0. 1 1  - 0.04 - 0. 1 5  
42 19 . 1  - 0. 1 5  - 0. 1 4  - 0.06 - 0.02 + 0.04 
43 20. 1  - 0.10 - 0.06 - 0.46 + 0.02 + 0.48 
44 20.9 - 0.08 - 0.01 ( 0.00) + 0.04 ( + 0.04) 
45 21 .5  - 0.02 - 0.01 ( 0.00) + 0.09 ( + 0.09) 

46 VII 4 3.0 + 0.21 + 0.22 + 0.04 + 0.40 + 0.36 
47 3.6 + 0.34 + 0. 1 8  - 0.58 + 0.26 + 0.84 
48 4.4 + 0.27 + 0. 10  - 0.90 0.00 + 0.90 
49 5 . 1  - 0.01 - 0.20 ( 0.00) - 0.26 (- 0.26) 



No. Local time 
1 936 -- --- -

50 VI I  4 6. 1 
5 1  6.9 
52 7.6 
53 8 . 3  
54 9. 1 

.f} I .&2 
-- ------ - - - ------· 

- 0.23 - 0.48 
- 0. 50 - 0.38 
- 0.28 - 0.78 
- 0.37 - 0.80 
- 0.65 -· 0.93 

3 1 9 

c c I I c - c 

----
+ 0.67 - 0.39 - 1 .06 
- 0.25 - 0.37 - 0. 1 2  
+ 0.93 - 0.37 - 1 .30 
+ 0.70 - 0.35 - 1 .05 
+ 0.33  - 0.32 - 0.65 

---- --- - --
- -

---
· - ------

Mean values 

Since 

i t  follows that 

By the expression (6) 

or 

-- 0"34 - 0"45 + 0. 1 3  

.&2 a e .& 1 + &2 a e & ,  
.&22 , a !2 = 

-&-22-
- • a f3 - .&22 

m{} 
m1 = , ,- ' {tz = t,,..) ,  ,· z i.-

I · ----

mo = - ,, 1 + e + ez m 'I· • \ / &2 . 
1 

me =  --- me . (z3e - z2c) (z2e In z2 - z 1 c  I n z 1 )  - (z2e - z 1 c) (z3e In  z3 - z2c In z2) 

(7) 

(8) 

4. 12  Observat ions by Kukkamak i .  Kukkamak i has used in the test measurements the values 

z1 = 33 . 3  cm, z2 = V z1 z� z3 = 9 z 1 . Then the equations (6) and (8) give 

In e c =  - .. --ln 3 
(9) 

and 

2 
( 1 0) 

In  the above table the observed quantities .& 1 land .&2 (Kuk kamaki 1 938, p. 30) and the computed 
values c, c' and c' - c have been collected. The value of c has been computed by using the equation 
(9). If l .&1 I or l.&21 < 0�05, the corresponding c has been marked = 0 and has been not taken into 
consideration by comput ing the means mentioned in the table . A constant y corresponding to  the 
local time of the observat ion has been obtained from the tables by Kukkamaki (Kukkamaki 1 939, 
pp. 1 5  . . .  1 6, cp = 60?25). The corresponding value of the statistical exponent is taken from the 
curve for y = y (c) (Fig. 2), drawn on the basis of the equation (4). During observations, the 
quantities & 1 , .&2 and c have had the average values of 

·f>- 1 0  = - 0'�34, -9-20 = - 0�45, cO = + 0. 1 3 . 

U sing these values the equat ions (7) and ( 1 0) give 

me = ± 3 . 39 m& , me = ± 1 .05 me ' 
me = ± 3 . 56 In& . 

The temperature differences &1 and &2 observed by Kukkamaki are the means of 6 . . .  1 2  measure
ments, i n  which besides the thermometer errors the external errors are also included. The accuracy 
of the mean computed from the observations is 0?1 ,  hence 

me = ± 0.36. 
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t 
100 

lo 

o., o.• -0. 2 

f' i Q  . 2.  

The quadratic mean of the difference c' - c 

mc,-c  = ± 0.56. 

Hence 

me, = ± 0.43. 

o.4 o ' 
c. 

( 1 1 )  

4. 1 3  Observations by Behrendt . Behrendt determines the exponent c by two groups of 
heights (cf. Behrendt p. 1 4) 

1 .  group 

{ z1 = 5 cm 

z2 = 50 cm 

z3 = 1 50 cm 

2. group 

{ z1 = 50 cm 

z2 = 1 50 cm 

z3 = 250 cm 

The means being observed by him being computed separately from each group are respectively 
(Behrendt, table 1 )  

c10 = - 0.47, 

The means of the measured temperatures are 

.&10 = t50 - t5 = - 1 ?80, 

.&2° = 1 1 50 - t50 = - 0�39, 

.&3° = t250 - 1 1 50 = - 0�35 .  

By using the equation (7) is 

c20 = + 0.78 . 

me l 
= ± 1 3 .3 m{jo, me = ± 5.23 m{)o ( e1 = 

.& i
' 62 = .&2) . 

2 .&2 .&3 

According to the expression (8) for the standard error of c is 

mc1 = ± 0. 1 1  me 1 , mc2 = ± 1 . 1 4  me2 

The statistical exponent c' (Behrendt's symbol c3) has been computed by the method of Kukkamaki 
from Best's observations. The quadratic differences of the statistical exponent and of the exponent 
computed from the observations are respectively 



mc' - c i = + 0.43 , mc' - cz = ± 1 .62. 
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( 1 2) 

Appearing from the values of c20, mc· - c2 
and mc2 the values of the exponents being computed 

from the group 2 are too great , and the weight of mc2 compared with that of mCJ is very small .  

Therefore we use only a value resulted from 1 .  group 

( 1 3 ) 

Behrendt's values of .& are the means with a standard error of ± 0': 1 3 not iced by him. Hence t he 
equat ions ( 1 2) and ( 1 3) give results 

mc1 = ± 0. 1 9  

and 

me, = ± 0.39.  ( 1 4) 

4. 1 4  The results observed by Kukkamak i  and Behrendt can be considered as of equal weight .  
Concluding from this we get from the equat ions ( I  I )  and ( 1 4) the standard error of the exponent c' 

fflCI 
= ± 0.4 1 . 

This brings on the coefficient y the standard error of ± 22. Under average circumstances ( s )· 2  -
Z0 = 1 50 cm, z 1  = 50 cm, z2 = 250 cm, y = 70, ! & I = 0�3 SO . j D j  = 1 50 SU , ( 1 5) 

the error of y causes according to the equation (3) on a height difference at one instrument station 
the error of 

m' =- ± 0.0 1 0  mm. 

4.2 Uneveness of the ground level .  By deriving the refraction formula some assumptions 
have been made. So the ground level between the staffs i s  supposed to be a plane and the isothermal 
surfaces paral lel to th is. The height of the instrument (Z0 = 1 50 cm) is considered equal to the 
distance above this plane. If we suppose a real height measured from the ground to differ from the 
afore-mentioned height by ± 20 cm that influences on y an error about equal to one caused by c' 
Consequently its effect on the refraction is 

my = ± 0.0 1 0  mm. 

4 .3  Air humidity . When computing the refract ion error, the effect of air humidity and the 
ones of pressure and content of carbonic acid is neglected. The total effect of these, mainly caused 
by the humidity, is at the most 0.025 mm. We can suppose an average effect to be one third of the 
former or 

mn = ± 0.008 mm. 

4.4 Influence of assumption R = k D (k = const.) . By deriving the formula (3) it has been 
supposed, that the quantities R and D are directly proportional. Provided that the l ine of sight 
goes at least 30 cm above a ground level, the error caused by the before-mentioned assumption 
is on an average about 5 per cent or 

m, = ± 0.002 mm. 

4 .5  Other sources of errors. Since the gradient is a locally and temporally quickly changing 
quantity, the temperature difference .& ought to be k nown right at the moment of the reading of 
the staffs. In fact, the value of the gradient should be k nown at every point along the l ine of sight .  
The measured value of .& has therefore an accidental character. I t  is ,  however, difficult to estimate 
the error caused by this at one instrument station. 

The means of the differences c' 
- c and c' - c2 being computed from the observations by 

Kukkarnaki and Behrendt are resp. 

[c' - c] O = - 0.27, [c' - c2 ] 0  = - 1 . 1 1 .  

2 1  
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Concluding from th is, the values of c' , computed from the· temperature observations by Best, 
seem to be too small .  At a height of 0 . . .  3 m above the ground level the exponent c may be dependent 
upon height. The material is, however, too smal l to estimate an eventual error. 

s, z1 and z2 are the measured quantities. Provided that s has been measured with an accuracy 
of 0. 5 m and z 1  and z2 with ones of 5 cm the errors caused by the measuring inaccuracy are negl igible 
in R. 

The i nfluence of the before-computed errors on the refraction correction at one instrument 
station under the normal circumstances ( 1 5) i s  

( 1 6) 

5 .  Conclusions 

The accomplished estimation of the errors and part ly the following concl usions are valid in 
respect to the ordinary precise levell ing work, which is carried out in daytime along the railway 
or highway when the weather conditions are suitable for levell ing, but not apl icable to a water 
crossing observations by night etc. 

5 . 1 Computing of coefficient y. On the basis of what has been presented above, an inaccuracy 
is included in the determination of y. This results mainly from the error of the stat ist ical exponent. 
It is not, however, possible to determine c i tself in the field in connection with the levell ing not even 
with an accuracy of c', because i t  is tried to carry out the levelling during the t ime, when the gradient 
is near zero (cf. (7) and (8)). Therefore we can always use, when computing results, an average 
value for y or the value 70 without reducing an accuracy. 

5.2 Effect of the refraction on levelling net. According to the formula (3) the refraction for 
a bench mark interval is calculated as a sum 

p = 1 o- s . y L (;or f} D . 

The error of the measured temperature difference .& may be great at any i nstrument station arising 
from the noticeable changing of .&. In spite of that, an average gradient of the whole bench mark 
interval is obtained accurately enough, because -& is measured with intervals of about 1 00 m.  The 
reality of the refraction correction - p appears clearly from the test measurements carried out by 
Kukkamaki on the bench mark interval with length of 1 958 m (Kukkamaki 1 938, pp. 38 . . .  39). 
Similarly, by adding statistically the refraction correct ion to the First Levelling, the systematical 
error of the net has diminished by one }h ird. On the contrary, the quadratic mean of the closing 
errors of the levelling loops diminished much less, only by 1 0  per cent.  It was to be expected, because 
the effect of the systematical changes of the refraction do not appear in the closing error of the 
loops, only the effect of its accidental changes do. 

The whole error of the determination of the refraction for one kilometer (about ten instrument 
stations) of the forward and backward level ling is according to the equation (5) and (6) 

m1 km = V :5 (mR'2 + mR"2) = ± 0.04 mm. 

Accordingly the inclusion of the refraction correction to the result of the levelling does not increase 

essentially the accidental error of the levelling (0.3mm I V  km) not although mR, in consequence 
of the accidental changes of .&, should increase doubly. 

5.3 Adaptability of different thermometer. The internal error of the thermometer has influence 

on the standard error of the refraction correction ·v mR'2 + mR"2 = ± 0.01 8  mm only by about 
1 2  per cent. Hence the internal accuracy of the thermometer is enough. More significant than any 
increasing of the accuracy is a correct performing of the measurement. Thus the current is not 
allowed to be coupled longer than a few seconP,s.  Wind must be permitted to produce freely an 
effect upon both resistances, i .  e. the axes of the cylinders serving as radiation shelters must always 
be turned in  the direction of the wind. The rod with the resistances has to be placed so, that the 
resistances are exactly in similar conditions as a line of sight between the staffs. When measuring 
along the railway it should be avoided to place the lower resistance too near a rail, which radiates 
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heat. Though the wire resistances are protected, the resul ts given by the thermometer in the rain 
are hardly real. 

5.4 Necessity of determination of the refraction. The systematical influence of the refraction 
is on the average 0.06 mm per one metre rise. When the greatest possible accuracy is  required, i t  
must be  tried to eliminate this systematical error. I t  is  statistically possible, by  using the  before
mentioned thermometer and formulae. I n  addition to the proper refraction determination, the 
thermometer can be used to establish the magnitude of the refraction. Thus the observation t ime 
may be applied to such circumstances, when the influence of the refraction is  as slight as possible. 
As further the determination of the levelling refraction neither needs extra person nor retards the 
levelling, the presented method for the determination of the refraction correction may be recom
mended i n  the ordinary precise levelling work. 
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Application of the Conformal Theory of Refraction 

by Helmut Moritz, Berlin 

Abstract 

A unified theory of geodetic refraction, covering horizontal and vertical angles and electron
ically measured distances, is provided by treating the l ight ray as a geodesic in a curved three
dimensional space which is conformally related to ordinary Euclidean space. The principles of this 
wellknown three-dimensional conformal mapping are pointed out ; then explicit practical formulas 
for refractional correct ion of distances and angles are derived on the basis of a solution of the 
eiconal equat ion by means of a series. 

Zusammenfassung 

Eine einheitl iche Theorie der Refraktion in i hrer Auswirkung auf Horizontal- u nd Hohenwinkel 
und auf elektronisch gemessene Entfernungen ist moglich, indem man den L ichtstrahl als eine 
geodatische Linie in einem gekriimmten drei-dimensionalen Raum auffa13t, der mit  dem gewohn
l ichen eukl idischen Raum durch eine konforme Abbildung verbunden ist. Die Grundlagen dieser 
bekannten dreidimensionalen konformen Abbildung werden erlautert. H ierauf werden praktisch 

2 1 * 
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verwendbare Ausdriicke fiir die Refraktionskorrektion von Strecken und Winkeln abgeleitet, 
wobei eine ReihenlOsung der Eikonalgleichung die Grundlage bildet. 

Introduction 

A light ray or an electromagnetic wave of high frequency describes a slightly curved path in 
the atmosphere, rather than a straight line. In electronic distance measurement the straight distance 
s = A B between two points A and B is to be computed from the measured travel time T. This 
is usually done in two steps : 

1 .  Computation of the length S of the curved light path between A and B from the travel time T. 
2. Computation of the chord s = A B from the curved arc S. 

It is, however, possible to give a method of directly obtaining the straight distance s from the 
travel time T, without needing the curved arc S. By an extension of this method vertical and lateral 
refraction affecting measured directions can be treated as well ; we thus obtain a unified theory 
of all ' geodetically important phenomena of refraction. 

A convenient geometrical visualization of this method is furnished by the theory of conformal 
mappjng in space. Conformal mapping between two surfaces being familiar to geodesists, it is 
gratifying that the reduction of electronically measured distances and observed directions for 
atmospheric refraction is the precise three-dimensional analogue of the reduction of distances 
and directions in the conformal mapping of a surface such as an ellipsoid onto a plane. 

2. Refraction and Conformal Mapping 
Essentially the same laws hold for the propagation of �ight and of radio waves of high fre

quency. Henceforth we shall speak only of light, implying high-frequency radio waves as well. 
According to the well-known Fermat principle, light traveling from point A to -Point B describes 

the shortest path ; the travel time 

B B 
T = f d t = f d

v
s 

A A 

( 1 )  

i s  a minimum . .The instantaneous light velocity v i s  related to the constant light velocity in vacuum 
c by 

c 
v = ·- ' 

n 

where n is the index of refraction. Hence ( 1 )  becomes 

B 
T =  :J n d s , 

A 
where 

d s = V d s2 + d y2 + d z2 , 

is the ordinary line element. If we define the element of "optical length" s by 

d s n d s = n V d x2 + d y2 + d z2 , 

then 

B 1J - s 
T = � d s = � 

A 

Since c is a constant, Fermat's principle is equivalent to 

s = minimum . 

(3) 

(4) 
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The  optical length has indeed the dimension of a length. I t  is obtained from the measured travel 
tim e T by simple multiplication by c according to 

s = c T  ; 

hence the optical length s can be considered the direct result of electronic distance measurement. 
For the moment, assume for simplicity that the l ight is propagated along the xy-plane, which 

we shal l denote by S. Then z = 0, and we have by (2) 

d s2 = n2 (d x2 + d y2) , 

whereas the ordinary l ine element is given by 

d s2 = d x2 + d y2 

(5) 

(6) 

Obviously ds in (5) may be considered the l ine element in isothermic coordinates of a certain curv

ed surface S. The condition (4), s = minimum, defines geodesic lines on this surface S. 

The length of such a geodesic on S, the geodesic distance, is identical with the optical length  
and can therefore be  considered the direct result of measurement. The reduction for refraction  
consists in  computing the straight distance A B in  the plane, 

s = V(xB - XA)2 + (YB - VA)2 , 

from the measured optical length s. The plane S is related to the surface S by a conformal mapping, 
since the l ine elements (5) and (6) have the form corresponding to such a mapp8ng ; hence the re-

lation between the geodesic distance s and the straight distance s is given by the conventional reduct
ion of distances in conformal mapping, 

which, physically, is precisely the reduction of the measured optical lenght s for refraction. 
Consider now the measurement of directions, again in the plane, disregarding the third dimension . 

The direct result of our measurement is the angle between light rays in  the plane S. These light 

rays are geodesics in our auxiliary surface S;  in  the plane S they are consequently the image curves 
of these geodesics. The angle between image curve and chord is well-known as the arc-to-chord or  
angle correction of  conformal mapping (Bomford, 1 962, p .  1 69) ; it  is thus  identical with the angle 
between light path and straight l ine which is needed for the reduction of measured angles for re
fraction. 

Hence we see that the introduction of our auxil iary surface S helps to reduce the problem of 
refraction to the theory of conformal mapping familiar to geodesists. In this way we achieve two 
purposes : first, we obtain a uniform treatment of the influence of refraction on observed angles 
and electronically measured distances ; and second, there results a conceptual simplification : the 
relatively complicated light paths are represented by the simplest curves, the geodesics, in the 
auxiliary surface, and the travel time of the light waves gets a simple geometrical interpretation 
as geodesic distance. 

Clearly the light ray moves i n  three-dimensional space and not in a plane. This means that 
we must restore the z-coordinate, which we have omitted for simplicity. The essential relations, 
however, which we have just found, remain intact. The plane S is replaced by three-dimensional 

ordinary space R, and the auxiliary surface S is replaced by an auxiliary space R. Since S is a curved 

surface, R will in general be a curved "Riemannian" space (it is no longer Euclidean). Hence the 

light rays are geodesics in  this auxiliary space R, and the measured optical length (proportional 

to the travel time of light) is the geodesic distance in R. We may thus say that there is a certain 

(fictitious) curved space R in which we measure directly by means of its geodesics, both when observing 
angles and measuring distances electronically. 

The transition from this "refraction space" with l inear element given by 

d s2 = n2 (d x2 + dy2 + d z2) (7) 
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to ordinary Euclidean space with 

d s2 = d x2 + d y2 + d z2 (8) 

i s  effected through a three-dimensional conformal mapping ; the reduction of observed horizontal 
and vertical angles and electronically measured distances is identical with angle and distance cor
rection of this conformal mapping. 

The mathematical properties of three-di mensional conformal mappings and their application 
to the problem of refraction have been studied extensively ; we mention (Marussi, 1 953), (Moritz, 
1 962), and (Hotine, 1 965). Hence we need not  go into the details here. We shall i nstead use t he 
principles just explained to  give explicit, practically applicable formulas for the reduct ion of angles 
and distances for refraction. 

3. The Eiconal Equation 

The geodesics in  Riemannian space are described by- two differential equations : 
1 .  the ordinary differential equation. for t he geodesic curve ; and 
2. the partial differential equat ion for the geodesic distance. 

These two equations occur in many different contexts. (In mechanics, for instance, we have 
Newtons equation of motion, which is a system of ordinary differential equat ions corresponding 
to 1 . , and the Hamilton-Jacobi equation, which is a partial differential equation corresponding 
to 2.) They therefore deserve closer attention. 

Let t he square of the l inear element of a three-dimensional space in curvilinear coordinates 
Xt ,  Xz, X3 be 

3 
d s2 = 2.: aij d x; d Xj 

i, j  = 1 

Then the ordinary differential equation for the geodesic l ine is 

d2 xi + 2_ -± a i r [ CJ Or k + C\ Or [  _ G Ok /] d Xk d X[ 
= O 

d s2 2 k I r = I Cl XJ CJ Xk Cl x, d s d s ' ' 
and the partial different ial equat ion for t he geodesic distance s is 

3 . .  CJ S CJ S  
2.:: QIJ -- --- = 1 . 

i, j = I  "f.) X; CJ Xj 

Here the matrix (aij) is simply the i nverse to the matrix (au). 

(9) 

(i = 1 ,  2, 3) ' ( 10) 

( 1 1 ) 

The reader famil iar with Ricci calculus will notice that the formulas (9) through (1 1 )  could be 
simplified by the use of certain notational conventions pecul iar to this calculus. We have purposely 
dispensed with these conventions here in order to be more generally intelligible. 

I t  should be mentioned that t he formulas (9) through ( 1 1 )  are as well valid for a surface i f  
all subscripts are assumed to take the values 1 ,2 only and if consequently the summation goes from 
1 to 2 instead of from 1 to 3. To get the familiar form, substitute 

( 12) 

Then (9) becomes 

d s2 = E d u2 + 2 F d u d v + G d v2. ( 1 3) 

Furthermore, assume that the coordinates u, v are orthogonal ; then F _ _  0. In this case i t  is readily 

shown that 

1 1 
01 1 = _ 0 12 = o ,  022 = 

E ' G 

Then ( 10) becomes the system 



where 

1 
u" + --- (Eu u'2 + 2 Ev u' v' - G11 v' v'2) = 0 , 

2 E  

1 
v" + - ( - Ev u'2 + 2 Gu u' v' + Gv v'2) = 0 , 

2 G 

d u  r> E  
u' = ·---;;-; ; E11 = CJ 

u 
etc. 

The dista11ce equation ( I I) takes the form 

� (�)2 + � ( ri s )2 = 

1 . 
E a u  G 0 v  
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( 1 4) 

(1 5) 

These equations are important in  geometrical geodesy, for computations on the reference 
el lipsoid on which u and v are orthogonal coordinates (usually, geographical coordinates c:p and :>..) .  
The system ( 1 4), in a somewhat modified form, is the usual starting point for solving the "direct 
geodetic problem", the computation of coordinates from distance and azimuth. 

S imilarly, ( 1 5) is the best starting point for the solution of the "inverse geodetic problem", the 
computation of geodesic d istance s and azimuth <X from coordinates. Curiously enough, this simple 
equation seems to have never been used for this purposes, except by Gauss (1 828). He needed the 
quantities s cos <X and s sin <X for obtaining his well-known formulas for small geodesic triangles 
on an arbitrary surface. Although Gauss' work belongs to general differential geometry, i t  may 
be properly quoted in connection with geodesy since the problem of geodesic triangles has important 
geodetic applications and since Gauss was inspired by his practical experience with triangulation. l ) 

After Gauss, the partial differential equation for the geodesic distance, ( 1 1 )  or ( 1 5), was neglec
ted in geodesy as well as in d ifferential geometry and its most important physical application, the 
General Theory of Relat ivity. This is the more surprising as the Hamilton-Jacobi equation (Berg
mann, 1 949, sec. 2.4) and its �quivalent in  optics, the "eiconal equation" (Bergmann, 1 949, sec. 
1 0.3), have h ad very successful physical applications. Only recently Synge ( 1 964) has made extensive 
use of the distance equation ( 1 1 )  in General Relativity and has obtained important results in this way. 

After this digression, intended to point out related problems, we shall return to atmospherical 
refraction. 
Here we have by (7) 

d s2 = n2 (d x2 + d y2 + d z2) . 

The comparison with (9) shows that 

and 

hence we have 

XI = X, X2 = y, X3 = Z 

1 
a l l = a22 = a3 3  = _ a 1 2 = a t 3 = a23 = o 

n2
, , 

because the matrix (aU) is inverse to the matrix· (au). 
Thus ( 1 1 )  becomes 

( 16) 

1 ) The spirit of his work on differential geometry is shown by the concluding sentence of (Gauss, 
1 828) : "Si eadem formula triangulis i n  superficie curva non sphaerica applicatur, error generaliter 
loquendo erit quinti ordinis, sed insensibilis in omnibus triangulis, qualia in superficie telluris 
dimetiri l icet ." 
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This is the eiconal equation already mentioned. It is a first-order partial differential equation for 

the optical distance s. The following developments will be based on the eiconal equation. 

4. Solution ·of the Eiconal Equation 

We shall now solve the eiconal equation ( 1 6) by a suitable series expansion. Since for the atmo
sphere the index of refraction, n, is very nearly 1 (it is approximately 1 .0003) we may put 

n2 = 1 + e: µ ,  ( 1 7) 

where e: is a small constant parameter (e. g.,  e: = 0.0006) and µ = µ (x, y, z) is a function of po

sition. Hence the measured optical length s (see sec. 2) will deviate little from the ordinary straight 

distance s, so that we may expand s as a power series with respect to the small parameter e: :  

Here 

s = s + e: s' + e:2 s" + . . . . 

s = V<x - x1 )2 + (y - Y 1)2 + (z - z1)2 = s (x, y, z) 

( 1 8) 

( 1 9) 

is the straight distance of a variable point P(x, y, z) from a fixed point P1 (xi , y1 , z1 )  as a function 
of the coordinates of P. The functions s' ,  s", . . . will be obtained from the eiconal equation ( 1 6) ;  
we may safely neglect terms of order e; 3  and higher. We keep i n  mind that ( 1 8) is the desired direct 

relation between measured optical length s and straight distance s mentioned at the beginning. 
The straight distance ( 1 9) satisfies the partial differential equation 

- + - + - - 1 ,  
( � s )2 ( (\) s )2 ( (\) s)2 _ 

(\) x Cl Y  (\) z 
(20) 

which is obtained from ( 1 6) by replacing s by s and n by 1 .  This is readily verified by substituting 

( 19) into (20). 
By introducing the vector 

grad ; = ( � s Cl s a s ) 
a x ' 

Cl Y  C) z  

we may abbreviate the eiconal equation as 

(grad s)2 = n2 . 

We substitute ( 1 7) and ( 1 8) into this equation, obtaining 

(grad s + e: grad s' + e:2grad s") 2 = 1 + e: µ .  

(2 1 )  

(22) 

Working out the square and comparing the terms independent on e:, those multiplied by e:, and 
those multiplied by e:2 we find 

(grad s)2 = l , 

2 grad s' . grad s = µ , 
2 grad s" . grad s + (grad s')2 = 0 .  

With (23 a) we have recovered (20), whose solution ( 1 9) may be abbreviated as 

s = vc-; - ;y mit-; = (x, y, z) .  

For later application we evaluate 

-

- -( a S C) s  �) 
= 

X - X1 -
e grad s = 

Cl x ' C) Y 
, 

Cl z s -
, 

(23a) 

(23b) 

(23c) 

(24) 

(25) 

where e denotes the unit vector of the direction P1 P; see Fig. 1 .  In agreement with this figure we 
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z 

z 

x 

y 

y Fig. 1 

introduce an additional rectangular coordinate system XYZ with origin at P1 , whose X-axis contains 
P and whose Y-axis is parallel to the original xy-plane. 

Now we consider (23 b). In view of (25) it may be written as 
-
2e . grad s' = µ. 

--� -

Here e .  grad s '  is the projection of grad s' onto the direction of e ;  it is therefore identical with the 
derivative of st., along the direction of X, iJs' / iJ X. 
Hence we obtain 

d s' 
2 

ax
= µ , 
s 

s' = �Jµ dX .  
0 

This intepral is extended over the straight line P1 P .  

(26) 

To evaluate s" by (23 c), we need grad s' . For this purpe we must express (26) as an explicit 
function of the coordinates x, y, z of P. This is simply achieved by introducing a parameter 

x 
t = -

s 
(27) 

which runs from 0 to 1 as the current point of integration moves along the straight line from Pi 

to P. Since the coordinates of this current point are given by 

we have along P1 P explicitly 

-- -- - �  

X t  + t (X - X1 ) ,  

µ = µ [� + t (7 - �)] . 
Substituting this into (26), taking (27) into account (dX = sdt), we find 

I 

s' = � .r µ [7i + t (; - ;) ] d t .  

0 
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> 

Having thus obtained an explicit expression of s ' as a function of x, we may at once perform the 
differentiation with i espect to x, y ,z to get 

I I 

grad s ' = � grad s .  rµ d ! -! - �.f grad µ .  t d t 

0 0 

Returning to X by (27) we have 

I s I --> 1 I. s I -- > 1 - -> 
grad s' = - e + - grad µ . X d X = - e + - a s 2 s  s 2 s  . 

0 

as the desired result ; we shall find the' abbreviation 

I 

quite useful. 

J'
grad µ .  X d X = ; 

0 

Now we can attack (23 c). By (25) and (29) this equation becomes 

or 

( - -->)2 --+ s ' --> a 
2 e . grad s" + - e + -- = 0 s 2 s  

> 

2 e . grad s" + - + - a . e + - = 0 . 
- - (s ')2 s > > a2 s s2 4 s2 

(28) 

(29) 

(30) 

This equation is considerably simplified by using the syste m X Y Z. The components of the vectors 
->- -+ 
e and a in this system are denoted by capital letters. Thus 

-> 

e = (Ei . £2, £3) = ( I ,  0, 0) ,  

in the system X Y Z. Then we have 

For A we obtain the simple expression 

s s A 1 = - X d X = µ s  - µ X =  µ s  - s Ja µ ' I j' d 2 I � x  
0 0 

by partial integration ; A1 and A 3 are obviously given by 

Thus (30) reduces to 

s A1 = - X d X  J·ci µ Cl y ' 
0 

C) s" 2 A2 + A2 
2 - + !:_ + 2 3 = 0  

C) X 4 4 s2 

(3 l )  

(32) 

( 33) 

for the end point P. To integrate this equation we write i t  for a current point along the straight 
line P{P by replacing s by .X and (32) by 
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(32') 

(we have now denoted the integration variable by � to avoid confusion with the upper limit X). 
We thus obtain 

with the solution 

2 2 
() s" µ2 A1 + A3 2 - + - + = 0  
C) X 4 4 X2 

s s 
s" __:_ - - µ2 d X - - -2---3 d X 

l f 1 JA
2 

+ A
2 

8 8 x2 ' 

A1  and A3 being given by (32'). 

0 0 

(33') 

(34) 

By (24), (26), and (34) we have expressed s = s + o;s' + c;2s" as a function of the index of 
refraction and its partial derivatives in a practically exact way. If these quantities have been deter
mined by suitable measurements, we can evaluate 

� s = s - .s = c; s' + c;2 s" (35) 

using (26) and (34) and computing these integrals by numerical or graphical integration. It may be 
pointed out again that these i ntegrals are taken along the straight l ine P1 P and not along the light 
path. 

The quantity � s  defined by (35) represents the desired reduction of the measured optical 
length for refraction. According to sec. 2, it corresponds to the distance reduction in three
dimensional conformal mapping. 

Estimates show that the first integral of (34) is of the order of 5 x 1 0- s s and is consequently 
negligible. We may also neglect A2, which is caused by lateral refraction, so that there remains 
as a practical approximation 

JS 21! 2 t: t: A3 � s = - µ d X - - - d X .  
2 8 X2 

0 0 

The term with c;2 reaches the order of some 1 0  meters for s = 1000 km. 

5. Effect on Horizontal and Vertical Angles 

(36) 

This method also furnishes the effect of vertical and lateral refraction on measured angles. 
The principle is as follows ; see Fig. 2. 

->-

We consider the two unit vectors e and e, the first directed along the chord P1 P, the second 

tangent to t he light path at P. It may be shown that this tangent has the direction of grad s which 
is not, however, a unit vector. Hence 

Fig. 2 

P, 
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e =  
grad s grad s grad s 

= -- = lgrad s J n V1 + e: µ
. (37) 

Here we have used (22) and ( 1 7) .  We again use an expansion with respect to : 

with 

- - - -
e = e + t e' + e;2 e" + . . .  (38) 

- - +  1 - - 3 - 1 
e = grad s, e' = - - µ e + grad s' , e" = - µ2 e - - µ grad s' + grad s" . (39) 

2 8 2 

-
Thus we know e ;  it is obvious that all refractiona1 changes of directions or angles can be 

-
obtained through e. We shall outline the derivation. Consider the vector e according to Fig. 3 .  

I ts  components in the system xyz (the z-axis being parallel to the vertical of P) are e1 ,  e2, e3. By 
Fig. 3 we have 

e2 
tg tXt = = , sin f3 I = €3 · 

e1 

llz 

e, 

l[Y Fig. 3 

Here a:1 and f31 are taken in the direction P1 P, whereas our angles are measured at P, thus referring 

to the opposite ·direction P P1. Hence the measured horizontal angle is a: = a: 1  ± 1 800, and the 
- -

vertical angle is f3 = - f3i .  so that 

e2 a: =  arc tg = , 
e1 

f3 = - arc sin e3 . 
(40) 

Inserting e1 ,  e2, e3 from (38) and (39) and expanding with respect to e: we obtain after some calcu
lations 

(X = (X + e: a:' + . . . ' f3 = f3 + e: f3' + e;2 f3" + . . . (41 )  



with 

�I I = 

s 

A2 1 Ja µ 
oc' = 

2 s cos � 
= 

2 s cos � a Y 
X d X

, 
0 

s 

W = -

A3 = - _l Ja µ X d X '  
2s 2 s az 

0 

s 

A� µ 1 fa µ2 - - t g � + - A3 + - -_ - XdX + 
8 s2 4 s 8 s d Z 

·o 

s x s x 

+ �rA2 rJ a2 µ �2 d �l-,.v + �JA3 [Jd2 µ �2 d �] d x _  
4 s  X2 a Y o Z  Z"' 4 s X2 az2 
x :: o  E = O X = O  E = O 
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(42) 

The notat ions are those of the preceding section. The angles oc and � refer to the straight line P P1 . 
We have omitted oc" because the effect of lateral refraction is small as compared to the vertical 
effect. 

Estimates indicate that E:2�" is usually only of the order of a few tenths of. a second of arc 
even for s = 50 km. Consequently · it may often be neglected .  In this case we have with E:fL • 

2 (n - 1 )  s imply 

s 

b. oc = oc - oc = -- - XdX 
- t Ja n  

s cos � a Y • 

0 

s 

- l J O n 
b. � = � - � = - ; 0 2 X dX .  

0 

(43) 

These equations have been derived in an elementary geometric way in (Moritz, 1 962), using the 
theory of conformal mapping. We remind the reader that b.oc and �� correspond to the angle 
corrections of three-dimensional conformal mapping ; see sec. 2. As a matter of fact, a formula 
such as the second of (43) can also be used for evaluating the angle correction in the conformal 
mapping of a surface such as the ell ipsoid onto a plane. 

l nspecting our results such as (36) for b. s  and (42) or (43) for !:!.oc and b.� we see that these 
formulas require the index of refraction n and certain of its partial derivatives to be known along 
the straight line P1 P. These values may be obtained by performing measurements in the neighbor
hood of this line. Formulas for practical computation and a numerical example will be found in 
(Jordan-Eggert-Kneissl, 1 966, p. 527 - 5 3 1 ). 
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Extract from the Symposium Report 
by Dr. E. Tengstrom 

(to be published in Bull. geod.) 

These two conferences were originally planned to be inofficial working sessions for members 
of the study groups 1 6  and 23 as part of their running work during the period between the t wo 
general assemblies in  Berkeley and Lucerne. The number of participants was estimated to about 
25 for each conference. Due to the great interest also from many scientists, who are not  officially 
members of aforesaid groups, and thanks to generous pecuniary help from the Austria!l govern
ment and IAG, it became possible to organize a more official symposium on "Figure of the Earth 
and Refraction". 

The first part of the Symposium was devoted to the subjects "The Normal Spheroid and the 
Figure of the Earth", · and following contributions to these questions were presented during three 
sessions : 

Tuesday March 14, J4h - J 7h 30, Chairman Prof. U. Uoti/a 

K. Ledersteger: 
a) Equilibrium Figure of the Earth and Normal Spheroid 
b) Critical Notes on the Equipotential Ellipsoid 
c) The Mass-functions J2 -J6, Derived from Orbital Perturbations of Artificial Satellites 
d) The Definition of Topography and Isosta.sy 
A contribution by Dr. J .  A. O'Keefe was not presented because of the author's absence, but it 
was printed in these Proceedings. Prof. Ledersteger's explanation of his opinion about suitable 
equilibrium figures and non-equilibrium figures to be used as possible physical models for the 
Boundary Value Problem of Physical Geodesy, and for an improved study of the internal constitution 
of the real earth was clear and convincing. The discussion, which followed h is presentations, and in  
which Moritz, Fischer, Levallois, Pick, Tengstrom and others participated did not  contain critical 
remarks but merely reflected some needs for further clarifications of some of Ledersteger's state
ments. A paper of Z�bek : "New Conception of the Equilibrium Condition of One-parametric 
Spheroid and the Normal Spheroid of the Earth" was presented too late and therefore could not 
be discussed, but Ledersteger published his Critical Remarks in  this book. 

Wednesday March 15, 9h - J2h, Chairman Prof. .Moritz 

The first paper, presented by Mrs. Fischer dealt with a problem, intimately connected to t he 
questions of Tuesday-session, namely : "Deviations of the Geoid from an Equil ibrium Figure", 
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M rs. Fischer described her opinion about the  difference between Ledersteger's and O'Keefe's way 
of reasoning and demonstrated a new geoidal chart, giv ing the geoidal heights, referred to Jeffreys' 
hydrostatical model (C maintained) with flattening 1 /299, 67 and a = 6378 1 33 m. She also took 
into account  the spheroidal sha.pe of Jeffreys' figure, having a maximum depression with respect to 
the ell ipsoid with same axis of 3 .2 m. Accord ing to Ledersteger's theory this depression would be 

about twice as much ( � /4). A discussion between Ledersteger and Mrs Fischer cleared up a misun

derstanding concerning the effect on geoidal heights from the difference between mean radius of 
the actual geoid and the mean radius of Ledersteger's spheroid, which is 234 m greater, defined 
from equality of volu me for spheroid and real earth-body, and used by Ledersteger in his regulari
zation procedure. The undulat ions wi l l  be the same, because the mass of the Earth is same as mass 
of the spheroid. 

The subsequent papers during this session dealt with various questions on the Boundary Value 
Problem and its solution. The contributions read were : 
M. Pick : "On the solvabil ity of Molodenskij 's  I ntegral Eq uat ion . "  
H. Moritz: "Lineare Losungen des Problems von Molodenskij ." 
L. Bragard: "Sur un  systeme d'equations integrates pour la determination de la figure de la terre". 
Pick's contribution tried to answer the q uest ion of an appropriate numerical treatment of the in
tegral equation, which avoided the use of divergent series for topographical slopes, greater than 
450 . Moritz' treatment of the linear solution post ulated the possibi l i ty of computing a priori, e .g. 

f f 1 .  h . o /).. g 
B d " d h '  

. . . f rorn sur ace-anoma 1es, t e quant ity ----ah . rngar re1erre to is most recent mvest1gat1ons o 

solving the Boundary Val ue Problem by means of two integral equations. 
The discussion , in which, except the authors, also Levallois, Tengstrom and others participated, 

dealt with other pract ical forms of G 1  (Moritz) and with the non-proved existence of a unique and 
correct solut ion of Molodenskij 's problem, given only surface-anomalies and shape of tell uroid 
(Tengstrom).  The approach of Bragard was appreciated by Moritz, some doubt about its correct
ness were expressed by Pick. 

The importance of using satel l i te information for the determination of the figure of the Earth 
was stressed by K. Arnold in a paper with title : "Analytische Integration der <lurch die Schwere
anomalien hervorgerufenen Sa•el l itenbahnstorungen", which was presented by Dr. Stange. It was 
explained, how unknown mean anomal ies over big squares could be deduced from satellite obser
vations, uti l izing already known mean surface-anomalies as additional information. In the following 
discussion, the question of independence between the mean anomalies used in computation was 
ctea l t  by seve• al participants (Moritz and others). 

About the difficulty to avoid systematical errors, when using satel l i te observations to deter
mine geocentric coordinates Milan Bur§a was talk ing. H is  paper : "On the Deviation of the Earth's 
Ell ipsoid on the Basis of Satel l ite Observations" was discussed by Veis, Tengstrom and others, 
who presented different opinions about the danger of getting systematically disturbed results. 

An interesting paper about d ifferent types of coordinate-systems, used in the problems of 
the Figure of the Earth was presented by G. J. Bruins. Its title W?.s : "Some Remarks about Para
meters, Used by H irvonen, Molodenskij and Jordan". Other contributions during the same ses
sion were 
I. Pola: "Mass Sources as a Representative of Surface Gravity Values and their Use for Solving 
I ntegral Equations' ', and 
J. Kaspar: " Beitrng zur Bcstimmung des Geoides· ' .  
A manuscript by l .  Egyed: "Some Consequences of  the Expans ion on the  Figure and Rotation 
of the Earth' '  and a paper of G. Barta : "The Asymmetric Structure of the Earth and its Secular 
Processes .. were presented by Dr. B ir6, but were not discussed. 

The third session, san:e day, J4h - 1 7 h  30, Chairman Dr. Burfo 
treated miscellaneous questions about Gravity Anomal ies, Deviat ions of the Vertica l ,  Observa
tions and l ntc.rpolations. The following papers were presented : 
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B. Szabo : "Aerial Gravimetry for Direct Observation of the External Gravity Anomalies", 
V. Vyskocil: "Some Remarks on the Accuracy of I nterpolation of Gravity Anomalies". 
P. Biro : "Uber die Genauigkeit der auf gravimetrischem Wege interpolierten Lotabweichungen" 
M. Pick -]. Pola: "Some Experiences with the Determination of the Figure of the Earth in Test 
Areas•r 
The discussion in connection with these papers mainly dealt with questions of hereto achieved 
and expected accuracy in the future. 
K. Rinner presented a very interesting paper e ntitled "Zur Mal3bestimmung im PAGEOS-Welt
netz" and P. V. Angus-Leppan presented a paper by M. R. S. Mather: "The Extension of the Gra
vity Field in South Australia". Rinner's contribution has a specia.1 interest to all scientists, dealing 
with the problem of optimum configurations and their accuracies in geodesy, a problem which 
may be practically solved also in very complicated cases with highspeed computers, as Rinner 
shows. A contribution, by A. Bjerhammar and B. G. Reit was distributed but not presented ; an 
extract is published here. A paper by Killian about Marine Geodesy and its importance for t�e 
study of the Figure of the Earth,. and a paper by Kobold about "Lotabweichungen and N iveau
flachenundulationen in der Schweiz" could unfortunately not be presented during the meeting 
because of lack of time, but the first one is printed in the Proceedings. 

The conference on "The Normal Spheroid and the Figure of the Earth" was closed by the 
president of the SSG 1 6, Dr. Tengstrom, who expressed his great satisfaction with the result of 
the meeting, which had shown all participants important new aspects on many problems in the 
field, which are now worth while to become familiar with. He stressed especially on the necessity 
of carefully studying the problem of selecting a suitable physical model of the Earth, to be used 
by geodesists, as well as by geophysicists. He anticipated further discussions to be held on this 
subject during the meetings of Sec V in Lucerne.  

Dr. Ten�strom explained also on behalf of the participants, his grat itude to the Austrian hosts 
for the good organization of the conference and for all hospitality shown to the guests, who will  
certainly always remember this meeting as scientifically inspiring, and : "We shall never forget 
the atmosphere of friendship and pleasure, which is typical for Vienna, and has once more been 
demonstrated to us", he ended. 

The second part of the Symposium had the title "Recent Research on Atmospherical Refrac
tion for Geodetic Purposes".This conference contained four sessions, two on Thursday, March 1 6, 
and two on Friday, March 17 .  
Thursday, March 16, 9h - J2h, Chairman Prof L. Asplund, president of Sec I of JAG. 
Professor Asplund opened the conference with a short review of existing methods for determining 
the influence of the refractive power of the atmospere upon various kinds of geodetic measure
ments. He ended his opening speech : "I am confident, that very much of new and promising results 
will be reported, and I am sure the discussions will be fruitful, and that many new ideas for the 
future will be born." 

Thursday-sessions were devoted to problems of atmospherica/ refractive index and its influence 
upo11 electro-optical distance measurements. 

After a report from SSG 1 9  by its president Brig E. W. Denison: "Report on refraction-investi
gations in connection with the work of SSG 1 9  until end of 1 965," the following papers were read 
on the subject "Refraction-Effect on Optical Distance-Measurements".  
C. Owens: "Recent Progress in  Optical Distance-Measurements : Lasers and Atmospherical Dis
persion." 
G. B. Lesley: "Preliminary Measurements with a Laser Geodimeter". Ref. ESSA, Technical Memo
randum No 1 ,  CGS 1 966. 
M. C. Thompson : "A Radio Optical Dispersion Technique for Higher Order Cox:rection of Optical 
Distance Measurements." 
C. G. Lehr: "Satellite Ranging with Laser, and the Correction for Atmospherical Refraction." 
K. Bretterbauer: "The Effect of  the Atmosphere on Precise Satellite Ranges with �aser."  
The papers by Owens, Thompson and Lehr reported about the most recent practical investigations 
in  the field. Bretterbauer's contribution was more theoretical, and the discussion seemed to indi-
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cate a general opinion, that the accuracy obtainable as expected by the author was a little too opti
mistic. It was obvious that for all optical ranging the laser has completely distanced the conven 
tional lightsources. 
Second session same day, 13.30 - J7h treated the subject "Refraction effect on Distance Measure
ments, using Radio Wave Propagarion" .  Chairman Brig E. W. Denison 

Presented papers : 
K. Poder: "Atmospherical Corrections at Tellurometer Measurements."  
T. Parm: "Investigations of  Refraction Correction in  Tellurometer Measurements." 
S. Hi:irmi:ilii: "The Effect of Meteorological Factors on the Accuracy of Tel lurometer Measure
n1ents ."  
These papers dealt with the same problem, but  the theoretical and practical approaches were dif
ferent .  I t  was, however, extremely interesting to see, that the results of the investigations almost 
completely agreed. 

Further M. C. Thompson's paper : "Recent Measurements of Atmospheric Limitations on 
Precision of Microwave Distance Measuring Equipment" treated the question of accuracy ·obtain
able at present and in the future, when accounting for atmospheric refraction-effect. The paper 
by F. Culley: "Refractive Effects of Radio Ranging on Artificial Earth Satellites" explained the 
procedure used in- the SECOR-system (and. similar systems). Some questions of definition of the 
total effect were touched during the following discussion. I t  should be pointed out, that both the 
actual speed of propagation and the curvature have to be taken into account in deriving the cor
rection for atmospherical refraction. 
See also Pelzer's paper on Friday morning ! 
Unfortunately, W. Hopcke's announced paper : "Increased Pathcurvatures in Radio-Distance 
Measurements" could not be presented at the meeting because of Prof Hopcke's absence. The 
very i nteresting paper will , however, probably be presented in Lucerne. 

Friday, 1 7 March, 9h - J3h, Chairman Prof P. L. Baetsle. 

This third meeting on refraction dealt with the effect on direction measurements. 
After a short introduction by the chairman, who also presented his work on an extensive biblio
graphy list concerning the refraction problem, as i t  shows up in Geodesy, and which l ist will appear 
in complete shape at Lucerne, Prof Baetsle announced the following topics to be treated during 
the session : 
A. Use of Relationships between Different Effects of Refractive Index. 
B. Errors and Sources of Errors. 
C. Refraction in Connection with Spatial Geodesy. 

Under A, the fol lowing papers were. presented : 
M. Pelikan: "Berechnung des Brechungswinkels mit Hi lfe des Brech ungsindexes und der Krum
mungsra:dien der Brechungskurve." This paper contained a purely mathematical deduction of the 
refractionangle and a comparison with already existing formulas. In principle, it has already 
been printed. Ref. Studia geoph. et geod. 8 ( 1 964). 

A very interesting investigation on temperature-models for the lower atmosphere with title : 
"A M athematical Model for Temperature Models in the Lower Atmosphere and its Application 
in Refraction Calculations" was presented by P. V. Angus-Leppan. The discussion, in which, among 
others, . Leval lois; Owens and Poder participated,  showed the great appreciation of this work but 
also pointed out the danger of treating models as relevant under actual atmospheric conditions 
(Levallois). Accuracy-questions and the needs for further information were touched by Owens 
and Poder. 

About some measurements of temperature-gradient distribution for computing astronomical 
refraction, made by the I nstitute of Geodesy, Technical University, Berlin, was reported by 
0. Hirsch: "Elektrische Messung des Temperaturgradienten auf astronomischen Beobachtungs
stationen". The formulas utilized in the measurements seem to be correct, if we use wave-index . 
for no,, not group-index. In  the discussion Poder asked for a nearer explanation of the actual goal 
of such measurements. 
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Questions of the distribution of the vertical gradient of refractive index near the ground were 
treated in the paper by H. Pelzer: " Beitrag zum Vertikalgradienten des Brechungsindexes fiir Mikro
wellen in den unteren l 00 m der Atmosphare."  This investigation, which should have been presented 
during the Thursday afternoon session, dealt especially with the curvature influence on distance 
measurements with micro-waves but is of course also interesting from the point of view of direc
tion-measurements with radio-waves. The paper by H. Jeske and G. Kruspe (presented by H. Jeske), 
"Time-Space Structure of Atmospheric Refractive Index, Especially Obtained by Refractometer 
Measurements" reported about very interesting investigations of the refractive index distribution 
at low heights over sea, which clarify how dangerous it is to assume simple vertical and horizontal 
distribution of the index near water level, valid for a certain time of observation. The fast-chang
ing turbulent effect seems not to be too critical for observations towards a fixed object, but the 
actual "noise-free" distribution is the more important to know for a correct computation of atmo
spherical corrections. In the discussion Poder and others took part. 

Under B, the following papers were presented : About "Invest igations on Errors in the Deter
mination of Astronomical Refraction", Prof K. Ramsayer was tal k ing. This interesting study 
showed that ·the error in zenit-distance measurements of stars mainly depended on the actual in
clination of the optical layers and that the error is surprisingly small, even for rather large zenit
distances. No discussion followed, thus ind icating that the participants agreed with these state
ments. It could be questioned, ho�ever, if astronomical determinations (e.g. with almucantarat
methods) are not more seriously effected by local refraction at deflection-stations, situated in  forest 
areas of other certain types of groundvegetation (opinion by author of this review, j ustified by his 
own experience in Sweden). 

In the highly instructive and important paper by G. Abby and M. S. Tavenner : "Definition of 
the Refraction and Shimmer Problem Affecting Geodetic Observations of Satel l ites" presented 
by the latter, the s.c. undulation or shimmer (short period fluctuation in refractive index), was 
given most of the responsability for the relatively low upper limit of accuracy in direction determina
tions of satellites (reflecting or flashing). Further studies of means for minimizing the influence 
of this effect at stellar triangulation, were anticipated by the authors . 
About investigations of the shimmer-problem, also Lambeck reported. H is paper was not announ
ced, and is not published here. 

Under C, the following papers appeared : 
H. M. Dufour: "Choix des formules de la refraction atmospherique pour les observations par 
chambres ballistiques."  
L.  Hradilek : "Determination of Refraction, when adjusting Spatial Triangulations."  
R. N. Sanchez: "Results of  Refraction at  Vertical Angle Measurements in  Mountainous Countries." 
Dufour's important work on the subject was again recognized in the discussion. Hradilek's extre
mely interesting paper was recognized by Leval lois as the first attempt of a spatial triangulation, 
taking all sources of errors into account. Mr. Levallois also stressed upon the necessity to encour
age this type of work in the future. In the discussion Gale asked for more precise information of m.sq. 
errors in the determination of refractive effect . Sanchez' paper, presented by Prof Baetsle, in the 
author's absence, showed once more, after the Symposium on Three Dimensional Geodesy in 
Cortina d'Ampezzo 1 962, the importance of the work, being done by Sanchez in Argent ina to 
solve the problem of refraction-correction at vertical angle measurement in mountainous areas. 

The f,0urth (and last) meeting on the refraction problem was held at the same day between 1 5- and 
1 7 30, Chairman Dr. E. Tengstrom, and began with the following paper : 
E. Tengstrom: "Elimination of Refraction at Vertical Angle Measurements, Using Lasers of Dif
ferent Wave Lengths." This paper, which actually belonged to the previous session, explained a 
dispersion-method at terrestrial vertical angle measurements, introduced already 1 948, which cor
responds to Owens' and Bender's approach at optical distance measurements but has to use wave
propagation index instead of group-index. Three types of i nstruments, constructed by the auther 
were described, and the obtained (resp. obtainable) accuracy in  determining the refraction angle 
at the observation-site, was stated. The discussion, i n  which Poder, Asplund, Dufour and others 
participated, showed that this method probably could solve the problem of instantaneous refrac-
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t ion determination also in the case of astronomical (and "rocket-") refract ion and in case of lateral 
refract ion . 

The Nivellitic Refraction was treated by T. J. Kukkami:iki, who, after a short review of the 
problem, read two recent papers on the subject, one by J. G. Kakkuri: "Refraction in  the Long 
Distance Water-cross Levell ing", and one by E. Hytonen: "Measuring of the Refraction in the 
Second Levelling of Finland." The experience, demonstrated in these i nvestigation, which may be 
used by all level l i ng-observers, was h ighly appreciated by the audience. Dr. Tengstrom congratulated 
the F innish scient ists to the ir fruitful research in a very important area of refraction-studies and 
thanked Prof. Kukkamak i for his  most interesting contribution. 

Dr. Tengstrom then asked Prof H. Moritz to explain his opi nion of the best way of mathe
matically treat ing the problem of refraction. Moritz' paper was ent itled : "Applicat ions of the Con
formal Theory of Refraction", and showed that using Fermat's principle a clear understanding 
of the effect of refractive-index distribution c.ould be obtained by treat ing the grad n as a space 
function. Suitable practical formulas for the refraction effect were deduced and might be applied 
to all k inds of geodetic measurements . In the following d iscussion, especially Dufour stressed upon 
the necessity of treating mathematically gra.d n also as a function of t ime.  

Before closing the session and the conference on refra.ction, the chairman asked the audience 
about further remarks, at the same t ime announcing, that the conference, and also the whole Sym
posium did not expect recommendations or proposals of resol ut ions to be made. Such recommen
dat ions and resolut ions should be discussed d uring the General Assembly i n  Lucerne. After the 
chairman's question, Brig. Denison read a letter from Brig. Hot ine, ask ing for the best up  to date 
definition of a model atmosphere. The letter from Ho t ine caused a rather lively d iscussion, in which 
Leval lois and Moritz denied the necessity of defining such an atmosphere. The chairman pointed 
out, however, tha.t if Brig. Hotine for some reason needed such an up to date model atmosphere, 
we should try to give it to h im, not d iscussing whether it is necessary or not. The whole question 
was postponed until Lucerne-meet ing. Dr. Tcngstrom finally closed the conference on "Recent 
Research on Atmospherical Refraction for Geodetic Purposes", thanking all a11thors and partici
pants for their valuable contributions. He expressed his s incere hope that this conference had been 
a good preparation for the special session on refraction problems, which wil l  be organized by the 
president of Sec I i n  Lucerne. 

He also asked the audience to excuse him for forcing the part ic ipants to work so hard, with
out giving them coffee-breaks enough. But he was confident, that their scientific interest was greater 
than their interest in drinking coffee. He repeated his thanks to the Austrian hosts, who had made 
this conference such a success. He felt sad to leave this country, where Scientific Power and H uman 
Understand ing always had worked hand by hand. After a warm "Good Bye'' from Prof. Lederste
ger, contain ing also his appreciation of the scientifically h igh standard of all contributions during 
the whole Symposium, he anticipated further interest ing discussions in Lucerne. 

Finally Dr. Tengstrom worded as follows : "As representative of Sec. V, SSG 1 6  and SSG 23, 
I would like, myself, to explain my deep grat itude to our Austrian hosts for their giving us  such 
a wonderful t ime in Vienna, March 1 967, making us scient ifically i nspired, and also help ing us 
to enjoy l ife i n  the very best way. The fine social program organized by Prof. Hauer, was h ighly 
appreciated. The Smoker at the "Rathauskeller", the receptions by the  M inister and by the Mayor 
of Vienna, the "Heurigenabend" in Deutsch-Wagram, and the wonderful excursion to Wachau
Diirnstein, al l these events were parts of an unforgettable t ime in V ienna" . 



340 

Contents 

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 
Symposium Report. By F. Hauer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 
Program of the Symposium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 
List of Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 
Address of His magnificence, Prof. Dr. R. Stix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1  
Address of the Secretary General of IAG, J .  J .  Levallois . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2  
Address given b y  the President of Section V and President o f  SSG 1 6  and 23, Dr. E .  Tengstrom 1 3  
Address of the President of OKIE, Prof. Dr. K. Ledersteger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 5  
Address of Sektions-Chef Dr. Hans Schipper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 7  

First Conference (SSG 1 6 ) :  The Normal Spheroid and the Figure of the Earth 

Part I :  The Normal Spheroid and the Regularization of the Earth's Crust 

Equi librium Figure of the Earth and the Scientific Reference Surface. By John A. O'Keefe 1 8  
The Equil ibrium Figure of the Earth and the Normal Spheroid . By K. Ledersteger . . . . . . . . . 20 
The Mass-Functions and the Equipotential Ell ipsoid . By K. Ledersteger . . . . . . . . . . . . . . . . . . 23 
The Horizontal I sostasy. By K. Ledersteger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 
New Conception of the Equilibrium Condition of One-parametric Spheroid and the Normal 

Spheroid of the Earth. By Z. Z<ibek . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 
Critical Remarks Concerning the Preceding Article. By K. Ledersteger . . . . . . . . . . . . . . . . . . . 46 

Part 1 1 :  The Figure of the Earth and the External Gravity Field 

Deviations of the Geoid from an Equ ilibrium Figure. By I .  Fischer . . . . . . . . . . . . . . . . . . . . . . 5 3  
O n  the Solvability o f  Molodensky's Integral Equation. B y  M .  Pick . . . . . . . . . . . . . . . . . . . . . . . 56 
Lineare Losungen des Problems von Molodenskij,  Abstract. By H. Moritz . . . . . . . . . . . . . . . .  57 
About a System of Integral Equations for the Determination of the Earth Shape Regionally 

only by Means of Gravity Measures. By L. Bragard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 
Analytical Integration of the Orbital Perturbations Caused by Gravity-Anomalies. Abstract . 

By K. Arnold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 
On the Determination of the Earth's El l ipsoid on the Basis of Satellite Observations. By 

M. Bursa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 
A New Parameter for Ellipsoidal Calculus. By G. J. Bruins . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 
Some Remarks about Ellipsoidal Coordinate Systems. By G. J. Bruins . . . . . . . . . . . . . . . . . . .  68 
Mass-Sources of the Gravitation Anomalies. By I. Pola . . : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 
A Contribution to the Determination of Gravity by a Transformation Method. By J .  Kaspar 73 
Some Consequences of the Expansion on the Figure and Rotation of the Earth. By L. Egyed 74 
The Asymmetric Structure of the Earth and its Secular Processes. By G. Barta . . . . . . . . . . . . . 77 

Part I l l :  Gravity Anomalies, Deviations of the Vertical ,  
Observat ions (Methods and Results) 

Aerial Gravimetry for Direct Observation of the External Gravity Field. By B. Szabo . . . . . . . 80 
Some Remarks on the Accuracy of Interpolation of Gravity Anomalies. By V. Vyskocil . . . .  85  
On the Accuracy of  the Deviations of the Vertical Interpolated by  Gravimetric Methods. 

By P. Biro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 
Determination of Scale in Spatial Direct ion Networks. By K. Rinner . . . . . . . . . . . . . . . . . . . . . 90 



341 

Studies of Gravity in Space According to Bjerhammar. By Bo-Gunnar Reit . . . . . . . . . . . . . . . 107 
About Some Results in the Czechoslovak Test Area. By M .  Pick, I. Pola . . . . . . . . . . . . . . . . . 1 24 
The Extension of the Gravity Field in South Australia. By R.  S. Mather . . . . . . . . . . . . . . . . . .  1 26 
The Course of the Plumb-Line at the Transit through the Physical Earth-Surface, and the 

Determination of its Curvature by Local Gravimetry. By W. Embacher . . . . . . . . . . . . . . .  1 38 
Geodetic Interpretation of the Results. Summary. By G. Veis . . . . . . . . . . . . . . . . . . . . . . . . . .  . . 143 
Ideas and Propositions on Marine Geodesy. By K. Killian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  144 

Second Conference (SSG 23) :  Recent Research on Atmospherical Refraction 

for Geodetic Purposes 

Part I :  Problems of Atmospherical Refractive Index and its Influence upon 
Electro-optical Distance Measurements 

A :  Refraction Effect on Optical Distance-Measurements 

Introduction and Opening by Prof. L. Asplund, President of Section l .  . . . . . . . . . . . . . . . . . . . 1 50 
Report of SSG 19  to SSG 23 on Matters of Common Interest Connected with Refraction. 

By E. W. Denison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 51 
Recent Progress in Optical Distance Measurement : Lasers and Atmospheric Dispersion. 

By J . C. Owens . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 53 
A Radio-Optical Dispersion Technique for Higher-Order-Correction of Optical Distance 

Measurements. By M. C. Thompson . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 61 
Satellite Ranging with a Laser and the Correction for Atmospheric Refraction. By C. G .  Lehr, 

L. A. Maestre, P. H .  Anderson . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  163 
The Effect of the Atmosphere on Precise Satellite Ranges Obtained by a Laser. By K. Bretter-

bauer . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 7 1  

B :  Refraction Effect o n  Distance Measurements, Using Radio Wave Propagation 

Atmospheric Correction to Tellurometer Measurements. By K. Poder . . . . . . . . . . . . . . . . . . . . 1 79 
Investigations of Refraction Correction in Tellurometer Measurements. By T. Parm . . . . . . . .  1 86 
The Effect of Meteorological Factors on the Accuracy of Tellurometer Measurements. By 

s. Harmala . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 88 
Some Recent Measurements of Atmospheric Limitations to the Precision of Microwave 

Distance Measuring Equipment. By M .  C. Thompson, H. B. Janes . . . . . . . . . . . . . . . . . . .  200 
Refractive Effects of Radio Ranging on Artificial Earth Satellites. By F. Culley, M.  Sherman 205 

Part II : Refraction Effect on the Determination of Directions 

A :  Use of Relationships Between Different Effects of Refractive Index 

The Calculation of Refraction Angles by Means of the Refractive I ndex and of the Radii 
of the Curvature of the Refractional Curve. By M. Pelikan . . . . . . . . . . . . . . . . . . . . . . . . . . 21 1 

A Mathematical Model for Temperatures in the Lower Atmosphere, and its Application in 
Refraction Calculations. By P. V. Angus-Leppan .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 1 9  

Electrical Measurement o f  the Temperature Gradient at Astronomical Stations. By 0. Hirsch 228 
Contribution to the Vertical Gradient of Refractive Index for Microwaves in the First 100 m 

of the Atmosphere. By H. Pelzer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235 
Time-Space Structure of Atmospheric Index Especially Obtained by Refractometer 

Measurements. By H. Jeske, G. Kruspe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244 

B :  Errors and Sources of Errors 

Investigations on Errors in the Determination of Astronomical Refraction. By K. Ramsayer 260 
Definition of the Refraction and Shimmer Problem Affecting Geodetic Observations of 

Satellites. By D. G. Abby, M. S. Tavenner . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269 



342 

C :  Refraction in Connection with Spatial Geodesy 

Formules essentielles de la refraction d'un rayon lumineux entre 2 points a distance finie 
ou infinie. By H. M. Dufour . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282 � 

Determination of Refraction When Adjusting Spatial Triangulation. By L. Hradilek . . . . . . . 286 5 
Results of Terrestrial Refraction in Mountainous Countries by the Investigation of Vertical 
Triangles. By R. N. Sanchez . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  288 � 

Part III : Elimination of Refraction from Geodetic Angular Measurements. 
Nivellitic Refraction. Conformal Theory of Refraction 

El imination of Refraction at Vertical Angle Measurements, Using Lasers of Different Wave
lengths. By E. Tengstrom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292 � 

Refraction in Precise Levelling. By T. J .  Kukkamaki . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303 3 
Eliminating the Refraction Error from the Long Optical Sights in the Water-Crossing. By 

J. Kakkuri . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305 i 
Measuring of the Refraction in the Second Levelling of Finland. By E. Hytonen . . . . . . . . . . . 3 1 4  i 
Application of the Conformal Theory of Refraction. By H. Moritz . . . . . . . . . . . . . . . . . . . . . . . 323 J 

Extract from the Symposium Report .  By E. Tengstrom .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334 i 


	Blank Page



